organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(4-bromo­but­­oxy)benzene

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2017; accepted 22 August 2017; online 8 September 2017)

The whole mol­ecule of the title compound, C14H20Br2O2, is generated by twofold rotational symmetry, with the twofold axis bis­ecting the benzene ring. The packing of the mol­ecules features C—H⋯π inter­actions, which link the mol­ecules to form chains along [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Alk­oxy-substituted benzenes are useful precursors in the synthesis of monodisperse aromatic oligomers (Lightowler & Hird, 2005[Lightowler, S. & Hird, M. (2005). Chem. Mater. 17, 5538-5549.]). The tert-but­oxy radicals plays an active role in initiating polymerization (Rizzardo & Solomon, 1979[Rizzardo, E. & Solomon, D. H. (1979). J. Macromol. Sci. Chem. 13, 1005-1013.]).

In the title compound (Fig. 1[link]), the bromo­but­oxy side chains are attached to the benzene ring in positions 1 and 3. The asymmetric unit contains one-half of the mol­ecule, the whole mol­ecule being generated by twofold rotational symmetry. This twofold axis bis­ects the benzene ring at atoms C5 and C8. The dihedral angle between the benzene ring and the mean plane which best fits the atoms of the bromo­but­oxy side chain is 40.75°. The angle between the bonds [O1—C7 and C7a—O1a; symmetry code: (a) −x + 1, y, −z + [{1\over 2}]] connecting the bromo­but­oxy side chains with the benzene ring is 69.9 (2)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains along the a-axis direction (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the bezne ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCg1i 0.97 2.81 3.664 (4) 147
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the twofold rotation axis (symmetry code: −x + 1, y, −z + [{1\over 2}]) that bis­ects atoms C5 and C8.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis.

Synthesis and crystallization

A mixture of resorcinol/hydro­quinol (1.0 equivalent) and potassium carbonate (2.0 equivalents) in acetone (50 ml) was stirred for 15 min at 333 K. 1,3-Di­bromo­butane (2.1 equivalents) was added to the reaction mixture and stirred at 333 K for 7 h. After completion of the reaction (monitored by thin-layer chromatography), the solvent was removed under reduced pressure and the residue was extracted with CHCl3 (3 × 100 ml), then washed with water (2 × 100 ml) and brine (150 ml), and finally dried over anhydrous Na2SO4. The resulting solution was filtered and concentrated in vacuo and the residue obtained was purified by column chromatography using CHCl3–hexane (1:9 v/v) as eluent. The white solid obtained was crystallized from methanol solution by slow evaporation, giving colourless block-like crystals.

Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H20Br2O2
Mr 380.12
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 4.8948 (3), 11.4976 (8), 27.636 (2)
V3) 1555.30 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.21
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.562, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 17085, 1366, 974
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.070, 1.08
No. of reflections 1366
No. of parameters 83
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.39
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1,3-Bis(4-bromobutoxy)benzene top
Crystal data top
C14H20Br2O2Dx = 1.623 Mg m3
Mr = 380.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 4934 reflections
a = 4.8948 (3) Åθ = 5.9–48.6°
b = 11.4976 (8) ŵ = 5.21 mm1
c = 27.636 (2) ÅT = 296 K
V = 1555.30 (18) Å3Block, colourless
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 760
Data collection top
Bruker Kappa APEXII CCD
diffractometer
974 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD Diffractometer scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 3.0°
Tmin = 0.562, Tmax = 0.745h = 55
17085 measured reflectionsk = 1313
1366 independent reflectionsl = 3227
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0142P)2 + 2.6984P]
where P = (Fo2 + 2Fc2)/3
1366 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11607 (11)0.33877 (4)0.03546 (2)0.0782 (2)
O10.1750 (5)0.64764 (18)0.18910 (8)0.0444 (6)
C80.5000000.6559 (4)0.2500000.0356 (10)
H80.4999960.5750590.2500020.043*
C60.3314 (7)0.8365 (3)0.21849 (12)0.0418 (8)
H60.2186580.8774240.1974200.050*
C70.3318 (6)0.7156 (3)0.21855 (11)0.0346 (7)
C30.1534 (8)0.6095 (3)0.12858 (13)0.0534 (10)
H3A0.2888210.6450440.1076590.064*
H3B0.2492170.5609420.1517260.064*
C50.5000000.8946 (4)0.2500000.0457 (12)
H50.4999960.9754660.2500010.055*
C40.0030 (7)0.7038 (3)0.15550 (12)0.0463 (9)
H4A0.1014790.7512050.1331210.056*
H4B0.1312140.7535510.1724710.056*
C10.1216 (9)0.4392 (4)0.07311 (15)0.0707 (12)
H1A0.2566330.4739290.0518610.085*
H1B0.2177310.3929010.0969890.085*
C20.0331 (8)0.5336 (3)0.09825 (13)0.0520 (10)
H2A0.1251540.5813860.0743600.062*
H2B0.1713160.4991010.1189040.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1073 (4)0.0652 (3)0.0622 (3)0.0010 (3)0.0155 (3)0.0107 (2)
O10.0516 (15)0.0376 (12)0.0439 (12)0.0008 (12)0.0128 (11)0.0034 (10)
C80.043 (3)0.029 (2)0.035 (2)0.0000.005 (2)0.000
C60.045 (2)0.0326 (16)0.0474 (18)0.0052 (18)0.0027 (16)0.0071 (16)
C70.0363 (19)0.0331 (16)0.0343 (16)0.0027 (15)0.0045 (15)0.0001 (14)
C30.045 (2)0.066 (2)0.050 (2)0.001 (2)0.0093 (18)0.0053 (19)
C50.046 (3)0.029 (2)0.061 (3)0.0000.002 (3)0.000
C40.045 (2)0.049 (2)0.044 (2)0.0043 (18)0.0043 (18)0.0049 (17)
C10.076 (3)0.068 (3)0.068 (3)0.013 (3)0.007 (3)0.004 (2)
C20.057 (2)0.055 (2)0.044 (2)0.007 (2)0.0086 (19)0.0001 (18)
Geometric parameters (Å, º) top
Br1—C11.942 (4)C3—H3A0.9700
O1—C71.364 (4)C3—H3B0.9700
O1—C41.428 (4)C5—H50.9300
C8—C7i1.380 (4)C4—H4A0.9700
C8—C71.380 (4)C4—H4B0.9700
C8—H80.9300C1—C21.494 (5)
C6—C51.373 (4)C1—H1A0.9700
C6—C71.390 (4)C1—H1B0.9700
C6—H60.9300C2—H2A0.9700
C3—C41.507 (5)C2—H2B0.9700
C3—C21.515 (5)
C7—O1—C4118.2 (2)O1—C4—C3107.1 (3)
C7i—C8—C7120.4 (4)O1—C4—H4A110.3
C7i—C8—H8119.8C3—C4—H4A110.3
C7—C8—H8119.8O1—C4—H4B110.3
C5—C6—C7119.0 (3)C3—C4—H4B110.3
C5—C6—H6120.5H4A—C4—H4B108.6
C7—C6—H6120.5C2—C1—Br1112.2 (3)
O1—C7—C8115.3 (3)C2—C1—H1A109.2
O1—C7—C6124.8 (3)Br1—C1—H1A109.2
C8—C7—C6119.9 (3)C2—C1—H1B109.2
C4—C3—C2113.2 (3)Br1—C1—H1B109.2
C4—C3—H3A108.9H1A—C1—H1B107.9
C2—C3—H3A108.9C1—C2—C3111.7 (3)
C4—C3—H3B108.9C1—C2—H2A109.3
C2—C3—H3B108.9C3—C2—H2A109.3
H3A—C3—H3B107.8C1—C2—H2B109.3
C6i—C5—C6121.8 (4)C3—C2—H2B109.3
C6i—C5—H5119.1H2A—C2—H2B107.9
C6—C5—H5119.1
C4—O1—C7—C8179.7 (2)C7—C6—C5—C6i0.0 (2)
C4—O1—C7—C60.2 (5)C7—O1—C4—C3179.0 (3)
C7i—C8—C7—O1179.9 (3)C2—C3—C4—O164.1 (4)
C7i—C8—C7—C60.0 (2)Br1—C1—C2—C3178.5 (2)
C5—C6—C7—O1179.9 (2)C4—C3—C2—C1178.5 (3)
C5—C6—C7—C80.0 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the bezne ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1ii0.972.813.664 (4)147
Symmetry code: (ii) x1, y, z.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLightowler, S. & Hird, M. (2005). Chem. Mater. 17, 5538–5549.  Web of Science CrossRef CAS Google Scholar
First citationRizzardo, E. & Solomon, D. H. (1979). J. Macromol. Sci. Chem. 13, 1005–1013.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]