metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[Tris(pyridin-2-yl)meth­yl]pyridinium trans-bis­­(aceto­nitrile)­tetra­chlorido­ruthenate(III) aceto­nitrile monosolvate

aInstitute of Natural Sciences, Senshu University, Higashimita 2-1-1, Kawasaki, Kanagawa 214-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: matsumoto@isc.senshu-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 13 September 2017; accepted 25 September 2017; online 29 September 2017)

The asymmetric unit of the title compound, [(C5H4N)3C(C5H5N)][RuCl4(CH3CN)2]·CH3CN, contains one 2-[tris­(pyridin-2-yl)meth­yl]pyridinium cation, one trans-bis­(aceto­nitrile)­tetra­chlorido­ruthenate(III) anion and one aceto­nitrile solvent mol­ecule. The RuIII ion is coordinated by four Cl anions in the equatorial plane and by two aceto­nitrile ligands in the axial positions, forming a distorted octa­hedral geometry. The cation, the monoprotonated species of tetra­kis­(pyridin-2-yl)methane, forms an intra­molecular N—H⋯N hydrogen bond between the pyridinium ring and one of the pyridine rings. The complex anions are linked to each other via C—H⋯Cl hydrogen bonds, forming an undulating sheet parallel to the ac plane. A C—H⋯N hydrogen bond between the cation and the anion is also observed. The solvate aceto­nitrile mol­ecule forms C—H⋯N and C—H⋯Cl hydrogen bonds, respectively, with the cation and the anion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have investigated the synthesis and properties of tetra­kis­(pyridin-2-yl)methane (py4C) over the last decade (Matsumoto et al., 2003[Matsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861-2864.], 2004[Matsumoto, K., Kannami, M. & Oda, M. (2004). Chem. Lett. 33, 1096-1097.]). In the course of our studies on py4C, we are inter­ested in the ruthenium complex with py4C because of the fascinating properties of ruthenium polypyridine complexes (Juris et al., 1988[Juris, A., Balzani, V., Barigelleti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85-277.]; Balzani et al., 1996[Balzani, V., Juris, A. & Venturi, M. (1996). Chem. Rev. 96, 759-833.]). Although we did not obtain the desired ruthenium complex, we obtained single crystals of the title compound instead. This is the first report of the crystal structure including the monoprotonated py4C cation, [(py4C)·H]+.

The asymmetric unit consists of one mol­ecule of [(py4C)·H]+, one mol­ecule of trans-bis­(aceto­nitrile)­tetra­chlorido­ruthenate(III), [RuCl4(CH3CN)2], and one aceto­nitrile mol­ecule (Fig. 1[link]). It should be noted that an intra­molecular N—H⋯N hydrogen bond is formed in the cation (Fig. 1[link] and Table 1[link]). Although py4C often takes a highly symmetric part in the crystal structure, the cation shows an unsymmetrical structure, where atom C1 occupies a general position. On the other hand, the structure of [RuCl4(CH3CN)2] resembles those in previous reports (Gheller et al., 1995[Gheller, S. F., Heath, G. A. & Hockless, D. C. R. (1995). Acta Cryst. C51, 1805-1807.]; Appelbaum et al., 1999[Appelbaum, L., Heinrichs, C., Demtschuk, J., Michman, M., Oron, M., Schäfer, H. J. & Schumann, H. (1999). J. Organomet. Chem. 592, 240-250.]; Jabłońska-Wawrzycka et al., 2013[Jabłońska-Wawrzycka, A., Rogala, P., Michałkiewicz, S., Hodorowitcz, M. & Barszcz, B. (2013). Dalton Trans. 42, 6092-6101.]). The RuIII ion adopts an octa­hedral coordination geometry, with four Cl atoms occupying equatorial positions and two aceto­nitrile mol­ecules in the axial positions. The RuIII and four Cl atoms essentially lie in a plane and two aceto­nitrile mol­ecules are approximately perpendicular to the RuCl4 plane. The average Ru—Cl and Ru—N bond lengths are 2.36 and 2.02 Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.87 (2) 1.87 (2) 2.615 (2) 143.3 (19)
C22—H18⋯Cl1i 0.98 2.69 3.5521 (19) 146
C22—H19⋯Cl4i 0.98 2.78 3.5972 (19) 142
C24—H21⋯Cl1ii 0.98 2.77 3.7393 (18) 172
C24—H22⋯Cl2iii 0.98 2.77 3.6346 (18) 147
C24—H23⋯N4ii 0.98 2.65 3.606 (2) 165
C6—H5⋯N7 0.95 2.45 3.248 (3) 142
C26—H26⋯Cl4iv 0.98 2.84 3.749 (3) 154
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular components of the title compound, showing the atom-labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms. The intra­molecular N—H⋯N hydrogen bond and the C—H⋯N hydrogen bond are shown as dashed lines.

In the crystal, the anions form an undulating sheet parallel to the ac plane via C—H⋯Cl hydrogen bonds (C22—H18⋯Cl1i, C22—H19⋯Cl4i, C24—H21⋯Cl1ii and C24—H22⋯Cl2iii; symmetry codes as in Table 1[link]). A C—H⋯N hydrogen bond between [(py4C)·H]+ and [RuCl4(CH3CN)2] is also formed (C24—H23⋯N4ii; Table 1[link]). The aceto­nitrile solvent mol­ecule forms C—H⋯N and C—H⋯Cl hydrogen bonds (C6—H5⋯N7 and C26—H26⋯Cl4iv; Table 1[link]), respectively, with [(py4C)·H]+ and [RuCl4(CH3CN)2].

Synthesis and crystallization

A solution of ruthenium(III) chloride n-hydrate (100 mg) in ethanol (6 ml) and water (4 ml) was refluxed for 4 h. Tetra­kis(pyridin-2-yl)methane (324 mg) in ethanol (120 ml) was added to the refluxing solution and the reflux was continued for additional 4 h. After cooling to room temperature, the solvents were evaporated and dried under vacuum. Aceto­nitrile (50 ml) was added to the residue and the insoluble substances were removed by filtration. Brown prisms (70 mg, 21%) appeared from the filtrate by slow evaporation at room temperature. Although the residue obtained from the reaction mixture might have included the desired ruthenium complex, aceto­nitrile molecules coordinating the ruthenium ion resulted in formation of the title compound. Analysis calculated for C27H26Cl4N7Ru: C 46.90, H 3.79, N 14.18%; found: C 46.86, H 3.78, N 14.24%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H atom H1 was located in a difference Fourier map and refined freely. The CH hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C21H17N4)[RuCl4(C2H3N)2]·C2H3N
Mr 691.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 7.6796 (3), 30.3330 (14), 13.1153 (6)
β (°) 100.194 (2)
V3) 3006.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.739, 0.913
No. of measured, independent and observed [I > 2σ(I)] reflections 28746, 6815, 6043
Rint 0.027
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.06
No. of reflections 6815
No. of parameters 359
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.25
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2011[Rigaku (2011). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: Yadokari-XG 2009 (Wakita, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2011), Yadokari-XG 2009 (Wakita, 2001) and publCIF (Westrip, 2010).

2-[Tris(pyridin-2-yl)methyl]pyridinium trans-bis(acetonitrile)tetrachloridoruthenate(III) acetonitrile monosolvate top
Crystal data top
(C21H17N4)[RuCl4(C2H3N)2]·C2H3NF(000) = 1396
Mr = 691.42Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.6796 (3) ÅCell parameters from 21524 reflections
b = 30.3330 (14) Åθ = 3.0–27.4°
c = 13.1153 (6) ŵ = 0.91 mm1
β = 100.194 (2)°T = 200 K
V = 3006.9 (2) Å3Prism, brown
Z = 40.2 × 0.2 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6043 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.739, Tmax = 0.913k = 3938
28746 measured reflectionsl = 1616
6815 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: mixed
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.027P)2 + 1.1697P]
where P = (Fo2 + 2Fc2)/3
6815 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.13693 (2)0.17595 (2)0.31885 (2)0.02132 (4)
Cl10.23972 (6)0.23538 (2)0.22993 (3)0.03010 (9)
Cl20.04670 (5)0.22761 (2)0.43493 (3)0.02920 (9)
Cl30.02924 (6)0.11680 (2)0.40743 (3)0.03249 (9)
Cl40.22432 (6)0.12549 (2)0.20175 (3)0.02980 (9)
N10.03878 (19)0.32851 (4)0.29181 (11)0.0257 (3)
H10.119 (3)0.3148 (7)0.3352 (16)0.037 (6)*
N20.33833 (18)0.32182 (4)0.42140 (11)0.0282 (3)
N30.00392 (19)0.42519 (5)0.44106 (11)0.0325 (3)
N40.3292 (2)0.41845 (5)0.19756 (11)0.0308 (3)
N50.10403 (19)0.18046 (4)0.22930 (11)0.0271 (3)
N60.37875 (19)0.17269 (4)0.41090 (11)0.0257 (3)
N70.1595 (3)0.49066 (7)0.10578 (18)0.0695 (6)
C10.2296 (2)0.39335 (5)0.35306 (12)0.0229 (3)
C20.0678 (2)0.37197 (5)0.28477 (12)0.0235 (3)
C30.1004 (2)0.30712 (6)0.23517 (14)0.0330 (4)
H20.1136200.2762300.2428960.040*
C40.2220 (2)0.33032 (6)0.16662 (14)0.0367 (4)
H30.3198640.3158040.1258180.044*
C50.1990 (2)0.37557 (7)0.15810 (13)0.0363 (4)
H40.2824180.3922780.1114610.044*
C60.0557 (2)0.39630 (6)0.21712 (13)0.0315 (4)
H50.0413470.4272640.2115070.038*
C70.3840 (2)0.36092 (5)0.38549 (11)0.0228 (3)
C80.4657 (2)0.29287 (6)0.45778 (14)0.0330 (4)
H60.4325290.2650620.4816190.040*
C90.6437 (2)0.30171 (6)0.46217 (14)0.0330 (4)
H70.7313540.2805920.4887550.040*
C100.6897 (2)0.34202 (6)0.42687 (14)0.0331 (4)
H80.8108600.3492160.4298750.040*
C110.5595 (2)0.37222 (6)0.38685 (13)0.0289 (3)
H90.5898180.3999190.3610570.035*
C120.1711 (2)0.41119 (5)0.45254 (12)0.0246 (3)
C130.0499 (3)0.44280 (7)0.52414 (15)0.0412 (4)
H100.1688480.4526950.5166200.049*
C140.0566 (3)0.44738 (7)0.61927 (15)0.0414 (4)
H110.0130230.4606030.6754240.050*
C150.2287 (3)0.43228 (7)0.63130 (14)0.0420 (4)
H120.3055650.4345120.6963520.050*
C160.2875 (2)0.41376 (6)0.54648 (13)0.0349 (4)
H130.4051560.4030480.5526290.042*
C170.2905 (2)0.43121 (5)0.28908 (12)0.0253 (3)
C180.3850 (3)0.44934 (6)0.13796 (15)0.0375 (4)
H140.4146990.4404860.0737100.045*
C190.4017 (3)0.49347 (6)0.16468 (17)0.0431 (5)
H150.4409020.5143660.1197430.052*
C200.3602 (3)0.50621 (6)0.25791 (17)0.0420 (5)
H160.3690780.5362910.2783640.050*
C210.3050 (2)0.47458 (5)0.32215 (15)0.0337 (4)
H170.2776910.4826190.3875380.040*
C220.4196 (2)0.18499 (7)0.11958 (15)0.0366 (4)
H180.4833520.2098270.1435060.055*
H190.4834170.1575420.1271680.055*
H200.4111740.1893000.0465590.055*
C230.2424 (2)0.18244 (5)0.18128 (13)0.0276 (3)
C240.6850 (2)0.17443 (6)0.53247 (14)0.0324 (4)
H210.6903830.1999370.5787940.049*
H220.7790320.1767400.4910250.049*
H230.7009910.1473130.5736800.049*
C250.5133 (2)0.17341 (5)0.46386 (13)0.0256 (3)
C260.0305 (4)0.56800 (8)0.0851 (2)0.0668 (7)
H240.1224840.5900940.0882940.100*
H250.0087160.5700300.0181130.100*
H260.0701380.5733800.1409940.100*
C270.1013 (3)0.52436 (7)0.09689 (17)0.0506 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02089 (7)0.02070 (7)0.02179 (7)0.00083 (5)0.00222 (5)0.00059 (4)
Cl10.0362 (2)0.02404 (18)0.0321 (2)0.00159 (16)0.01156 (16)0.00320 (15)
Cl20.0315 (2)0.02802 (19)0.02932 (19)0.00249 (16)0.00885 (16)0.00262 (15)
Cl30.0360 (2)0.0302 (2)0.0315 (2)0.00501 (17)0.00631 (17)0.00562 (16)
Cl40.0355 (2)0.02499 (18)0.02973 (19)0.00138 (16)0.00792 (16)0.00290 (15)
N10.0234 (7)0.0236 (6)0.0290 (7)0.0004 (5)0.0014 (6)0.0024 (5)
N20.0242 (7)0.0238 (6)0.0351 (8)0.0011 (5)0.0008 (6)0.0022 (5)
N30.0287 (7)0.0374 (8)0.0320 (7)0.0041 (6)0.0072 (6)0.0055 (6)
N40.0360 (8)0.0285 (7)0.0290 (7)0.0016 (6)0.0085 (6)0.0018 (6)
N50.0268 (7)0.0268 (7)0.0269 (7)0.0004 (6)0.0027 (6)0.0002 (5)
N60.0265 (7)0.0235 (6)0.0271 (7)0.0007 (5)0.0046 (6)0.0002 (5)
N70.0874 (17)0.0433 (11)0.0750 (15)0.0007 (11)0.0065 (13)0.0190 (10)
C10.0233 (7)0.0206 (7)0.0247 (7)0.0006 (6)0.0037 (6)0.0004 (6)
C20.0244 (7)0.0250 (7)0.0214 (7)0.0010 (6)0.0050 (6)0.0024 (6)
C30.0272 (8)0.0306 (8)0.0398 (10)0.0034 (7)0.0020 (7)0.0085 (7)
C40.0275 (9)0.0465 (10)0.0336 (9)0.0012 (8)0.0014 (7)0.0113 (8)
C50.0312 (9)0.0483 (11)0.0266 (8)0.0094 (8)0.0023 (7)0.0012 (7)
C60.0326 (9)0.0317 (8)0.0293 (8)0.0037 (7)0.0028 (7)0.0025 (7)
C70.0236 (7)0.0228 (7)0.0218 (7)0.0014 (6)0.0032 (6)0.0022 (6)
C80.0319 (9)0.0245 (8)0.0399 (10)0.0014 (7)0.0014 (7)0.0045 (7)
C90.0274 (8)0.0340 (9)0.0353 (9)0.0089 (7)0.0006 (7)0.0005 (7)
C100.0215 (8)0.0448 (10)0.0329 (9)0.0012 (7)0.0048 (7)0.0018 (8)
C110.0267 (8)0.0315 (8)0.0292 (8)0.0025 (7)0.0065 (7)0.0017 (7)
C120.0278 (8)0.0204 (7)0.0266 (8)0.0025 (6)0.0077 (6)0.0015 (6)
C130.0364 (10)0.0474 (11)0.0422 (10)0.0079 (9)0.0135 (8)0.0104 (9)
C140.0490 (12)0.0438 (10)0.0354 (10)0.0013 (9)0.0182 (9)0.0105 (8)
C150.0464 (11)0.0515 (11)0.0274 (9)0.0033 (9)0.0049 (8)0.0094 (8)
C160.0316 (9)0.0429 (10)0.0297 (9)0.0018 (8)0.0041 (7)0.0059 (7)
C170.0246 (8)0.0223 (7)0.0290 (8)0.0014 (6)0.0045 (6)0.0019 (6)
C180.0394 (10)0.0412 (10)0.0338 (9)0.0013 (8)0.0113 (8)0.0097 (8)
C190.0416 (11)0.0348 (10)0.0548 (12)0.0031 (8)0.0137 (9)0.0166 (9)
C200.0412 (11)0.0226 (8)0.0639 (13)0.0023 (8)0.0136 (10)0.0022 (8)
C210.0357 (9)0.0247 (8)0.0421 (10)0.0010 (7)0.0110 (8)0.0040 (7)
C220.0221 (8)0.0481 (10)0.0382 (10)0.0020 (8)0.0009 (7)0.0043 (8)
C230.0276 (8)0.0288 (8)0.0270 (8)0.0003 (7)0.0063 (7)0.0016 (6)
C240.0250 (8)0.0352 (9)0.0349 (9)0.0015 (7)0.0001 (7)0.0003 (7)
C250.0267 (8)0.0223 (7)0.0282 (8)0.0007 (6)0.0063 (7)0.0004 (6)
C260.091 (2)0.0409 (12)0.0603 (15)0.0159 (13)0.0104 (14)0.0066 (11)
C270.0656 (14)0.0373 (11)0.0438 (11)0.0032 (10)0.0040 (10)0.0086 (9)
Geometric parameters (Å, º) top
Ru1—N52.0132 (14)C9—C101.375 (3)
Ru1—N62.0304 (14)C9—H70.9500
Ru1—Cl12.3576 (4)C10—C111.389 (2)
Ru1—Cl22.3720 (4)C10—H80.9500
Ru1—Cl32.3649 (4)C11—H90.9500
Ru1—Cl42.3488 (4)C12—C161.390 (2)
N1—C21.343 (2)C13—C141.372 (3)
N1—C31.354 (2)C13—H100.9500
N1—H10.87 (2)C14—C151.381 (3)
N2—C81.338 (2)C14—H110.9500
N2—C71.345 (2)C15—C161.391 (2)
N3—C121.335 (2)C15—H120.9500
N3—C131.343 (2)C16—H130.9500
N4—C171.344 (2)C17—C211.383 (2)
N4—C181.338 (2)C18—C191.384 (3)
N5—C231.137 (2)C18—H140.9500
N6—C251.139 (2)C19—C201.373 (3)
N7—C271.130 (3)C19—H150.9500
C1—C21.540 (2)C20—C211.392 (3)
C1—C71.541 (2)C20—H160.9500
C1—C121.551 (2)C21—H170.9500
C1—C171.543 (2)C22—C231.457 (2)
C2—C61.391 (2)C22—H180.9800
C3—C41.371 (3)C22—H190.9800
C3—H20.9500C22—H200.9800
C4—C51.391 (3)C24—C251.459 (2)
C4—H30.9500C24—H210.9800
C5—C61.380 (3)C24—H220.9800
C5—H40.9500C24—H230.9800
C6—H50.9500C26—C271.450 (3)
C7—C111.388 (2)C26—H240.9800
C8—C91.384 (2)C26—H250.9800
C8—H60.9500C26—H260.9800
Cl1—Ru1—Cl288.500 (15)C11—C10—H8119.9
Cl1—Ru1—Cl3179.093 (16)C7—C11—C10118.32 (15)
Cl1—Ru1—Cl490.883 (15)C7—C11—H9120.8
Cl2—Ru1—Cl391.067 (15)C10—C11—H9120.8
Cl2—Ru1—Cl4179.116 (15)N3—C12—C16122.46 (15)
Cl3—Ru1—Cl489.542 (15)N3—C12—C1115.59 (14)
N5—Ru1—Cl190.76 (4)C1—C12—C16121.91 (14)
N5—Ru1—Cl289.25 (4)N3—C13—C14123.96 (18)
N5—Ru1—Cl388.44 (4)N3—C13—H10118.0
N5—Ru1—Cl490.13 (4)C14—C13—H10118.0
N6—Ru1—Cl188.87 (4)C13—C14—C15118.33 (17)
N6—Ru1—Cl289.48 (4)C13—C14—H11120.8
N6—Ru1—Cl391.92 (4)C15—C14—H11120.8
N6—Ru1—Cl491.14 (4)C14—C15—C16118.82 (18)
N5—Ru1—N6178.68 (5)C14—C15—H12120.6
C2—N1—C3123.85 (15)C16—C15—H12120.6
C2—N1—H1114.1 (14)C12—C16—C15118.85 (17)
C3—N1—H1122.0 (14)C12—C16—H13120.6
C7—N2—C8118.95 (14)C15—C16—H13120.6
C12—N3—C13117.57 (16)N4—C17—C1114.06 (13)
C17—N4—C18117.67 (15)N4—C17—C21122.40 (15)
C23—N5—Ru1177.78 (14)C1—C17—C21123.55 (15)
C25—N6—Ru1175.99 (13)N4—C18—C19123.67 (18)
C2—C1—C7113.18 (12)N4—C18—H14118.2
C2—C1—C12108.21 (12)C19—C18—H14118.2
C2—C1—C17106.74 (12)C18—C19—C20118.17 (17)
C7—C1—C12108.28 (12)C18—C19—H15120.9
C7—C1—C17109.44 (12)C20—C19—H15120.9
C12—C1—C17111.01 (12)C19—C20—C21119.26 (17)
N1—C2—C1120.01 (14)C19—C20—H16120.4
N1—C2—C6117.51 (15)C21—C20—H16120.4
C1—C2—C6122.45 (14)C17—C21—C20118.82 (17)
N1—C3—C4119.61 (17)C17—C21—H17120.6
N1—C3—H2120.2C20—C21—H17120.6
C4—C3—H2120.2C23—C22—H18109.5
C3—C4—C5118.54 (17)C23—C22—H19109.5
C3—C4—H3120.7C23—C22—H20109.5
C5—C4—H3120.7H18—C22—H19109.5
C4—C5—C6120.30 (17)H18—C22—H20109.5
C4—C5—H4119.8H19—C22—H20109.5
C6—C5—H4119.8N5—C23—C22179.9 (2)
C2—C6—C5120.15 (16)C25—C24—H21109.5
C2—C6—H5119.9C25—C24—H22109.5
C5—C6—H5119.9C25—C24—H23109.5
N2—C7—C1115.07 (13)H21—C24—H22109.5
N2—C7—C11121.74 (14)H21—C24—H23109.5
C1—C7—C11122.94 (14)H22—C24—H23109.5
N2—C8—C9122.81 (16)N6—C25—C24179.5 (2)
N2—C8—H6118.6C27—C26—H24109.5
C9—C8—H6118.6C27—C26—H25109.5
C8—C9—C10117.96 (16)C27—C26—H26109.5
C8—C9—H7121.0H24—C26—H25109.5
C10—C9—H7121.0H24—C26—H26109.5
C9—C10—C11120.20 (16)H25—C26—H26109.5
C9—C10—H8119.9N7—C27—C26178.7 (3)
C3—N1—C2—C61.8 (2)N3—C12—C1—C7154.96 (14)
C3—N1—C2—C1179.64 (15)C16—C12—C1—C727.2 (2)
C13—N3—C12—C160.9 (3)N3—C12—C1—C1784.89 (17)
C13—N3—C12—C1176.98 (15)C16—C12—C1—C1793.00 (18)
C18—N4—C17—C210.6 (2)C2—N1—C3—C40.6 (3)
C18—N4—C17—C1179.28 (15)N1—C3—C4—C50.6 (3)
C8—N2—C7—C111.1 (2)N3—C12—C16—C151.1 (3)
C8—N2—C7—C1175.54 (15)C1—C12—C16—C15176.61 (16)
N1—C2—C1—C726.4 (2)N2—C7—C11—C100.2 (2)
C6—C2—C1—C7155.90 (14)C1—C7—C11—C10173.82 (14)
N1—C2—C1—C17146.83 (14)C7—N2—C8—C91.4 (3)
C6—C2—C1—C1735.45 (19)C10—C9—C8—N20.3 (3)
N1—C2—C1—C1293.63 (16)N1—C2—C6—C51.8 (2)
C6—C2—C1—C1284.10 (18)C1—C2—C6—C5179.56 (15)
N2—C7—C1—C247.00 (18)C8—C9—C10—C111.0 (3)
C11—C7—C1—C2138.63 (15)C7—C11—C10—C91.2 (3)
N2—C7—C1—C17165.91 (13)N4—C17—C21—C200.6 (3)
C11—C7—C1—C1719.7 (2)C1—C17—C21—C20179.60 (16)
N2—C7—C1—C1272.96 (16)C17—N4—C18—C191.1 (3)
C11—C7—C1—C12101.41 (17)C12—N3—C13—C140.3 (3)
N4—C17—C1—C257.10 (17)C15—C14—C13—N31.2 (3)
C21—C17—C1—C2123.06 (17)C2—C6—C5—C40.7 (3)
N4—C17—C1—C765.73 (17)C3—C4—C5—C60.5 (3)
C21—C17—C1—C7114.12 (17)C17—C21—C20—C191.2 (3)
N4—C17—C1—C12174.81 (14)C13—C14—C15—C161.0 (3)
C21—C17—C1—C125.3 (2)C12—C16—C15—C140.2 (3)
N3—C12—C1—C231.93 (18)C21—C20—C19—C180.6 (3)
C16—C12—C1—C2150.18 (15)N4—C18—C19—C200.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.87 (2)1.87 (2)2.615 (2)143.3 (19)
C22—H18···Cl1i0.982.693.5521 (19)146
C22—H19···Cl4i0.982.783.5972 (19)142
C24—H21···Cl1ii0.982.773.7393 (18)172
C24—H22···Cl2iii0.982.773.6346 (18)147
C24—H23···N4ii0.982.653.606 (2)165
C6—H5···N70.952.453.248 (3)142
C26—H26···Cl4iv0.982.843.749 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research No. 24550049).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAppelbaum, L., Heinrichs, C., Demtschuk, J., Michman, M., Oron, M., Schäfer, H. J. & Schumann, H. (1999). J. Organomet. Chem. 592, 240–250.  CSD CrossRef CAS Google Scholar
First citationBalzani, V., Juris, A. & Venturi, M. (1996). Chem. Rev. 96, 759–833.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGheller, S. F., Heath, G. A. & Hockless, D. C. R. (1995). Acta Cryst. C51, 1805–1807.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJabłońska-Wawrzycka, A., Rogala, P., Michałkiewicz, S., Hodorowitcz, M. & Barszcz, B. (2013). Dalton Trans. 42, 6092–6101.  PubMed Google Scholar
First citationJuris, A., Balzani, V., Barigelleti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.  CrossRef CAS Google Scholar
First citationMatsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861–2864.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsumoto, K., Kannami, M. & Oda, M. (2004). Chem. Lett. 33, 1096–1097.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]