organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(7-Methane­sulfonyl-2-morpholin-4-yl-6,7-di­hydro-5H-pyrrolo­[2,3-d]pyrimidin-4-yl)-pyrimidin-2-yl­amine mesylate

aResearch Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan, and bPharmaceutical Technology Division, Chugai Pharmaceutical Co. Ltd., 5-5-1 Ukima, Kita-ku, Tokyo 115-8543, Japan
*Correspondence e-mail: aoki.masahide18@chugai-pharm.co.jp

Edited by I. Brito, University of Antofagasta, Chile (Received 6 September 2017; accepted 11 September 2017; online 12 September 2017)

In the title compound, C15H20N7O3S+·CH3O3S (CH5132799 mesylate), two mol­ecular entities form a salt with proton transfer from methane­sulfonic acid to the amino­pyrimidine moiety of CH5132799. In the crystal, methane­sulfonate is retained by bifurcated O⋯H—N hydrogen bonds and an N+—H⋯O charge-assisted hydrogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

5-(7-Methane­sulfonyl-2-morpholin-4-yl-6,7-di­hydro-5H-pyrrolo­[2,3-d]pyrimidin-4-yl)-pyrimidin-2-yl­amine (CH5132799) was synthesized as an anti­tumor PI3K inhibitor (Ohwada et al., 2011[Ohwada, J., Ebiike, H., Kawada, H., Tsukazaki, M., Nakamura, M., Miyazaki, T., Morikami, K., Yoshinari, K., Yoshida, M., Kondoh, O., Kuramoto, S., Ogawa, K., Aoki, Y. & Shimma, N. (2011). Bioorg. Med. Chem. Lett. 21, 1767-1772.]; Tanaka et al., 2011[Tanaka, H., Yoshida, M., Tanimura, H., Fujii, T., Sakata, K., Tachibana, Y., Ohwada, J., Ebiike, H., Kuramoto, S., Morita, K., Yoshimura, Y., Yamazaki, T., Ishii, N., Kondoh, O. & Aoki, Y. (2011). Clin. Cancer Res. 17, 3272-3281.]) and crystallized with methane­sulfonic acid to improve its aqueous solubility. Single crystal X-ray structure analysis revealed that the three S—O bond lengths of methane­sulfonate to be 1.444 (2), 1.473 (2), and 1.475 (2) Å, and it was confirmed that CH5132799 and methane­sulfonic acid form a mol­ecular salt with proton transfer from methane­sulfonic acid to the amino­pyrimidine moiety of CH5132799. In the crystal, methane­sulfonate is retained by bifurcated O30⋯H19B(H19A#)—N19(N19#) hydrogen bonds and an N+17—H17⋯O28 charge-assisted hydrogen bond (Figs. 1[link] and 2[link], and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O28i 0.88 1.80 2.678 (3) 176
N19—H19A⋯O30ii 0.88 2.00 2.850 (2) 161
N19—H19B⋯O30i 0.88 2.11 2.906 (3) 150
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
Hydrogen bonds in the crystal structure of the title compound (dashed lines). The suffix # in atom labels indicates atoms related by an inversion center.

Synthesis and crystallization

CH5132799 was synthesized according to the patented process (Shimma et al., 2008[Shimma, N., Ebiike, H., Ohwada, J., Kawada, H., Morikami, K., Nakamura, M., Yoshida, M., Ishii, N., Hasegawa, M., Yamamoto, S. & Koyama, K. (2008). Patent WO 2008018426 A1.]; Ebiike et al., 2009[Ebiike, H., Ohwada, J., Koyama, K., Murata, T. & Hong, W. S. (2009). Patent WO 2009099163 A1.]). CH5132799 (1.0 eq.) was added to a stirred solution of methane­sulfonic acid (2.3 weq.) and water (2.5 weq.). L-Cysteine (0.058 weq.) was then added to the solution and the mixture was continuously stirred for an additional 3 h. The resulting solution was filtered, and the equipment was rinsed with a solution of methane­sulfonic acid (0.22 weq.) and water (2.1 weq.). The filtrate and the rinse were combined, and acetone (6.2 veq.) was added slowly to this stirred solution at room temperature. Stirring was continued for at least 2 h and the presence of the solids was confirmed. Further acetone (19 veq.) was added to the mixture, which was stirred for an additional hour at the same temperature. This mixture was then filtered, and the solids were washed twice with acetone (each 4.0 veq). The solids were collected and dried under reduced pressure to afford CH5132799 mesylate as yellow crystals (typical yield 90%).

Refinement

Crystal data, data collection, and refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H20N7O3S+·CH3O3S
Mr 473.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 9.45151 (17), 10.7942 (2), 11.3964 (2)
α, β, γ (°) 63.3450 (7), 76.7692 (8), 88.1338 (8)
V3) 1008.24 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.86
Crystal size (mm) 0.29 × 0.08 × 0.04
 
Data collection
Diffractometer Rigaku R-AXIS RAPID-II
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.588, 0.884
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 17410, 3621, 2942
Rint 0.061
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.09
No. of reflections 3621
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.52
Computer programs: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO (Rigaku, 1999); data reduction: RAPID-AUTO (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2016), publCIF (Westrip, 2010).

5-(7-Methanesulfonyl-2-morpholin-4-yl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-yl)-pyrimidin-2-ylamine mesylate top
Crystal data top
C15H20N7O3S+·CH3O3SZ = 2
Mr = 473.52F(000) = 496.00
Triclinic, P1Dx = 1.560 Mg m3
a = 9.45151 (17) ÅCu Kα radiation, λ = 1.54187 Å
b = 10.7942 (2) ÅCell parameters from 9509 reflections
c = 11.3964 (2) Åθ = 4.5–68.2°
α = 63.3450 (7)°µ = 2.86 mm1
β = 76.7692 (8)°T = 93 K
γ = 88.1338 (8)°Block, yellow
V = 1008.24 (3) Å30.29 × 0.08 × 0.04 mm
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
3621 independent reflections
Radiation source: fine-focus rotating anode x-ray, RIGAKU2942 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.061
ω–scanθmax = 68.2°, θmin = 4.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1010
Tmin = 0.588, Tmax = 0.884k = 1212
17410 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.055P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
3621 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.52 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8116 (3)0.3631 (2)0.1438 (2)0.0190 (5)
H1A0.91270.36460.09380.023*
H1B0.81420.35000.23500.023*
C20.7479 (3)0.4990 (2)0.0693 (2)0.0179 (5)
H2A0.65210.50120.12570.021*
H2B0.81300.57710.05490.021*
O30.72976 (18)0.51726 (16)0.05928 (15)0.0208 (4)
C40.6381 (3)0.4043 (2)0.0418 (2)0.0197 (5)
H4A0.62670.41880.13130.024*
H4B0.54030.40280.01370.024*
C50.6999 (3)0.2665 (2)0.0255 (2)0.0169 (5)
H5A0.63190.19010.04050.020*
H5B0.79410.26380.03280.020*
N60.7213 (2)0.24915 (19)0.15512 (18)0.0173 (4)
C70.6958 (2)0.1218 (2)0.2668 (2)0.0148 (5)
N80.6153 (2)0.02500 (19)0.25782 (18)0.0167 (4)
C90.5905 (3)0.0948 (2)0.3679 (2)0.0154 (5)
C100.6395 (2)0.1294 (2)0.4856 (2)0.0148 (5)
C110.7197 (2)0.0231 (2)0.4821 (2)0.0144 (5)
N120.7487 (2)0.10429 (18)0.37118 (18)0.0151 (4)
C130.7882 (2)0.0333 (2)0.5906 (2)0.0141 (5)
C140.7765 (3)0.1507 (2)0.7171 (2)0.0184 (5)
H140.71990.23120.73520.022*
N150.8385 (2)0.15666 (19)0.81191 (19)0.0194 (5)
C160.9182 (2)0.0421 (2)0.7856 (2)0.0157 (5)
N170.9382 (2)0.07316 (19)0.66444 (17)0.0147 (4)
H170.99480.14500.64810.018*
C180.8733 (2)0.0790 (2)0.5699 (2)0.0151 (5)
H180.88590.16190.48710.018*
N190.9806 (2)0.0410 (2)0.87759 (19)0.0213 (5)
H19A0.97000.11520.95620.026*
H19B1.03270.03390.86030.026*
C200.5912 (3)0.2799 (2)0.5840 (2)0.0172 (5)
H20A0.51970.28740.66580.021*
H20B0.67550.33240.61150.021*
C210.5209 (3)0.3350 (2)0.5051 (2)0.0188 (5)
H21A0.58230.40130.48300.023*
H21B0.42280.38200.55810.023*
N220.5113 (2)0.20763 (19)0.37949 (18)0.0190 (5)
S230.45298 (6)0.21101 (6)0.25455 (6)0.01767 (17)
O240.36279 (17)0.09916 (17)0.20638 (16)0.0233 (4)
O250.39192 (19)0.35083 (17)0.30865 (16)0.0270 (4)
C260.6083 (3)0.1798 (2)0.1241 (2)0.0204 (5)
H26A0.58000.18380.04830.024*
H26B0.67640.25050.15720.024*
H26C0.65540.08740.09380.024*
S270.91174 (6)0.64832 (6)0.29026 (5)0.01677 (17)
O280.89847 (17)0.70007 (16)0.39179 (15)0.0195 (4)
O290.78257 (18)0.56674 (16)0.30994 (16)0.0232 (4)
O300.95755 (18)0.76462 (16)0.15328 (15)0.0203 (4)
C311.0534 (3)0.5373 (3)0.3124 (2)0.0234 (6)
H31A1.14330.58870.30070.028*
H31B1.06820.50190.24530.028*
H31C1.02790.45920.40350.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (14)0.0140 (12)0.0164 (12)0.0030 (10)0.0070 (11)0.0048 (10)
C20.0268 (14)0.0143 (12)0.0130 (12)0.0005 (10)0.0081 (10)0.0050 (10)
O30.0354 (10)0.0132 (8)0.0119 (8)0.0009 (7)0.0081 (7)0.0027 (7)
C40.0292 (15)0.0151 (12)0.0164 (12)0.0017 (10)0.0085 (11)0.0069 (10)
C50.0250 (14)0.0136 (12)0.0125 (11)0.0006 (10)0.0073 (10)0.0049 (10)
N60.0283 (12)0.0109 (10)0.0116 (10)0.0025 (8)0.0087 (9)0.0022 (8)
C70.0187 (13)0.0123 (11)0.0146 (11)0.0029 (9)0.0041 (10)0.0072 (10)
N80.0234 (11)0.0133 (10)0.0134 (10)0.0009 (8)0.0066 (8)0.0049 (8)
C90.0197 (13)0.0134 (12)0.0148 (12)0.0018 (9)0.0037 (10)0.0081 (10)
C100.0207 (13)0.0123 (11)0.0110 (11)0.0007 (9)0.0021 (9)0.0059 (10)
C110.0188 (13)0.0115 (11)0.0111 (11)0.0014 (9)0.0017 (9)0.0043 (9)
N120.0213 (11)0.0112 (10)0.0120 (10)0.0008 (8)0.0059 (8)0.0036 (8)
C130.0192 (13)0.0112 (11)0.0108 (11)0.0021 (9)0.0037 (9)0.0039 (9)
C140.0271 (14)0.0133 (12)0.0162 (12)0.0007 (10)0.0073 (10)0.0067 (10)
N150.0276 (12)0.0151 (10)0.0154 (10)0.0015 (9)0.0072 (9)0.0056 (9)
C160.0199 (13)0.0155 (12)0.0130 (12)0.0047 (10)0.0054 (10)0.0071 (10)
N170.0186 (11)0.0124 (10)0.0116 (9)0.0012 (8)0.0039 (8)0.0038 (8)
C180.0199 (13)0.0122 (11)0.0106 (11)0.0032 (9)0.0037 (10)0.0031 (9)
N190.0310 (12)0.0176 (11)0.0139 (10)0.0041 (9)0.0096 (9)0.0036 (9)
C200.0236 (13)0.0142 (12)0.0131 (12)0.0006 (10)0.0041 (10)0.0057 (10)
C210.0289 (14)0.0113 (11)0.0132 (11)0.0047 (10)0.0059 (10)0.0023 (10)
N220.0323 (12)0.0111 (10)0.0130 (10)0.0045 (9)0.0077 (9)0.0036 (8)
S230.0216 (3)0.0183 (3)0.0151 (3)0.0021 (2)0.0055 (2)0.0086 (3)
O240.0204 (10)0.0291 (10)0.0245 (9)0.0087 (8)0.0091 (8)0.0144 (8)
O250.0385 (11)0.0221 (10)0.0209 (9)0.0109 (8)0.0086 (8)0.0086 (8)
C260.0221 (14)0.0231 (13)0.0184 (12)0.0030 (10)0.0054 (10)0.0114 (11)
S270.0218 (3)0.0146 (3)0.0124 (3)0.0011 (2)0.0053 (2)0.0041 (2)
O280.0260 (10)0.0174 (9)0.0153 (8)0.0024 (7)0.0040 (7)0.0079 (7)
O290.0257 (10)0.0213 (9)0.0227 (9)0.0069 (8)0.0057 (8)0.0094 (8)
O300.0278 (10)0.0161 (8)0.0107 (8)0.0006 (7)0.0054 (7)0.0004 (7)
C310.0291 (15)0.0218 (13)0.0177 (13)0.0072 (11)0.0090 (11)0.0063 (11)
Geometric parameters (Å, º) top
C1—N61.461 (3)N15—C161.345 (3)
C1—C21.514 (3)C16—N191.320 (3)
C1—H1A0.9900C16—N171.358 (3)
C1—H1B0.9900N17—C181.335 (3)
C2—O31.438 (3)N17—H170.8800
C2—H2A0.9900C18—H180.9500
C2—H2B0.9900N19—H19A0.8800
O3—C41.432 (3)N19—H19B0.8800
C4—C51.506 (3)C20—C211.544 (3)
C4—H4A0.9900C20—H20A0.9900
C4—H4B0.9900C20—H20B0.9900
C5—N61.464 (3)C21—N221.495 (3)
C5—H5A0.9900C21—H21A0.9900
C5—H5B0.9900C21—H21B0.9900
N6—C71.371 (3)N22—S231.6553 (19)
C7—N121.329 (3)S23—O241.4276 (17)
C7—N81.365 (3)S23—O251.4318 (16)
N8—C91.315 (3)S23—C261.750 (2)
C9—N221.390 (3)C26—H26A0.9800
C9—C101.407 (3)C26—H26B0.9800
C10—C111.377 (3)C26—H26C0.9800
C10—C201.511 (3)S27—O291.4435 (16)
C11—N121.368 (3)S27—O301.4725 (15)
C11—C131.483 (3)S27—O281.4750 (15)
C13—C181.375 (3)S27—C311.752 (2)
C13—C141.411 (3)C31—H31A0.9800
C14—N151.319 (3)C31—H31B0.9800
C14—H140.9500C31—H31C0.9800
N6—C1—C2108.83 (19)N19—C16—N17118.7 (2)
N6—C1—H1A109.9N15—C16—N17121.3 (2)
C2—C1—H1A109.9C18—N17—C16120.96 (19)
N6—C1—H1B109.9C18—N17—H17119.5
C2—C1—H1B109.9C16—N17—H17119.5
H1A—C1—H1B108.3N17—C18—C13120.9 (2)
O3—C2—C1112.14 (18)N17—C18—H18119.6
O3—C2—H2A109.2C13—C18—H18119.6
C1—C2—H2A109.2C16—N19—H19A120.0
O3—C2—H2B109.2C16—N19—H19B120.0
C1—C2—H2B109.2H19A—N19—H19B120.0
H2A—C2—H2B107.9C10—C20—C21104.50 (18)
C4—O3—C2110.46 (16)C10—C20—H20A110.9
O3—C4—C5111.80 (19)C21—C20—H20A110.9
O3—C4—H4A109.3C10—C20—H20B110.9
C5—C4—H4A109.3C21—C20—H20B110.9
O3—C4—H4B109.3H20A—C20—H20B108.9
C5—C4—H4B109.3N22—C21—C20104.18 (17)
H4A—C4—H4B107.9N22—C21—H21A110.9
N6—C5—C4108.52 (18)C20—C21—H21A110.9
N6—C5—H5A110.0N22—C21—H21B110.9
C4—C5—H5A110.0C20—C21—H21B110.9
N6—C5—H5B110.0H21A—C21—H21B108.9
C4—C5—H5B110.0C9—N22—C21110.30 (18)
H5A—C5—H5B108.4C9—N22—S23124.24 (16)
C7—N6—C1122.34 (18)C21—N22—S23123.60 (14)
C7—N6—C5121.21 (18)O24—S23—O25119.02 (10)
C1—N6—C5113.79 (17)O24—S23—N22109.06 (10)
N12—C7—N8126.7 (2)O25—S23—N22104.35 (9)
N12—C7—N6118.56 (19)O24—S23—C26107.77 (11)
N8—C7—N6114.72 (19)O25—S23—C26109.78 (11)
C9—N8—C7112.93 (19)N22—S23—C26106.15 (11)
N8—C9—N22122.2 (2)S23—C26—H26A109.5
N8—C9—C10127.0 (2)S23—C26—H26B109.5
N22—C9—C10110.79 (19)H26A—C26—H26B109.5
C11—C10—C9114.5 (2)S23—C26—H26C109.5
C11—C10—C20136.4 (2)H26A—C26—H26C109.5
C9—C10—C20109.09 (18)H26B—C26—H26C109.5
N12—C11—C10121.5 (2)O29—S27—O30113.43 (10)
N12—C11—C13113.04 (19)O29—S27—O28112.91 (10)
C10—C11—C13125.4 (2)O30—S27—O28109.83 (9)
C7—N12—C11117.37 (19)O29—S27—C31106.91 (11)
C18—C13—C14114.8 (2)O30—S27—C31106.96 (11)
C18—C13—C11119.2 (2)O28—S27—C31106.35 (11)
C14—C13—C11126.0 (2)S27—C31—H31A109.5
N15—C14—C13124.7 (2)S27—C31—H31B109.5
N15—C14—H14117.6H31A—C31—H31B109.5
C13—C14—H14117.6S27—C31—H31C109.5
C14—N15—C16117.3 (2)H31A—C31—H31C109.5
N19—C16—N15120.0 (2)H31B—C31—H31C109.5
N6—C1—C2—O354.4 (3)C10—C11—C13—C18175.9 (2)
C1—C2—O3—C457.8 (2)N12—C11—C13—C14179.2 (2)
C2—O3—C4—C559.1 (2)C10—C11—C13—C143.3 (4)
O3—C4—C5—N656.8 (2)C18—C13—C14—N150.9 (3)
C2—C1—N6—C7144.2 (2)C11—C13—C14—N15179.9 (2)
C2—C1—N6—C554.1 (2)C13—C14—N15—C160.1 (4)
C4—C5—N6—C7142.8 (2)C14—N15—C16—N19178.7 (2)
C4—C5—N6—C155.3 (3)C14—N15—C16—N172.3 (3)
C1—N6—C7—N123.9 (3)N19—C16—N17—C18177.6 (2)
C5—N6—C7—N12164.3 (2)N15—C16—N17—C183.4 (3)
C1—N6—C7—N8176.77 (19)C16—N17—C18—C132.3 (3)
C5—N6—C7—N816.4 (3)C14—C13—C18—N170.2 (3)
N12—C7—N8—C90.7 (3)C11—C13—C18—N17179.11 (19)
N6—C7—N8—C9178.6 (2)C11—C10—C20—C21172.6 (3)
C7—N8—C9—N22179.6 (2)C9—C10—C20—C215.5 (3)
C7—N8—C9—C101.1 (3)C10—C20—C21—N229.5 (2)
N8—C9—C10—C111.1 (3)N8—C9—N22—C21170.9 (2)
N22—C9—C10—C11179.73 (19)C10—C9—N22—C217.8 (3)
N8—C9—C10—C20177.5 (2)N8—C9—N22—S236.1 (3)
N22—C9—C10—C201.1 (3)C10—C9—N22—S23172.67 (16)
C9—C10—C11—N120.6 (3)C20—C21—N22—C910.8 (2)
C20—C10—C11—N12177.5 (2)C20—C21—N22—S23175.83 (16)
C9—C10—C11—C13177.8 (2)C9—N22—S23—O2457.8 (2)
C20—C10—C11—C130.2 (4)C21—N22—S23—O24139.25 (19)
N8—C7—N12—C110.3 (3)C9—N22—S23—O25174.00 (19)
N6—C7—N12—C11179.0 (2)C21—N22—S23—O2511.1 (2)
C10—C11—N12—C70.2 (3)C9—N22—S23—C2658.0 (2)
C13—C11—N12—C7177.82 (19)C21—N22—S23—C26104.9 (2)
N12—C11—C13—C181.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O28i0.881.802.678 (3)176
N19—H19A···O30ii0.882.002.850 (2)161
N19—H19B···O30i0.882.112.906 (3)150
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z+1.
 

References

First citationEbiike, H., Ohwada, J., Koyama, K., Murata, T. & Hong, W. S. (2009). Patent WO 2009099163 A1.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhwada, J., Ebiike, H., Kawada, H., Tsukazaki, M., Nakamura, M., Miyazaki, T., Morikami, K., Yoshinari, K., Yoshida, M., Kondoh, O., Kuramoto, S., Ogawa, K., Aoki, Y. & Shimma, N. (2011). Bioorg. Med. Chem. Lett. 21, 1767–1772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimma, N., Ebiike, H., Ohwada, J., Kawada, H., Morikami, K., Nakamura, M., Yoshida, M., Ishii, N., Hasegawa, M., Yamamoto, S. & Koyama, K. (2008). Patent WO 2008018426 A1.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Yoshida, M., Tanimura, H., Fujii, T., Sakata, K., Tachibana, Y., Ohwada, J., Ebiike, H., Kuramoto, S., Morita, K., Yoshimura, Y., Yamazaki, T., Ishii, N., Kondoh, O. & Aoki, Y. (2011). Clin. Cancer Res. 17, 3272–3281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]