metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Diruthenocenyl­cyclo­propenone

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@yahoo.com.mx

Edited by R. J. Butcher, Howard University, USA (Received 12 August 2017; accepted 21 September 2017; online 29 September 2017)

In the title compound, [Ru2(C5H5)2(C13H8O)], the Ru—C bond lengths in the two ruthenocenyl moieties are in the range of 2.155 (4)–2.196 (3) Å. Both cyclo­penta­dienyl (Cp) rings are planar and parallel with staggered (18.6 °) and eclipsed (3.1°) conformations between the mutual orientations of rings in the independent sandwiches of each ruthenocenyl mol­ecule. In the crystal, there are inter­molecular C—H⋯O hydrogen bonds between Cp carbon donor atoms and the cyclopropenone O atom of adjacent molecules, forming R22(14) and R66(38) motifs along the b and c axes.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclo­propenone is a mol­ecule of inter­est since it combines remarkable stability with extreme strain; various physical studies (Benson et al., 1973[Benson, R. C., Flygare, W. H., Oda, M. & Breslow, R. (1973). J. Am. Chem. Soc. 87, 2772-2777.]) suggest that much of its stability is derived from the special conjugative stabilization of the two-π electron systems. In addition, cyclo­propenone has a number of inter­esting chemical properties (Breslow et al., 1972[Breslow, R., Oda, M. & Pecoraro, J. (1972). Tetrahedron Lett. 13, 4415-4417.]) that suggest it could be a useful synthetic inter­mediate.

Metallocenyl-substituted cyclo­propenones allow introducing ruthenium or iron atoms in a large number of different organic compounds (Klimova et al., 2006[Klimova, T., Klimova, E. I., Flores-Alamo, M., Backinowsky, L. & García, M. (2006). Synthesis, 21, 3706-3710.]), with different properties in medicinal chemistry mainly as anti­cancer compounds (Ornelas, 2011[Ornelas, C. (2011). New J. Chem. 35, 1973-1985.]; Jaouen et al., 2015[Jaouen, G., Vessieres, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802-8817.]; Gasser et al., 2011[Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3-25.]), anti­bacterial properties (Patra et al., 2010[Patra, M., Gasser, G., Wenzel, M., Merz, K., Bandow, J. E. & Metzler-Nolte, N. (2010). Organometallics, 29, 4312-4319.]), and anti­malarial agents (Beagley et al., 2002[Beagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Moss, J. R. & Smith, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4426-4433.]).

Investigations into the chemistry of 2,3-diferrocenyl­cyclo­propenones (Klimova et al., 2003[Klimova, E. I., Klimova, T., Ruiz-Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernandez-Ortega, S. & Martinez-Garcia, M. (2003). Eur. J. Org. Chem. 4265-4275.]) has allowed the construction of heterocycles with two ferrocene units (Klimova et al., 2009[Klimova, E. I., Vazquez-López, E. A., Flores-Alamo, M., Klimova, T. & Martìnez-García, M. (2009). Eur. J. Org. Chem. 25, 4352-4356.]). 2,3-Diruthenocenyl­cyclo­propenone extended conjugated metal-containing systems are of inter­est because they can be used as model compounds for mol­ecular wires (Klimova et al., 2007[Klimova, E. I., Klimova, T., Toscano, R., Mèndez-Stivalet, J. & Martìnez-Garcìa, M. (2007). Synth. Commun. 37, 889-900.]; Li et al., 2010[Li, Y., Josowicz, M. & Tolbert, L. M. (2010). J. Am. Chem. Soc. 132, 10374-10382.]; Ward, 1995[Ward, M. D. (1995). Chem. Soc. Rev. 24, 121-134.]). Furthermore, the electron-donating nature of ruthenocenyl functionalities on cyclo­propenone systems enhances their stability by delocalizing the positive charge (Agranat & Aharon-Shalom, 1975[Agranat, I. & Aharon-Shalom, E. (1975). J. Am. Chem. Soc. 97, 3829-3830.]; Hauser & Lednicer, 1972[Hauser, R. & Lednicer, D. (1972). Angew. Chem. Int. Ed. Engl. 11, 1025-1027.]).

In a continuation of this work, we present here the synthesis and crystal structure of 2,3-diruthenocenyl­cyclo­propenone. The synthesis of this compound was made by using Friedel–Crafts alkyl­ation of ruthenocene with tetra­chloro­cyclo­propene in the presence of AlCl3 (Agranat & Aharon-Shalom, 1975[Agranat, I. & Aharon-Shalom, E. (1975). J. Am. Chem. Soc. 97, 3829-3830.]; Klimova et al., 2003[Klimova, E. I., Klimova, T., Ruiz-Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernandez-Ortega, S. & Martinez-Garcia, M. (2003). Eur. J. Org. Chem. 4265-4275.]).

The title compound (Fig. 1[link]) consist of two ruthenocenyl units bonded on 2,3-disubstitution of the three-membered ring of the cyclo­propenone. The C=O [1.221 (4) Å], C—C [1.404 (5) Å] and C=C [1.379 (4) Å] bond lengths are similar to the analogous bond lengths observed in 2,3-diferrocenyl­cyclo­propenone and 2,3-di­phenyl­cyclo­propenone (Tsukada et al., 1974[Tsukada, H., Shimanouchi, H. & Sasada, Y. (1974). Chem. Lett. pp. 639-642.]). The Ru—C distances in the two ruthenocenyl moieties are in the range 2.155 (4)–2.196 (3) Å. Both Cp rings are planar and parallel, with an average value of torsion angles for C—CgCg—C of 3.1 and 18.6° for the eclipsed (Ru1) and staggered (Ru2) conformations between the mutual orientations of rings in the independent sandwiches of each mol­ecule of ruthenocenyl.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 60% probability level.

In the crystal packing, there are inter­molecular C—H⋯O hydrogen bonds between Cp carbon donor atoms and the cyclopropenone O atom of adjacent molecules. The C5—H5⋯O1 (2.37 Å) and C23—H23⋯O1 (2.41 Å) inter­molecular inter­actions form R22(14) and R66(38) motifs and show a complex growing along the b and c axes (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal structure of the title compound, showing intermolecular C—H⋯O interactions, forming graph-set motifs R22(14) and R66(38) along the b and c axes.

Synthesis and crystallization

Aluminium chloride (0.67 g, 0.005 mol) was added portion wise over 30 min to a stirred solution of ruthenocene (4.63 g, 0.02 mol) and tetra­chloro­cyclo­propene (3.6 g, 0.02 mol) in dry di­chloro­methane (200 ml). The mixture was stirred for 1 h at 293 K and then quenched by addition of water (2 × 50 ml), and dried with MgSO4. The solvent was evaporated in vacuo and the residue was chromatographed (Al2O3; hexa­ne/di­chloro­methane, 3:1) to give the title compound (yield 68%, yellow crystals, m.p. 529–530 K).

1H NMR (300 MHz, CDCl3) δ: 4.60 (10H, s, 2C5H5), δ: 4.83 (4H, m, C5H4), δ: 5.10 (4H, m, C5H4) p.p.m., 13C NMR (75 MHz, CDCl3) δ: 69.16 (2CipsoRu), 72.30 (2C5H5), δ: 72.76, 73.46 (2C5H4), 115.73 (2 C), 195.83 (C=O) p.p.m., MS: m/z 512 [M]+. Anal. Calcd for C23H18ORu2: C, 53.90, H, 3.54, Ru, 39.44. Found C, 53.76, H, 3.64, Ru 39.63%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. During the refinement, electron-density peaks were located that were believed to be highly disordered solvent mol­ecules (possibly water). Attempts made to model the solvent mol­ecule were not successful. The SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) option in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated there was a small solvent cavity of 9 Å3. In the final cycles of refinement, this contribution of four electrons to the electron density was removed from the observed data.

Table 1
Experimental details

Crystal data
Chemical formula [Ru2(C5H5)2(C13H8O)]
Mr 512.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c (Å) 10.9880 (6), 14.2341 (8), 12.2219 (7)
β (°) 106.357 (5)
V3) 1834.19 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.66
Crystal size (mm) 0.25 × 0.2 × 0.13
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England])
Tmin, Tmax 0.726, 0.818
No. of measured, independent and observed [I > 2σ(I)] reflections 10469, 4368, 3246
Rint 0.030
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 1.03
No. of reflections 4368
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.57
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England], CrysAlis RED (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013; cell refinement: CrysAlis RED (Agilent, 2013); data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXS2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008).

2,3-Diruthenocenylcyclopropenone top
Crystal data top
[Ru2(C5H5)2(C13H8O)]F(000) = 1008
Mr = 512.51Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3321 reflections
a = 10.9880 (6) Åθ = 3.5–29.5°
b = 14.2341 (8) ŵ = 1.66 mm1
c = 12.2219 (7) ÅT = 130 K
β = 106.357 (5)°Prism, yellow
V = 1834.19 (18) Å30.25 × 0.2 × 0.13 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4368 independent reflections
Graphite monochromator3246 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.030
ω scansθmax = 29.5°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 1415
Tmin = 0.726, Tmax = 0.818k = 1419
10469 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.0994P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4368 reflectionsΔρmax = 0.46 e Å3
235 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3407 (3)0.7411 (2)0.9224 (3)0.0204 (7)
C20.4659 (3)0.7248 (2)0.9965 (3)0.0206 (7)
H20.4870190.6938831.0730710.025*
C30.5536 (3)0.7659 (2)0.9451 (3)0.0222 (7)
H30.6478060.7679260.978440.027*
C40.4846 (3)0.8069 (2)0.8407 (3)0.0233 (7)
H40.5222950.8420950.7873230.028*
C50.3529 (3)0.7919 (2)0.8252 (3)0.0235 (7)
H50.2819090.8155960.7604580.028*
C60.3828 (4)0.5115 (3)0.8106 (4)0.0526 (12)
H60.3211520.4812290.8461220.063*
C70.5131 (4)0.5108 (2)0.8545 (3)0.0438 (10)
H70.561740.4805410.9276120.053*
C80.5653 (3)0.5545 (2)0.7769 (3)0.0324 (8)
H80.6579520.5618140.7852080.039*
C90.4675 (4)0.5834 (2)0.6836 (3)0.0368 (9)
H90.4772530.6140590.6129570.044*
C100.3520 (3)0.5568 (3)0.7041 (4)0.0493 (12)
H100.2652130.5639680.6501920.059*
C110.2254 (3)0.7098 (2)0.9444 (3)0.0240 (7)
C120.1613 (3)0.6592 (2)1.0097 (3)0.0302 (8)
C130.0946 (3)0.7084 (2)0.9110 (3)0.0250 (7)
C140.0217 (3)0.7386 (2)0.8318 (3)0.0254 (7)
C150.0368 (3)0.7944 (2)0.7338 (3)0.0267 (7)
H150.0329830.824960.709020.032*
C160.1697 (3)0.8040 (2)0.6792 (3)0.0298 (8)
H160.2091250.8417550.6092130.036*
C170.2353 (3)0.7529 (2)0.7442 (3)0.0283 (8)
H170.3295880.7482840.7272030.034*
C180.1461 (3)0.7116 (2)0.8391 (3)0.0270 (8)
H180.1655110.6745890.9016340.032*
C190.0109 (3)0.5289 (2)0.6727 (3)0.0268 (7)
H190.0693830.5078640.7291210.032*
C200.0195 (3)0.5844 (2)0.5748 (3)0.0239 (7)
H200.0535340.6094390.5499120.029*
C210.1498 (3)0.5939 (2)0.5147 (3)0.0228 (7)
H210.1848150.6271680.4404150.027*
C220.2210 (3)0.5445 (2)0.5764 (3)0.0224 (7)
H220.3153110.5372140.5530310.027*
C230.1362 (3)0.5040 (2)0.6737 (3)0.0271 (7)
H230.1595530.4626460.7307960.033*
O10.1630 (2)0.60901 (19)1.0911 (2)0.0431 (6)
Ru10.11501 (2)0.65595 (2)0.68379 (2)0.01556 (7)
Ru20.44667 (2)0.65524 (2)0.83492 (2)0.01558 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (14)0.0244 (17)0.0178 (17)0.0018 (13)0.0044 (12)0.0078 (13)
C20.0234 (15)0.0209 (16)0.0160 (17)0.0026 (14)0.0031 (12)0.0039 (12)
C30.0163 (14)0.0209 (17)0.0274 (19)0.0035 (13)0.0030 (13)0.0066 (13)
C40.0304 (17)0.0155 (16)0.0279 (19)0.0006 (14)0.0148 (14)0.0034 (13)
C50.0241 (16)0.0224 (17)0.0222 (18)0.0074 (14)0.0039 (13)0.0014 (13)
C60.075 (3)0.028 (2)0.075 (4)0.023 (2)0.054 (3)0.022 (2)
C70.078 (3)0.0185 (18)0.032 (2)0.013 (2)0.010 (2)0.0039 (15)
C80.0294 (17)0.0276 (19)0.044 (2)0.0005 (15)0.0171 (17)0.0143 (16)
C90.073 (3)0.0204 (18)0.022 (2)0.0029 (18)0.0229 (19)0.0036 (14)
C100.0286 (19)0.042 (2)0.063 (3)0.0077 (18)0.0107 (19)0.038 (2)
C110.0227 (15)0.0335 (19)0.0144 (17)0.0009 (15)0.0031 (13)0.0084 (14)
C120.0220 (16)0.046 (2)0.024 (2)0.0068 (16)0.0091 (14)0.0109 (16)
C130.0217 (15)0.0319 (19)0.0209 (18)0.0047 (15)0.0053 (13)0.0123 (14)
C140.0155 (14)0.0305 (19)0.029 (2)0.0017 (14)0.0052 (13)0.0164 (15)
C150.0264 (16)0.0166 (16)0.035 (2)0.0009 (14)0.0059 (14)0.0111 (14)
C160.0283 (17)0.0193 (17)0.038 (2)0.0091 (15)0.0033 (15)0.0115 (15)
C170.0182 (15)0.0340 (19)0.032 (2)0.0031 (15)0.0066 (14)0.0187 (15)
C180.0190 (15)0.0367 (19)0.027 (2)0.0039 (15)0.0099 (14)0.0179 (15)
C190.0294 (17)0.0191 (17)0.029 (2)0.0088 (15)0.0041 (14)0.0049 (14)
C200.0263 (16)0.0199 (17)0.0290 (19)0.0023 (14)0.0134 (14)0.0057 (14)
C210.0341 (17)0.0187 (16)0.0162 (17)0.0050 (14)0.0080 (13)0.0042 (12)
C220.0258 (16)0.0198 (16)0.0205 (18)0.0021 (14)0.0046 (13)0.0078 (13)
C230.0393 (19)0.0169 (16)0.025 (2)0.0015 (15)0.0090 (15)0.0005 (13)
O10.0390 (14)0.0689 (18)0.0227 (15)0.0092 (14)0.0110 (11)0.0081 (13)
Ru10.01405 (12)0.01688 (14)0.01538 (13)0.00008 (10)0.00353 (9)0.00369 (9)
Ru20.01460 (12)0.01697 (14)0.01482 (14)0.00084 (10)0.00360 (9)0.00068 (9)
Geometric parameters (Å, º) top
C1—C51.429 (4)C12—O11.221 (4)
C1—C21.438 (4)C12—C131.409 (5)
C1—C111.438 (4)C13—C141.435 (4)
C1—Ru22.167 (3)C14—C151.407 (5)
C2—C31.417 (4)C14—C181.446 (4)
C2—Ru22.166 (3)C14—Ru12.160 (3)
C2—H21C15—C161.430 (4)
C3—C41.414 (4)C15—Ru12.168 (3)
C3—Ru22.188 (3)C15—H151
C3—H31C16—C171.415 (5)
C4—C51.422 (4)C16—Ru12.187 (3)
C4—Ru22.197 (3)C16—H161
C4—H41C17—C181.418 (5)
C5—Ru22.189 (3)C17—Ru12.179 (3)
C5—H51C17—H171
C6—C71.380 (6)C18—Ru12.170 (3)
C6—C101.406 (6)C18—H181
C6—Ru22.155 (3)C19—C201.415 (5)
C6—H61C19—C231.425 (4)
C7—C81.386 (5)C19—Ru12.165 (3)
C7—Ru22.172 (3)C19—H191
C7—H71C20—C211.419 (4)
C8—C91.391 (5)C20—Ru12.169 (3)
C8—Ru22.185 (3)C20—H201
C8—H81C21—C221.417 (4)
C9—C101.412 (5)C21—Ru12.180 (3)
C9—Ru22.180 (3)C21—H211
C9—H91C22—C231.411 (4)
C10—Ru22.159 (3)C22—Ru12.176 (3)
C10—H101C22—H221
C11—C131.379 (4)C23—Ru12.175 (3)
C11—C121.404 (5)C23—H231
C5—C1—C2108.0 (3)Ru1—C20—H20126
C5—C1—C11127.3 (3)C22—C21—C20107.8 (3)
C2—C1—C11124.7 (3)C22—C21—Ru170.88 (17)
C5—C1—Ru271.70 (17)C20—C21—Ru170.53 (18)
C2—C1—Ru270.59 (16)C22—C21—H21126.1
C11—C1—Ru2122.8 (2)C20—C21—H21126.1
C3—C2—C1107.6 (3)Ru1—C21—H21126.1
C3—C2—Ru271.84 (17)C23—C22—C21108.6 (3)
C1—C2—Ru270.65 (17)C23—C22—Ru171.03 (17)
C3—C2—H2126.1C21—C22—Ru171.16 (17)
C1—C2—H2126.1C23—C22—H22125.7
Ru2—C2—H2126.1C21—C22—H22125.7
C4—C3—C2108.2 (2)Ru1—C22—H22125.7
C4—C3—Ru271.53 (17)C22—C23—C19107.5 (3)
C2—C3—Ru270.18 (16)C22—C23—Ru171.12 (17)
C4—C3—H3125.9C19—C23—Ru170.43 (17)
C2—C3—H3125.9C22—C23—H23126.2
Ru2—C3—H3125.9C19—C23—H23126.2
C3—C4—C5109.0 (3)Ru1—C23—H23126.2
C3—C4—Ru270.85 (17)C14—Ru1—C19111.89 (12)
C5—C4—Ru270.78 (17)C14—Ru1—C1537.96 (13)
C3—C4—H4125.5C19—Ru1—C15127.06 (12)
C5—C4—H4125.5C14—Ru1—C20124.95 (11)
Ru2—C4—H4125.5C19—Ru1—C2038.12 (12)
C4—C5—C1107.2 (3)C15—Ru1—C20112.23 (12)
C4—C5—Ru271.37 (16)C14—Ru1—C1839.02 (11)
C1—C5—Ru270.01 (16)C19—Ru1—C18125.15 (13)
C4—C5—H5126.4C15—Ru1—C1864.46 (13)
C1—C5—H5126.4C20—Ru1—C18158.63 (12)
Ru2—C5—H5126.4C14—Ru1—C23127.39 (13)
C7—C6—C10108.5 (3)C19—Ru1—C2338.35 (11)
C7—C6—Ru272.0 (2)C15—Ru1—C23161.35 (12)
C10—C6—Ru271.1 (2)C20—Ru1—C2363.95 (12)
C7—C6—H6125.7C18—Ru1—C23111.82 (13)
C10—C6—H6125.7C14—Ru1—C22161.77 (13)
Ru2—C6—H6125.7C19—Ru1—C2263.62 (11)
C6—C7—C8108.3 (3)C15—Ru1—C22159.24 (12)
C6—C7—Ru270.8 (2)C20—Ru1—C2263.65 (11)
C8—C7—Ru271.98 (19)C18—Ru1—C22127.20 (11)
C6—C7—H7125.8C23—Ru1—C2237.85 (11)
C8—C7—H7125.8C14—Ru1—C1763.97 (11)
Ru2—C7—H7125.8C19—Ru1—C17158.81 (14)
C7—C8—C9108.7 (3)C15—Ru1—C1763.79 (12)
C7—C8—Ru270.92 (19)C20—Ru1—C17161.91 (13)
C9—C8—Ru271.22 (18)C18—Ru1—C1738.07 (12)
C7—C8—H8125.6C23—Ru1—C17125.71 (12)
C9—C8—H8125.6C22—Ru1—C17113.19 (11)
Ru2—C8—H8125.6C14—Ru1—C21158.43 (12)
C8—C9—C10107.5 (3)C19—Ru1—C2163.70 (12)
C8—C9—Ru271.63 (19)C15—Ru1—C21125.83 (13)
C10—C9—Ru270.2 (2)C20—Ru1—C2138.10 (11)
C8—C9—H9126.2C18—Ru1—C21161.47 (11)
C10—C9—H9126.2C23—Ru1—C2163.65 (12)
Ru2—C9—H9126.2C22—Ru1—C2137.96 (11)
C6—C10—C9107.0 (3)C17—Ru1—C21128.09 (12)
C6—C10—Ru270.8 (2)C14—Ru1—C1663.82 (13)
C9—C10—Ru271.82 (19)C19—Ru1—C16161.69 (13)
C6—C10—H10126.4C15—Ru1—C1638.34 (11)
C9—C10—H10126.4C20—Ru1—C16127.85 (13)
Ru2—C10—H10126.4C18—Ru1—C1663.97 (14)
C13—C11—C1260.8 (2)C23—Ru1—C16158.77 (12)
C13—C11—C1148.1 (3)C22—Ru1—C16126.18 (12)
C12—C11—C1151.1 (3)C17—Ru1—C1637.81 (13)
O1—C12—C11150.3 (3)C21—Ru1—C16113.10 (12)
O1—C12—C13150.9 (3)C6—Ru2—C1038.02 (16)
C11—C12—C1358.7 (2)C6—Ru2—C2120.26 (15)
C11—C13—C1260.5 (2)C10—Ru2—C2151.00 (15)
C11—C13—C14148.4 (3)C6—Ru2—C1113.85 (13)
C12—C13—C14151.2 (3)C10—Ru2—C1121.16 (13)
C15—C14—C13127.8 (3)C2—Ru2—C138.76 (10)
C15—C14—C18108.4 (3)C6—Ru2—C737.20 (15)
C13—C14—C18123.8 (3)C10—Ru2—C762.93 (15)
C15—C14—Ru171.36 (18)C2—Ru2—C7112.85 (13)
C13—C14—Ru1121.6 (2)C1—Ru2—C7133.66 (14)
C18—C14—Ru170.90 (16)C6—Ru2—C963.00 (14)
C14—C15—C16108.1 (3)C10—Ru2—C937.98 (15)
C14—C15—Ru170.69 (17)C2—Ru2—C9168.82 (13)
C16—C15—Ru171.54 (17)C1—Ru2—C9151.90 (13)
C14—C15—H15125.9C7—Ru2—C962.47 (14)
C16—C15—H15125.9C6—Ru2—C862.19 (14)
Ru1—C15—H15125.9C10—Ru2—C862.70 (13)
C17—C16—C15107.7 (3)C2—Ru2—C8132.97 (13)
C17—C16—Ru170.77 (17)C1—Ru2—C8169.30 (14)
C15—C16—Ru170.11 (16)C7—Ru2—C837.10 (14)
C17—C16—H16126.1C9—Ru2—C837.15 (13)
C15—C16—H16126.1C6—Ru2—C3149.97 (17)
Ru1—C16—H16126.1C10—Ru2—C3170.46 (16)
C16—C17—C18109.1 (3)C2—Ru2—C337.98 (11)
C16—C17—Ru171.42 (17)C1—Ru2—C363.90 (11)
C18—C17—Ru170.65 (17)C7—Ru2—C3120.52 (13)
C16—C17—H17125.4C9—Ru2—C3133.89 (13)
C18—C17—H17125.4C8—Ru2—C3113.96 (12)
Ru1—C17—H17125.4C6—Ru2—C5134.91 (15)
C17—C18—C14106.7 (3)C10—Ru2—C5114.51 (13)
C17—C18—Ru171.28 (18)C2—Ru2—C564.35 (12)
C14—C18—Ru170.08 (17)C1—Ru2—C538.29 (11)
C17—C18—H18126.6C7—Ru2—C5170.27 (14)
C14—C18—H18126.6C9—Ru2—C5122.04 (13)
Ru1—C18—H18126.6C8—Ru2—C5151.62 (13)
C20—C19—C23108.1 (3)C3—Ru2—C563.67 (11)
C20—C19—Ru171.10 (17)C6—Ru2—C4171.38 (16)
C23—C19—Ru171.22 (17)C10—Ru2—C4135.16 (16)
C20—C19—H19125.9C2—Ru2—C463.40 (12)
C23—C19—H19125.9C1—Ru2—C463.43 (11)
Ru1—C19—H19125.9C7—Ru2—C4150.67 (14)
C19—C20—C21107.9 (3)C9—Ru2—C4115.09 (12)
C19—C20—Ru170.78 (18)C8—Ru2—C4122.01 (12)
C21—C20—Ru171.37 (17)C3—Ru2—C437.62 (11)
C19—C20—H20126C5—Ru2—C437.84 (11)
C21—C20—H20126
C5—C1—C2—C30.4 (3)C1—C11—C13—C142.2 (9)
C11—C1—C2—C3179.7 (3)O1—C12—C13—C11179.3 (7)
Ru2—C1—C2—C362.7 (2)O1—C12—C13—C141.8 (11)
C5—C1—C2—Ru262.3 (2)C11—C12—C13—C14178.9 (6)
C11—C1—C2—Ru2117.0 (3)C11—C13—C14—C152.2 (7)
C1—C2—C3—C40.2 (3)C12—C13—C14—C15179.6 (5)
Ru2—C2—C3—C461.8 (2)C11—C13—C14—C18179.5 (4)
C1—C2—C3—Ru261.9 (2)C12—C13—C14—C182.3 (8)
C2—C3—C4—C50.1 (3)C11—C13—C14—Ru192.4 (6)
Ru2—C3—C4—C560.8 (2)C12—C13—C14—Ru189.5 (6)
C2—C3—C4—Ru260.9 (2)C13—C14—C15—C16178.1 (3)
C3—C4—C5—C10.4 (3)C18—C14—C15—C160.5 (3)
Ru2—C4—C5—C161.2 (2)Ru1—C14—C15—C1662.1 (2)
C3—C4—C5—Ru260.8 (2)C13—C14—C15—Ru1116.0 (3)
C2—C1—C5—C40.5 (3)C18—C14—C15—Ru161.6 (2)
C11—C1—C5—C4179.8 (3)C14—C15—C16—C170.4 (3)
Ru2—C1—C5—C462.1 (2)Ru1—C15—C16—C1761.1 (2)
C2—C1—C5—Ru261.6 (2)C14—C15—C16—Ru161.6 (2)
C11—C1—C5—Ru2117.7 (3)C15—C16—C17—C180.2 (3)
C10—C6—C7—C80.4 (4)Ru1—C16—C17—C1860.9 (2)
Ru2—C6—C7—C862.6 (2)C15—C16—C17—Ru160.7 (2)
C10—C6—C7—Ru262.2 (3)C16—C17—C18—C140.2 (3)
C6—C7—C8—C90.3 (4)Ru1—C17—C18—C1461.5 (2)
Ru2—C7—C8—C961.5 (2)C16—C17—C18—Ru161.4 (2)
C6—C7—C8—Ru261.8 (2)C15—C14—C18—C170.4 (3)
C7—C8—C9—C100.1 (4)C13—C14—C18—C17178.1 (3)
Ru2—C8—C9—C1061.4 (2)Ru1—C14—C18—C1762.3 (2)
C7—C8—C9—Ru261.3 (2)C15—C14—C18—Ru161.9 (2)
C7—C6—C10—C90.4 (4)C13—C14—C18—Ru1115.8 (3)
Ru2—C6—C10—C963.1 (2)C23—C19—C20—C210.1 (3)
C7—C6—C10—Ru262.8 (3)Ru1—C19—C20—C2162.1 (2)
C8—C9—C10—C60.2 (4)C23—C19—C20—Ru161.9 (2)
Ru2—C9—C10—C662.5 (2)C19—C20—C21—C220.3 (3)
C8—C9—C10—Ru262.3 (2)Ru1—C20—C21—C2261.4 (2)
C5—C1—C11—C134.8 (7)C19—C20—C21—Ru161.7 (2)
C2—C1—C11—C13176.0 (4)C20—C21—C22—C230.3 (3)
Ru2—C1—C11—C1396.0 (5)Ru1—C21—C22—C2361.5 (2)
C5—C1—C11—C12173.1 (5)C20—C21—C22—Ru161.2 (2)
C2—C1—C11—C126.1 (8)C21—C22—C23—C190.2 (3)
Ru2—C1—C11—C1281.9 (6)Ru1—C22—C23—C1961.4 (2)
C13—C11—C12—O1179.4 (7)C21—C22—C23—Ru161.6 (2)
C1—C11—C12—O10.6 (11)C20—C19—C23—C220.1 (3)
C1—C11—C12—C13178.7 (6)Ru1—C19—C23—C2261.8 (2)
C1—C11—C13—C12178.8 (6)C20—C19—C23—Ru161.9 (2)
C12—C11—C13—C14179.0 (6)
 

Acknowledgements

Technical assistance from Gerardo Cedillo is gratefully acknowledged.

Funding information

The authors thank PAPIIT-DGAPA-UNAM (IN-215015) and CONACYT (251437) for their financial support of this work.

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England  Google Scholar
First citationAgranat, I. & Aharon-Shalom, E. (1975). J. Am. Chem. Soc. 97, 3829–3830.  CrossRef CAS Google Scholar
First citationBeagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Moss, J. R. & Smith, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4426–4433.  CSD CrossRef Google Scholar
First citationBenson, R. C., Flygare, W. H., Oda, M. & Breslow, R. (1973). J. Am. Chem. Soc. 87, 2772–2777.  CrossRef Google Scholar
First citationBreslow, R., Oda, M. & Pecoraro, J. (1972). Tetrahedron Lett. 13, 4415–4417.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHauser, R. & Lednicer, D. (1972). Angew. Chem. Int. Ed. Engl. 11, 1025–1027.  PubMed Google Scholar
First citationJaouen, G., Vessieres, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817.  CrossRef CAS PubMed Google Scholar
First citationKlimova, T., Klimova, E. I., Flores-Alamo, M., Backinowsky, L. & García, M. (2006). Synthesis, 21, 3706–3710.  Google Scholar
First citationKlimova, E. I., Klimova, T., Ruiz-Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernandez-Ortega, S. & Martinez-Garcia, M. (2003). Eur. J. Org. Chem. 4265–4275.  Google Scholar
First citationKlimova, E. I., Klimova, T., Toscano, R., Mèndez-Stivalet, J. & Martìnez-Garcìa, M. (2007). Synth. Commun. 37, 889–900.  CSD CrossRef CAS Google Scholar
First citationKlimova, E. I., Vazquez-López, E. A., Flores-Alamo, M., Klimova, T. & Martìnez-García, M. (2009). Eur. J. Org. Chem. 25, 4352–4356.  CSD CrossRef Google Scholar
First citationLi, Y., Josowicz, M. & Tolbert, L. M. (2010). J. Am. Chem. Soc. 132, 10374–10382.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrnelas, C. (2011). New J. Chem. 35, 1973–1985.  Web of Science CrossRef CAS Google Scholar
First citationPatra, M., Gasser, G., Wenzel, M., Merz, K., Bandow, J. E. & Metzler-Nolte, N. (2010). Organometallics, 29, 4312–4319.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsukada, H., Shimanouchi, H. & Sasada, Y. (1974). Chem. Lett. pp. 639–642.  CSD CrossRef Google Scholar
First citationWard, M. D. (1995). Chem. Soc. Rev. 24, 121–134.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]