organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-allyl-2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 August 2017; accepted 28 August 2017; online 5 September 2017)

In the title mol­ecule, C16H20N4O2, the dihedral angle between the planes of the fused rings is 2.26 (8)°. In the crystal, [[\overline{2}]10] chains of mol­ecules linked by C—H⋯O and C—H⋯N hydrogen bonds arise, which are further linked by weak C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Triazolo­pyrimidine derivatives display various pharmacological properties, including anti-inflammatory (Ashour et al., 2013[Ashour, H., Shaaban, O., Rizk, O. & Ashmawy, I. (2013). Eur. J. Med. Chem. 62, 341-351.]), anti­cancer (Hoffmann et al., 2017[Hoffmann, K., Wisniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Lakomska, I. (2017). J. Inorg. Biochem. 172, 34-45.]) and anti­bacterial (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El- Sayed, N. N. E., Kheder, N. A. & Al- Showiman, S. S. (2016). Molecules, 21, 268-278.]) activities. The present work is a continuation of our structural studies of triazolo­pyrimidine derivatives (Lahmidi et al., 2016[Lahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.]) and reports the synthesis and structure of the title compound, ethyl 2-allyl-2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule, shown with 50% probability displacement ellipsoids.

The bicyclic unit is slightly nonplanar, as indicated by the dihedral angle of 2.26 (8)° between the planes of the five- and six-membered rings. In the crystal, mol­ecules form centrosymmetric dimers through complementary C1—H1⋯O1i hydrogen bonds, which are connected into [[\overline{2}]10] chains by C16—H16A⋯N4ii hydrogen bonds (Table 1[link] and Fig. 2[link]). The chains are connected by C12—H12⋯Cg1iii (Cg1 is the centroid of the C1/N3/C2/N1/N2 ring) inter­actions (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.962 (14) 2.315 (14) 3.2388 (15) 160.7 (11)
C16—H16A⋯N4ii 0.976 (16) 2.610 (16) 3.4354 (18) 142.4 (12)
C12—H12⋯Cg1iii 0.981 (15) 2.955 (15) 3.6559 (15) 129.3 (11)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions, with C—H⋯O and C—H⋯N hydrogen bonds shown as black dashed lines, while the C—H⋯π(ring) is shown as a green dashed line. [Symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (iii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}].]
[Figure 3]
Figure 3
The packing of the title compound, viewed along the c-axis direction, with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

Allyl bromide (0.22 ml, 2.5 mmol), potassium carbonate (0.34 g, 2.5 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium iodide were added to a solution of ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetate (0.5 g, 2.3 mmol) in DMF (15 ml). The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (EtOAc–hexane 1/9 v/v). The title compound was recrystallized from an ethanol solution at room temperature to yield colourless plates (yield 30%; m.p. 364–366 K).

Refinement

Crystal and refinement data are presented in Table 2[link]. The H atoms were located in difference maps and their positions and Uiso(H) values were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C16H20N4O2
Mr 300.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.0937 (9), 13.4926 (12), 11.6936 (11)
β (°) 92.999 (1)
V3) 1590.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.24 × 0.07
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker ACS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 14774, 3914, 2819
Rint 0.037
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.03
No. of reflections 3914
No. of parameters 279
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.18
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker ACS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker ACS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

Ethyl 2-allyl-2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate top
Crystal data top
C16H20N4O2F(000) = 640
Mr = 300.36Dx = 1.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0937 (9) ÅCell parameters from 4361 reflections
b = 13.4926 (12) Åθ = 2.3–27.5°
c = 11.6936 (11) ŵ = 0.09 mm1
β = 92.999 (1)°T = 100 K
V = 1590.4 (2) Å3Plate, colourless
Z = 40.30 × 0.24 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3914 independent reflections
Radiation source: fine-focus sealed tube2819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.83, Tmax = 0.99l = 1515
14774 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37418 (8)0.59703 (6)0.81629 (7)0.0269 (2)
O20.52312 (8)0.53189 (6)0.70030 (7)0.0237 (2)
N10.45281 (9)0.32484 (7)0.77637 (8)0.0195 (2)
N20.47572 (10)0.37149 (8)0.87926 (8)0.0231 (2)
N30.58922 (10)0.22459 (8)0.87571 (9)0.0252 (3)
N40.51065 (10)0.17365 (7)0.68593 (9)0.0230 (2)
C10.55721 (12)0.30760 (9)0.93342 (11)0.0245 (3)
H10.5901 (13)0.3219 (10)1.0103 (12)0.027 (4)*
C20.52088 (11)0.23590 (9)0.77578 (10)0.0207 (3)
C30.43401 (12)0.20285 (9)0.59705 (11)0.0226 (3)
C40.36816 (12)0.29598 (9)0.59266 (10)0.0210 (3)
H40.3144 (12)0.3147 (9)0.5254 (11)0.019 (3)*
C50.37784 (11)0.35921 (8)0.68375 (10)0.0189 (3)
C60.41670 (16)0.13343 (11)0.49806 (12)0.0309 (3)
H6A0.343 (2)0.0885 (15)0.5148 (17)0.068 (6)*
H6B0.4950 (19)0.0955 (13)0.4883 (15)0.057 (5)*
H6C0.3894 (18)0.1684 (13)0.4266 (16)0.057 (5)*
C70.31002 (11)0.45886 (8)0.69306 (10)0.0198 (3)
C80.18878 (12)0.44847 (9)0.76874 (11)0.0222 (3)
H8A0.2226 (13)0.4273 (10)0.8461 (12)0.023 (3)*
H8B0.1481 (13)0.5139 (10)0.7775 (11)0.026 (3)*
C90.08519 (13)0.37797 (11)0.72205 (11)0.0292 (3)
H90.1090 (14)0.3062 (11)0.7130 (12)0.036 (4)*
C100.03729 (15)0.40450 (14)0.69308 (13)0.0409 (4)
H10A0.1047 (16)0.3565 (12)0.6617 (14)0.047 (5)*
H10B0.0668 (18)0.4742 (14)0.7006 (15)0.058 (5)*
C110.26878 (13)0.49788 (9)0.57071 (10)0.0219 (3)
H11A0.2026 (14)0.4522 (11)0.5368 (12)0.032 (4)*
H11B0.3478 (13)0.4967 (10)0.5237 (12)0.027 (4)*
C120.21439 (14)0.60122 (10)0.57129 (11)0.0274 (3)
H120.1231 (15)0.6095 (11)0.5947 (12)0.036 (4)*
C130.27982 (17)0.67987 (11)0.54030 (14)0.0383 (4)
H13A0.373 (2)0.6753 (14)0.5132 (16)0.065 (6)*
H13B0.2415 (16)0.7449 (13)0.5415 (14)0.051 (5)*
C140.40517 (12)0.53624 (8)0.74715 (10)0.0213 (3)
C150.62385 (14)0.60166 (10)0.74566 (13)0.0290 (3)
H15A0.5776 (15)0.6664 (11)0.7541 (12)0.035 (4)*
H15B0.6865 (14)0.6049 (11)0.6882 (13)0.032 (4)*
C160.68866 (14)0.56365 (12)0.85544 (13)0.0329 (3)
H16A0.7608 (15)0.6089 (11)0.8776 (13)0.038 (4)*
H16B0.7315 (16)0.4978 (13)0.8408 (13)0.041 (4)*
H16C0.6263 (15)0.5586 (11)0.9181 (13)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (5)0.0223 (5)0.0272 (5)0.0025 (4)0.0037 (4)0.0072 (4)
O20.0236 (4)0.0226 (5)0.0246 (5)0.0033 (3)0.0010 (4)0.0015 (3)
N10.0227 (5)0.0183 (5)0.0173 (5)0.0003 (4)0.0009 (4)0.0019 (4)
N20.0262 (5)0.0244 (5)0.0183 (5)0.0010 (4)0.0035 (4)0.0021 (4)
N30.0257 (6)0.0244 (6)0.0251 (6)0.0010 (4)0.0025 (4)0.0015 (4)
N40.0257 (5)0.0197 (5)0.0238 (6)0.0005 (4)0.0026 (4)0.0009 (4)
C10.0258 (6)0.0266 (7)0.0206 (7)0.0005 (5)0.0027 (5)0.0013 (5)
C20.0198 (6)0.0183 (6)0.0240 (6)0.0010 (5)0.0018 (5)0.0014 (5)
C30.0243 (6)0.0204 (6)0.0234 (6)0.0017 (5)0.0048 (5)0.0018 (5)
C40.0235 (6)0.0211 (6)0.0183 (6)0.0009 (5)0.0000 (5)0.0004 (5)
C50.0192 (6)0.0200 (6)0.0176 (6)0.0008 (4)0.0013 (5)0.0006 (5)
C60.0408 (8)0.0251 (7)0.0267 (7)0.0039 (6)0.0008 (6)0.0070 (6)
C70.0218 (6)0.0189 (6)0.0185 (6)0.0015 (5)0.0021 (5)0.0022 (5)
C80.0238 (6)0.0236 (7)0.0190 (6)0.0032 (5)0.0003 (5)0.0019 (5)
C90.0294 (7)0.0353 (8)0.0234 (7)0.0056 (6)0.0054 (5)0.0044 (6)
C100.0302 (8)0.0600 (11)0.0319 (8)0.0114 (7)0.0046 (6)0.0064 (7)
C110.0244 (6)0.0226 (6)0.0184 (6)0.0017 (5)0.0020 (5)0.0011 (5)
C120.0316 (7)0.0284 (7)0.0217 (7)0.0073 (6)0.0027 (5)0.0004 (5)
C130.0447 (9)0.0251 (8)0.0441 (9)0.0024 (7)0.0063 (7)0.0061 (6)
C140.0252 (6)0.0180 (6)0.0204 (6)0.0022 (5)0.0032 (5)0.0010 (5)
C150.0272 (7)0.0262 (7)0.0332 (8)0.0088 (6)0.0008 (6)0.0000 (6)
C160.0257 (7)0.0413 (9)0.0312 (8)0.0088 (6)0.0025 (6)0.0015 (6)
Geometric parameters (Å, º) top
O1—C141.2044 (14)C7—C111.5605 (16)
O2—C141.3377 (15)C8—C91.4954 (18)
O2—C151.4645 (15)C8—H8A0.992 (14)
N1—N21.3668 (14)C8—H8B0.981 (14)
N1—C51.3693 (15)C9—C101.314 (2)
N1—C21.3830 (15)C9—H91.004 (15)
N2—C11.3290 (16)C10—H10A0.995 (17)
N3—C21.3342 (15)C10—H10B0.992 (18)
N3—C11.3553 (16)C11—C121.4987 (18)
N4—C31.3228 (16)C11—H11A0.977 (14)
N4—C21.3449 (16)C11—H11B0.992 (15)
C1—H10.962 (14)C12—C131.311 (2)
C3—C41.4211 (17)C12—H120.981 (15)
C3—C61.4922 (18)C13—H13A1.01 (2)
C4—C51.3642 (16)C13—H13B0.960 (17)
C4—H40.965 (13)C15—C161.500 (2)
C5—C71.5154 (16)C15—H15A0.998 (15)
C6—H6A0.99 (2)C15—H15B0.947 (15)
C6—H6B0.954 (19)C16—H16A0.976 (16)
C6—H6C0.986 (18)C16—H16B1.007 (17)
C7—C141.5326 (16)C16—H16C0.993 (16)
C7—C81.5536 (17)
C14—O2—C15116.06 (10)C9—C8—H8B108.8 (8)
N2—N1—C5126.97 (10)C7—C8—H8B109.0 (8)
N2—N1—C2110.05 (9)H8A—C8—H8B106.8 (11)
C5—N1—C2122.96 (10)C10—C9—C8123.45 (15)
C1—N2—N1101.11 (10)C10—C9—H9117.5 (8)
C2—N3—C1102.46 (10)C8—C9—H9119.0 (8)
C3—N4—C2116.47 (10)C9—C10—H10A122.2 (9)
N2—C1—N3117.16 (11)C9—C10—H10B121.2 (10)
N2—C1—H1119.4 (8)H10A—C10—H10B116.6 (14)
N3—C1—H1123.5 (8)C12—C11—C7112.95 (10)
N3—C2—N4128.89 (11)C12—C11—H11A110.2 (8)
N3—C2—N1109.21 (10)C7—C11—H11A107.6 (8)
N4—C2—N1121.86 (11)C12—C11—H11B108.8 (8)
N4—C3—C4123.02 (11)C7—C11—H11B108.6 (8)
N4—C3—C6117.55 (11)H11A—C11—H11B108.6 (11)
C4—C3—C6119.43 (11)C13—C12—C11124.19 (14)
C5—C4—C3120.69 (11)C13—C12—H12118.6 (9)
C5—C4—H4119.1 (7)C11—C12—H12117.1 (9)
C3—C4—H4120.2 (8)C12—C13—H13A121.9 (11)
C4—C5—N1114.82 (10)C12—C13—H13B121.8 (10)
C4—C5—C7126.65 (11)H13A—C13—H13B116.3 (14)
N1—C5—C7118.47 (10)O1—C14—O2124.94 (11)
C3—C6—H6A106.9 (11)O1—C14—C7124.18 (11)
C3—C6—H6B111.5 (11)O2—C14—C7110.67 (10)
H6A—C6—H6B109.3 (15)O2—C15—C16110.70 (11)
C3—C6—H6C111.9 (10)O2—C15—H15A106.2 (8)
H6A—C6—H6C106.4 (15)C16—C15—H15A113.6 (8)
H6B—C6—H6C110.7 (14)O2—C15—H15B104.4 (9)
C5—C7—C14111.00 (9)C16—C15—H15B110.2 (9)
C5—C7—C8109.46 (10)H15A—C15—H15B111.3 (12)
C14—C7—C8108.77 (9)C15—C16—H16A107.4 (9)
C5—C7—C11109.47 (9)C15—C16—H16B109.2 (9)
C14—C7—C11106.26 (10)H16A—C16—H16B106.1 (13)
C8—C7—C11111.86 (9)C15—C16—H16C112.9 (9)
C9—C8—C7113.95 (10)H16A—C16—H16C109.9 (12)
C9—C8—H8A110.5 (8)H16B—C16—H16C111.1 (13)
C7—C8—H8A107.6 (8)
C5—N1—N2—C1177.62 (11)N1—C5—C7—C1445.52 (14)
C2—N1—N2—C10.51 (12)C4—C5—C7—C8102.45 (13)
N1—N2—C1—N30.09 (14)N1—C5—C7—C874.56 (13)
C2—N3—C1—N20.64 (14)C4—C5—C7—C1120.49 (16)
C1—N3—C2—N4177.09 (12)N1—C5—C7—C11162.50 (10)
C1—N3—C2—N10.91 (12)C5—C7—C8—C961.13 (13)
C3—N4—C2—N3179.07 (12)C14—C7—C8—C9177.43 (11)
C3—N4—C2—N11.30 (17)C11—C7—C8—C960.38 (14)
N2—N1—C2—N30.95 (13)C7—C8—C9—C10118.44 (14)
C5—N1—C2—N3177.27 (10)C5—C7—C11—C12173.66 (10)
N2—N1—C2—N4177.22 (10)C14—C7—C11—C1253.73 (14)
C5—N1—C2—N44.56 (18)C8—C7—C11—C1264.83 (14)
C2—N4—C3—C42.01 (17)C7—C11—C12—C13104.71 (15)
C2—N4—C3—C6177.65 (11)C15—O2—C14—O15.68 (17)
N4—C3—C4—C52.33 (18)C15—O2—C14—C7179.35 (9)
C6—C3—C4—C5177.32 (12)C5—C7—C14—O1139.28 (12)
C3—C4—C5—N10.75 (17)C8—C7—C14—O118.80 (16)
C3—C4—C5—C7177.85 (11)C11—C7—C14—O1101.79 (13)
N2—N1—C5—C4178.06 (11)C5—C7—C14—O245.70 (13)
C2—N1—C5—C44.03 (16)C8—C7—C14—O2166.19 (9)
N2—N1—C5—C70.71 (17)C11—C7—C14—O273.23 (11)
C2—N1—C5—C7178.61 (10)C14—O2—C15—C1680.88 (14)
C4—C5—C7—C14137.48 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.962 (14)2.315 (14)3.2388 (15)160.7 (11)
C16—H16A···N4ii0.976 (16)2.610 (16)3.4354 (18)142.4 (12)
C12—H12···Cg1iii0.981 (15)2.955 (15)3.6559 (15)129.3 (11)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAshour, H., Shaaban, O., Rizk, O. & Ashmawy, I. (2013). Eur. J. Med. Chem. 62, 341–351.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker ACS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoffmann, K., Wisniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Lakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.  Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El- Sayed, N. N. E., Kheder, N. A. & Al- Showiman, S. S. (2016). Molecules, 21, 268–278.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]