metal-organic compounds
2,3-Diruthenocenylcyclopropenone
aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@yahoo.com.mx
In the title compound, [Ru2(C5H5)2(C13H8O)], the Ru—C bond lengths in the two ruthenocenyl moieties are in the range of 2.155 (4)–2.196 (3) Å. Both cyclopentadienyl (Cp) rings are planar and parallel with staggered (18.6 °) and eclipsed (3.1°) conformations between the mutual orientations of rings in the independent sandwiches of each ruthenocenyl molecule. In the crystal, there are intermolecular C—H⋯O hydrogen bonds between Cp carbon donor atoms and the cyclopropenone O atom of adjacent molecules, forming R22(14) and R66(38) motifs along the b and c axes.
Keywords: crystal structure; diruthenocenylcyclopropenone.
CCDC reference: 1575948
Structure description
Cyclopropenone is a molecule of interest since it combines remarkable stability with extreme strain; various physical studies (Benson et al., 1973) suggest that much of its stability is derived from the special conjugative stabilization of the two-π electron systems. In addition, cyclopropenone has a number of interesting chemical properties (Breslow et al., 1972) that suggest it could be a useful synthetic intermediate.
Metallocenyl-substituted cyclopropenones allow introducing ruthenium or iron atoms in a large number of different organic compounds (Klimova et al., 2006), with different properties in medicinal chemistry mainly as anticancer compounds (Ornelas, 2011; Jaouen et al., 2015; Gasser et al., 2011), antibacterial properties (Patra et al., 2010), and antimalarial agents (Beagley et al., 2002).
Investigations into the chemistry of 2,3-diferrocenylcyclopropenones (Klimova et al., 2003) has allowed the construction of heterocycles with two ferrocene units (Klimova et al., 2009). 2,3-Diruthenocenylcyclopropenone extended conjugated metal-containing systems are of interest because they can be used as model compounds for molecular wires (Klimova et al., 2007; Li et al., 2010; Ward, 1995). Furthermore, the electron-donating nature of ruthenocenyl functionalities on cyclopropenone systems enhances their stability by delocalizing the positive charge (Agranat & Aharon-Shalom, 1975; Hauser & Lednicer, 1972).
In a continuation of this work, we present here the synthesis and 3 (Agranat & Aharon-Shalom, 1975; Klimova et al., 2003).
of 2,3-diruthenocenylcyclopropenone. The synthesis of this compound was made by using Friedel–Crafts alkylation of ruthenocene with tetrachlorocyclopropene in the presence of AlClThe title compound (Fig. 1) consist of two ruthenocenyl units bonded on 2,3-disubstitution of the three-membered ring of the cyclopropenone. The C=O [1.221 (4) Å], C—C [1.404 (5) Å] and C=C [1.379 (4) Å] bond lengths are similar to the analogous bond lengths observed in 2,3-diferrocenylcyclopropenone and 2,3-diphenylcyclopropenone (Tsukada et al., 1974). The Ru—C distances in the two ruthenocenyl moieties are in the range 2.155 (4)–2.196 (3) Å. Both Cp rings are planar and parallel, with an average value of torsion angles for C—Cg—Cg—C of 3.1 and 18.6° for the eclipsed (Ru1) and staggered (Ru2) conformations between the mutual orientations of rings in the independent sandwiches of each molecule of ruthenocenyl.
In the crystal packing, there are intermolecular C—H⋯O hydrogen bonds between Cp carbon donor atoms and the cyclopropenone O atom of adjacent molecules. The C5—H5⋯O1 (2.37 Å) and C23—H23⋯O1 (2.41 Å) intermolecular interactions form R22(14) and R66(38) motifs and show a complex growing along the b and c axes (Fig. 2).
Synthesis and crystallization
Aluminium chloride (0.67 g, 0.005 mol) was added portion wise over 30 min to a stirred solution of ruthenocene (4.63 g, 0.02 mol) and tetrachlorocyclopropene (3.6 g, 0.02 mol) in dry dichloromethane (200 ml). The mixture was stirred for 1 h at 293 K and then quenched by addition of water (2 × 50 ml), and dried with MgSO4. The solvent was evaporated in vacuo and the residue was chromatographed (Al2O3; hexane/dichloromethane, 3:1) to give the title compound (yield 68%, yellow crystals, m.p. 529–530 K).
1H NMR (300 MHz, CDCl3) δ: 4.60 (10H, s, 2C5H5), δ: 4.83 (4H, m, C5H4), δ: 5.10 (4H, m, C5H4) p.p.m., 13C NMR (75 MHz, CDCl3) δ: 69.16 (2CipsoRu), 72.30 (2C5H5), δ: 72.76, 73.46 (2C5H4), 115.73 (2 C), 195.83 (C=O) p.p.m., MS: m/z 512 [M]+. Anal. Calcd for C23H18ORu2: C, 53.90, H, 3.54, Ru, 39.44. Found C, 53.76, H, 3.64, Ru 39.63%.
Refinement
Crystal data, data collection and structure . During the electron-density peaks were located that were believed to be highly disordered solvent molecules (possibly water). Attempts made to model the solvent molecule were not successful. The SQUEEZE (Spek, 2015) option in PLATON (Spek, 2009) indicated there was a small solvent cavity of 9 Å3. In the final cycles of this contribution of four electrons to the electron density was removed from the observed data.
details are summarized in Table 1Structural data
CCDC reference: 1575948
https://doi.org/10.1107/S241431461701358X/bv4011sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461701358X/bv4011Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013; cell
CrysAlis RED (Agilent, 2013); data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXS2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008).[Ru2(C5H5)2(C13H8O)] | F(000) = 1008 |
Mr = 512.51 | Dx = 1.856 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3321 reflections |
a = 10.9880 (6) Å | θ = 3.5–29.5° |
b = 14.2341 (8) Å | µ = 1.66 mm−1 |
c = 12.2219 (7) Å | T = 130 K |
β = 106.357 (5)° | Prism, yellow |
V = 1834.19 (18) Å3 | 0.25 × 0.2 × 0.13 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini diffractometer | 4368 independent reflections |
Graphite monochromator | 3246 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 29.5°, θmin = 3.5° |
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) | h = −14→15 |
Tmin = 0.726, Tmax = 0.818 | k = −14→19 |
10469 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0211P)2 + 0.0994P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
4368 reflections | Δρmax = 0.46 e Å−3 |
235 parameters | Δρmin = −0.57 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3407 (3) | 0.7411 (2) | 0.9224 (3) | 0.0204 (7) | |
C2 | 0.4659 (3) | 0.7248 (2) | 0.9965 (3) | 0.0206 (7) | |
H2 | 0.487019 | 0.693883 | 1.073071 | 0.025* | |
C3 | 0.5536 (3) | 0.7659 (2) | 0.9451 (3) | 0.0222 (7) | |
H3 | 0.647806 | 0.767926 | 0.97844 | 0.027* | |
C4 | 0.4846 (3) | 0.8069 (2) | 0.8407 (3) | 0.0233 (7) | |
H4 | 0.522295 | 0.842095 | 0.787323 | 0.028* | |
C5 | 0.3529 (3) | 0.7919 (2) | 0.8252 (3) | 0.0235 (7) | |
H5 | 0.281909 | 0.815596 | 0.760458 | 0.028* | |
C6 | 0.3828 (4) | 0.5115 (3) | 0.8106 (4) | 0.0526 (12) | |
H6 | 0.321152 | 0.481229 | 0.846122 | 0.063* | |
C7 | 0.5131 (4) | 0.5108 (2) | 0.8545 (3) | 0.0438 (10) | |
H7 | 0.56174 | 0.480541 | 0.927612 | 0.053* | |
C8 | 0.5653 (3) | 0.5545 (2) | 0.7769 (3) | 0.0324 (8) | |
H8 | 0.657952 | 0.561814 | 0.785208 | 0.039* | |
C9 | 0.4675 (4) | 0.5834 (2) | 0.6836 (3) | 0.0368 (9) | |
H9 | 0.477253 | 0.614059 | 0.612957 | 0.044* | |
C10 | 0.3520 (3) | 0.5568 (3) | 0.7041 (4) | 0.0493 (12) | |
H10 | 0.265213 | 0.563968 | 0.650192 | 0.059* | |
C11 | 0.2254 (3) | 0.7098 (2) | 0.9444 (3) | 0.0240 (7) | |
C12 | 0.1613 (3) | 0.6592 (2) | 1.0097 (3) | 0.0302 (8) | |
C13 | 0.0946 (3) | 0.7084 (2) | 0.9110 (3) | 0.0250 (7) | |
C14 | −0.0217 (3) | 0.7386 (2) | 0.8318 (3) | 0.0254 (7) | |
C15 | −0.0368 (3) | 0.7944 (2) | 0.7338 (3) | 0.0267 (7) | |
H15 | 0.032983 | 0.82496 | 0.70902 | 0.032* | |
C16 | −0.1697 (3) | 0.8040 (2) | 0.6792 (3) | 0.0298 (8) | |
H16 | −0.209125 | 0.841755 | 0.609213 | 0.036* | |
C17 | −0.2353 (3) | 0.7529 (2) | 0.7442 (3) | 0.0283 (8) | |
H17 | −0.329588 | 0.748284 | 0.727203 | 0.034* | |
C18 | −0.1461 (3) | 0.7116 (2) | 0.8391 (3) | 0.0270 (8) | |
H18 | −0.165511 | 0.674589 | 0.901634 | 0.032* | |
C19 | −0.0109 (3) | 0.5289 (2) | 0.6727 (3) | 0.0268 (7) | |
H19 | 0.069383 | 0.507864 | 0.729121 | 0.032* | |
C20 | −0.0195 (3) | 0.5844 (2) | 0.5748 (3) | 0.0239 (7) | |
H20 | 0.053534 | 0.609439 | 0.549912 | 0.029* | |
C21 | −0.1498 (3) | 0.5939 (2) | 0.5147 (3) | 0.0228 (7) | |
H21 | −0.184815 | 0.627168 | 0.440415 | 0.027* | |
C22 | −0.2210 (3) | 0.5445 (2) | 0.5764 (3) | 0.0224 (7) | |
H22 | −0.315311 | 0.537214 | 0.553031 | 0.027* | |
C23 | −0.1362 (3) | 0.5040 (2) | 0.6737 (3) | 0.0271 (7) | |
H23 | −0.159553 | 0.462646 | 0.730796 | 0.033* | |
O1 | 0.1630 (2) | 0.60901 (19) | 1.0911 (2) | 0.0431 (6) | |
Ru1 | −0.11501 (2) | 0.65595 (2) | 0.68379 (2) | 0.01556 (7) | |
Ru2 | 0.44667 (2) | 0.65524 (2) | 0.83492 (2) | 0.01558 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0185 (14) | 0.0244 (17) | 0.0178 (17) | −0.0018 (13) | 0.0044 (12) | −0.0078 (13) |
C2 | 0.0234 (15) | 0.0209 (16) | 0.0160 (17) | −0.0026 (14) | 0.0031 (12) | −0.0039 (12) |
C3 | 0.0163 (14) | 0.0209 (17) | 0.0274 (19) | −0.0035 (13) | 0.0030 (13) | −0.0066 (13) |
C4 | 0.0304 (17) | 0.0155 (16) | 0.0279 (19) | 0.0006 (14) | 0.0148 (14) | −0.0034 (13) |
C5 | 0.0241 (16) | 0.0224 (17) | 0.0222 (18) | 0.0074 (14) | 0.0039 (13) | −0.0014 (13) |
C6 | 0.075 (3) | 0.028 (2) | 0.075 (4) | −0.023 (2) | 0.054 (3) | −0.022 (2) |
C7 | 0.078 (3) | 0.0185 (18) | 0.032 (2) | 0.013 (2) | 0.010 (2) | 0.0039 (15) |
C8 | 0.0294 (17) | 0.0276 (19) | 0.044 (2) | 0.0005 (15) | 0.0171 (17) | −0.0143 (16) |
C9 | 0.073 (3) | 0.0204 (18) | 0.022 (2) | 0.0029 (18) | 0.0229 (19) | −0.0036 (14) |
C10 | 0.0286 (19) | 0.042 (2) | 0.063 (3) | 0.0077 (18) | −0.0107 (19) | −0.038 (2) |
C11 | 0.0227 (15) | 0.0335 (19) | 0.0144 (17) | −0.0009 (15) | 0.0031 (13) | −0.0084 (14) |
C12 | 0.0220 (16) | 0.046 (2) | 0.024 (2) | −0.0068 (16) | 0.0091 (14) | −0.0109 (16) |
C13 | 0.0217 (15) | 0.0319 (19) | 0.0209 (18) | −0.0047 (15) | 0.0053 (13) | −0.0123 (14) |
C14 | 0.0155 (14) | 0.0305 (19) | 0.029 (2) | −0.0017 (14) | 0.0052 (13) | −0.0164 (15) |
C15 | 0.0264 (16) | 0.0166 (16) | 0.035 (2) | −0.0009 (14) | 0.0059 (14) | −0.0111 (14) |
C16 | 0.0283 (17) | 0.0193 (17) | 0.038 (2) | 0.0091 (15) | 0.0033 (15) | −0.0115 (15) |
C17 | 0.0182 (15) | 0.0340 (19) | 0.032 (2) | 0.0031 (15) | 0.0066 (14) | −0.0187 (15) |
C18 | 0.0190 (15) | 0.0367 (19) | 0.027 (2) | −0.0039 (15) | 0.0099 (14) | −0.0179 (15) |
C19 | 0.0294 (17) | 0.0191 (17) | 0.029 (2) | 0.0088 (15) | 0.0041 (14) | −0.0049 (14) |
C20 | 0.0263 (16) | 0.0199 (17) | 0.0290 (19) | 0.0023 (14) | 0.0134 (14) | −0.0057 (14) |
C21 | 0.0341 (17) | 0.0187 (16) | 0.0162 (17) | 0.0050 (14) | 0.0080 (13) | −0.0042 (12) |
C22 | 0.0258 (16) | 0.0198 (16) | 0.0205 (18) | −0.0021 (14) | 0.0046 (13) | −0.0078 (13) |
C23 | 0.0393 (19) | 0.0169 (16) | 0.025 (2) | −0.0015 (15) | 0.0090 (15) | 0.0005 (13) |
O1 | 0.0390 (14) | 0.0689 (18) | 0.0227 (15) | −0.0092 (14) | 0.0110 (11) | 0.0081 (13) |
Ru1 | 0.01405 (12) | 0.01688 (14) | 0.01538 (13) | 0.00008 (10) | 0.00353 (9) | −0.00369 (9) |
Ru2 | 0.01460 (12) | 0.01697 (14) | 0.01482 (14) | −0.00084 (10) | 0.00360 (9) | −0.00068 (9) |
C1—C5 | 1.429 (4) | C12—O1 | 1.221 (4) |
C1—C2 | 1.438 (4) | C12—C13 | 1.409 (5) |
C1—C11 | 1.438 (4) | C13—C14 | 1.435 (4) |
C1—Ru2 | 2.167 (3) | C14—C15 | 1.407 (5) |
C2—C3 | 1.417 (4) | C14—C18 | 1.446 (4) |
C2—Ru2 | 2.166 (3) | C14—Ru1 | 2.160 (3) |
C2—H2 | 1 | C15—C16 | 1.430 (4) |
C3—C4 | 1.414 (4) | C15—Ru1 | 2.168 (3) |
C3—Ru2 | 2.188 (3) | C15—H15 | 1 |
C3—H3 | 1 | C16—C17 | 1.415 (5) |
C4—C5 | 1.422 (4) | C16—Ru1 | 2.187 (3) |
C4—Ru2 | 2.197 (3) | C16—H16 | 1 |
C4—H4 | 1 | C17—C18 | 1.418 (5) |
C5—Ru2 | 2.189 (3) | C17—Ru1 | 2.179 (3) |
C5—H5 | 1 | C17—H17 | 1 |
C6—C7 | 1.380 (6) | C18—Ru1 | 2.170 (3) |
C6—C10 | 1.406 (6) | C18—H18 | 1 |
C6—Ru2 | 2.155 (3) | C19—C20 | 1.415 (5) |
C6—H6 | 1 | C19—C23 | 1.425 (4) |
C7—C8 | 1.386 (5) | C19—Ru1 | 2.165 (3) |
C7—Ru2 | 2.172 (3) | C19—H19 | 1 |
C7—H7 | 1 | C20—C21 | 1.419 (4) |
C8—C9 | 1.391 (5) | C20—Ru1 | 2.169 (3) |
C8—Ru2 | 2.185 (3) | C20—H20 | 1 |
C8—H8 | 1 | C21—C22 | 1.417 (4) |
C9—C10 | 1.412 (5) | C21—Ru1 | 2.180 (3) |
C9—Ru2 | 2.180 (3) | C21—H21 | 1 |
C9—H9 | 1 | C22—C23 | 1.411 (4) |
C10—Ru2 | 2.159 (3) | C22—Ru1 | 2.176 (3) |
C10—H10 | 1 | C22—H22 | 1 |
C11—C13 | 1.379 (4) | C23—Ru1 | 2.175 (3) |
C11—C12 | 1.404 (5) | C23—H23 | 1 |
C5—C1—C2 | 108.0 (3) | Ru1—C20—H20 | 126 |
C5—C1—C11 | 127.3 (3) | C22—C21—C20 | 107.8 (3) |
C2—C1—C11 | 124.7 (3) | C22—C21—Ru1 | 70.88 (17) |
C5—C1—Ru2 | 71.70 (17) | C20—C21—Ru1 | 70.53 (18) |
C2—C1—Ru2 | 70.59 (16) | C22—C21—H21 | 126.1 |
C11—C1—Ru2 | 122.8 (2) | C20—C21—H21 | 126.1 |
C3—C2—C1 | 107.6 (3) | Ru1—C21—H21 | 126.1 |
C3—C2—Ru2 | 71.84 (17) | C23—C22—C21 | 108.6 (3) |
C1—C2—Ru2 | 70.65 (17) | C23—C22—Ru1 | 71.03 (17) |
C3—C2—H2 | 126.1 | C21—C22—Ru1 | 71.16 (17) |
C1—C2—H2 | 126.1 | C23—C22—H22 | 125.7 |
Ru2—C2—H2 | 126.1 | C21—C22—H22 | 125.7 |
C4—C3—C2 | 108.2 (2) | Ru1—C22—H22 | 125.7 |
C4—C3—Ru2 | 71.53 (17) | C22—C23—C19 | 107.5 (3) |
C2—C3—Ru2 | 70.18 (16) | C22—C23—Ru1 | 71.12 (17) |
C4—C3—H3 | 125.9 | C19—C23—Ru1 | 70.43 (17) |
C2—C3—H3 | 125.9 | C22—C23—H23 | 126.2 |
Ru2—C3—H3 | 125.9 | C19—C23—H23 | 126.2 |
C3—C4—C5 | 109.0 (3) | Ru1—C23—H23 | 126.2 |
C3—C4—Ru2 | 70.85 (17) | C14—Ru1—C19 | 111.89 (12) |
C5—C4—Ru2 | 70.78 (17) | C14—Ru1—C15 | 37.96 (13) |
C3—C4—H4 | 125.5 | C19—Ru1—C15 | 127.06 (12) |
C5—C4—H4 | 125.5 | C14—Ru1—C20 | 124.95 (11) |
Ru2—C4—H4 | 125.5 | C19—Ru1—C20 | 38.12 (12) |
C4—C5—C1 | 107.2 (3) | C15—Ru1—C20 | 112.23 (12) |
C4—C5—Ru2 | 71.37 (16) | C14—Ru1—C18 | 39.02 (11) |
C1—C5—Ru2 | 70.01 (16) | C19—Ru1—C18 | 125.15 (13) |
C4—C5—H5 | 126.4 | C15—Ru1—C18 | 64.46 (13) |
C1—C5—H5 | 126.4 | C20—Ru1—C18 | 158.63 (12) |
Ru2—C5—H5 | 126.4 | C14—Ru1—C23 | 127.39 (13) |
C7—C6—C10 | 108.5 (3) | C19—Ru1—C23 | 38.35 (11) |
C7—C6—Ru2 | 72.0 (2) | C15—Ru1—C23 | 161.35 (12) |
C10—C6—Ru2 | 71.1 (2) | C20—Ru1—C23 | 63.95 (12) |
C7—C6—H6 | 125.7 | C18—Ru1—C23 | 111.82 (13) |
C10—C6—H6 | 125.7 | C14—Ru1—C22 | 161.77 (13) |
Ru2—C6—H6 | 125.7 | C19—Ru1—C22 | 63.62 (11) |
C6—C7—C8 | 108.3 (3) | C15—Ru1—C22 | 159.24 (12) |
C6—C7—Ru2 | 70.8 (2) | C20—Ru1—C22 | 63.65 (11) |
C8—C7—Ru2 | 71.98 (19) | C18—Ru1—C22 | 127.20 (11) |
C6—C7—H7 | 125.8 | C23—Ru1—C22 | 37.85 (11) |
C8—C7—H7 | 125.8 | C14—Ru1—C17 | 63.97 (11) |
Ru2—C7—H7 | 125.8 | C19—Ru1—C17 | 158.81 (14) |
C7—C8—C9 | 108.7 (3) | C15—Ru1—C17 | 63.79 (12) |
C7—C8—Ru2 | 70.92 (19) | C20—Ru1—C17 | 161.91 (13) |
C9—C8—Ru2 | 71.22 (18) | C18—Ru1—C17 | 38.07 (12) |
C7—C8—H8 | 125.6 | C23—Ru1—C17 | 125.71 (12) |
C9—C8—H8 | 125.6 | C22—Ru1—C17 | 113.19 (11) |
Ru2—C8—H8 | 125.6 | C14—Ru1—C21 | 158.43 (12) |
C8—C9—C10 | 107.5 (3) | C19—Ru1—C21 | 63.70 (12) |
C8—C9—Ru2 | 71.63 (19) | C15—Ru1—C21 | 125.83 (13) |
C10—C9—Ru2 | 70.2 (2) | C20—Ru1—C21 | 38.10 (11) |
C8—C9—H9 | 126.2 | C18—Ru1—C21 | 161.47 (11) |
C10—C9—H9 | 126.2 | C23—Ru1—C21 | 63.65 (12) |
Ru2—C9—H9 | 126.2 | C22—Ru1—C21 | 37.96 (11) |
C6—C10—C9 | 107.0 (3) | C17—Ru1—C21 | 128.09 (12) |
C6—C10—Ru2 | 70.8 (2) | C14—Ru1—C16 | 63.82 (13) |
C9—C10—Ru2 | 71.82 (19) | C19—Ru1—C16 | 161.69 (13) |
C6—C10—H10 | 126.4 | C15—Ru1—C16 | 38.34 (11) |
C9—C10—H10 | 126.4 | C20—Ru1—C16 | 127.85 (13) |
Ru2—C10—H10 | 126.4 | C18—Ru1—C16 | 63.97 (14) |
C13—C11—C12 | 60.8 (2) | C23—Ru1—C16 | 158.77 (12) |
C13—C11—C1 | 148.1 (3) | C22—Ru1—C16 | 126.18 (12) |
C12—C11—C1 | 151.1 (3) | C17—Ru1—C16 | 37.81 (13) |
O1—C12—C11 | 150.3 (3) | C21—Ru1—C16 | 113.10 (12) |
O1—C12—C13 | 150.9 (3) | C6—Ru2—C10 | 38.02 (16) |
C11—C12—C13 | 58.7 (2) | C6—Ru2—C2 | 120.26 (15) |
C11—C13—C12 | 60.5 (2) | C10—Ru2—C2 | 151.00 (15) |
C11—C13—C14 | 148.4 (3) | C6—Ru2—C1 | 113.85 (13) |
C12—C13—C14 | 151.2 (3) | C10—Ru2—C1 | 121.16 (13) |
C15—C14—C13 | 127.8 (3) | C2—Ru2—C1 | 38.76 (10) |
C15—C14—C18 | 108.4 (3) | C6—Ru2—C7 | 37.20 (15) |
C13—C14—C18 | 123.8 (3) | C10—Ru2—C7 | 62.93 (15) |
C15—C14—Ru1 | 71.36 (18) | C2—Ru2—C7 | 112.85 (13) |
C13—C14—Ru1 | 121.6 (2) | C1—Ru2—C7 | 133.66 (14) |
C18—C14—Ru1 | 70.90 (16) | C6—Ru2—C9 | 63.00 (14) |
C14—C15—C16 | 108.1 (3) | C10—Ru2—C9 | 37.98 (15) |
C14—C15—Ru1 | 70.69 (17) | C2—Ru2—C9 | 168.82 (13) |
C16—C15—Ru1 | 71.54 (17) | C1—Ru2—C9 | 151.90 (13) |
C14—C15—H15 | 125.9 | C7—Ru2—C9 | 62.47 (14) |
C16—C15—H15 | 125.9 | C6—Ru2—C8 | 62.19 (14) |
Ru1—C15—H15 | 125.9 | C10—Ru2—C8 | 62.70 (13) |
C17—C16—C15 | 107.7 (3) | C2—Ru2—C8 | 132.97 (13) |
C17—C16—Ru1 | 70.77 (17) | C1—Ru2—C8 | 169.30 (14) |
C15—C16—Ru1 | 70.11 (16) | C7—Ru2—C8 | 37.10 (14) |
C17—C16—H16 | 126.1 | C9—Ru2—C8 | 37.15 (13) |
C15—C16—H16 | 126.1 | C6—Ru2—C3 | 149.97 (17) |
Ru1—C16—H16 | 126.1 | C10—Ru2—C3 | 170.46 (16) |
C16—C17—C18 | 109.1 (3) | C2—Ru2—C3 | 37.98 (11) |
C16—C17—Ru1 | 71.42 (17) | C1—Ru2—C3 | 63.90 (11) |
C18—C17—Ru1 | 70.65 (17) | C7—Ru2—C3 | 120.52 (13) |
C16—C17—H17 | 125.4 | C9—Ru2—C3 | 133.89 (13) |
C18—C17—H17 | 125.4 | C8—Ru2—C3 | 113.96 (12) |
Ru1—C17—H17 | 125.4 | C6—Ru2—C5 | 134.91 (15) |
C17—C18—C14 | 106.7 (3) | C10—Ru2—C5 | 114.51 (13) |
C17—C18—Ru1 | 71.28 (18) | C2—Ru2—C5 | 64.35 (12) |
C14—C18—Ru1 | 70.08 (17) | C1—Ru2—C5 | 38.29 (11) |
C17—C18—H18 | 126.6 | C7—Ru2—C5 | 170.27 (14) |
C14—C18—H18 | 126.6 | C9—Ru2—C5 | 122.04 (13) |
Ru1—C18—H18 | 126.6 | C8—Ru2—C5 | 151.62 (13) |
C20—C19—C23 | 108.1 (3) | C3—Ru2—C5 | 63.67 (11) |
C20—C19—Ru1 | 71.10 (17) | C6—Ru2—C4 | 171.38 (16) |
C23—C19—Ru1 | 71.22 (17) | C10—Ru2—C4 | 135.16 (16) |
C20—C19—H19 | 125.9 | C2—Ru2—C4 | 63.40 (12) |
C23—C19—H19 | 125.9 | C1—Ru2—C4 | 63.43 (11) |
Ru1—C19—H19 | 125.9 | C7—Ru2—C4 | 150.67 (14) |
C19—C20—C21 | 107.9 (3) | C9—Ru2—C4 | 115.09 (12) |
C19—C20—Ru1 | 70.78 (18) | C8—Ru2—C4 | 122.01 (12) |
C21—C20—Ru1 | 71.37 (17) | C3—Ru2—C4 | 37.62 (11) |
C19—C20—H20 | 126 | C5—Ru2—C4 | 37.84 (11) |
C21—C20—H20 | 126 | ||
C5—C1—C2—C3 | 0.4 (3) | C1—C11—C13—C14 | −2.2 (9) |
C11—C1—C2—C3 | 179.7 (3) | O1—C12—C13—C11 | −179.3 (7) |
Ru2—C1—C2—C3 | 62.7 (2) | O1—C12—C13—C14 | 1.8 (11) |
C5—C1—C2—Ru2 | −62.3 (2) | C11—C12—C13—C14 | −178.9 (6) |
C11—C1—C2—Ru2 | 117.0 (3) | C11—C13—C14—C15 | 2.2 (7) |
C1—C2—C3—C4 | −0.2 (3) | C12—C13—C14—C15 | −179.6 (5) |
Ru2—C2—C3—C4 | 61.8 (2) | C11—C13—C14—C18 | 179.5 (4) |
C1—C2—C3—Ru2 | −61.9 (2) | C12—C13—C14—C18 | −2.3 (8) |
C2—C3—C4—C5 | −0.1 (3) | C11—C13—C14—Ru1 | 92.4 (6) |
Ru2—C3—C4—C5 | 60.8 (2) | C12—C13—C14—Ru1 | −89.5 (6) |
C2—C3—C4—Ru2 | −60.9 (2) | C13—C14—C15—C16 | 178.1 (3) |
C3—C4—C5—C1 | 0.4 (3) | C18—C14—C15—C16 | 0.5 (3) |
Ru2—C4—C5—C1 | 61.2 (2) | Ru1—C14—C15—C16 | 62.1 (2) |
C3—C4—C5—Ru2 | −60.8 (2) | C13—C14—C15—Ru1 | 116.0 (3) |
C2—C1—C5—C4 | −0.5 (3) | C18—C14—C15—Ru1 | −61.6 (2) |
C11—C1—C5—C4 | −179.8 (3) | C14—C15—C16—C17 | −0.4 (3) |
Ru2—C1—C5—C4 | −62.1 (2) | Ru1—C15—C16—C17 | 61.1 (2) |
C2—C1—C5—Ru2 | 61.6 (2) | C14—C15—C16—Ru1 | −61.6 (2) |
C11—C1—C5—Ru2 | −117.7 (3) | C15—C16—C17—C18 | 0.2 (3) |
C10—C6—C7—C8 | −0.4 (4) | Ru1—C16—C17—C18 | 60.9 (2) |
Ru2—C6—C7—C8 | −62.6 (2) | C15—C16—C17—Ru1 | −60.7 (2) |
C10—C6—C7—Ru2 | 62.2 (3) | C16—C17—C18—C14 | 0.2 (3) |
C6—C7—C8—C9 | 0.3 (4) | Ru1—C17—C18—C14 | 61.5 (2) |
Ru2—C7—C8—C9 | −61.5 (2) | C16—C17—C18—Ru1 | −61.4 (2) |
C6—C7—C8—Ru2 | 61.8 (2) | C15—C14—C18—C17 | −0.4 (3) |
C7—C8—C9—C10 | −0.1 (4) | C13—C14—C18—C17 | −178.1 (3) |
Ru2—C8—C9—C10 | −61.4 (2) | Ru1—C14—C18—C17 | −62.3 (2) |
C7—C8—C9—Ru2 | 61.3 (2) | C15—C14—C18—Ru1 | 61.9 (2) |
C7—C6—C10—C9 | 0.4 (4) | C13—C14—C18—Ru1 | −115.8 (3) |
Ru2—C6—C10—C9 | 63.1 (2) | C23—C19—C20—C21 | −0.1 (3) |
C7—C6—C10—Ru2 | −62.8 (3) | Ru1—C19—C20—C21 | −62.1 (2) |
C8—C9—C10—C6 | −0.2 (4) | C23—C19—C20—Ru1 | 61.9 (2) |
Ru2—C9—C10—C6 | −62.5 (2) | C19—C20—C21—C22 | 0.3 (3) |
C8—C9—C10—Ru2 | 62.3 (2) | Ru1—C20—C21—C22 | −61.4 (2) |
C5—C1—C11—C13 | −4.8 (7) | C19—C20—C21—Ru1 | 61.7 (2) |
C2—C1—C11—C13 | 176.0 (4) | C20—C21—C22—C23 | −0.3 (3) |
Ru2—C1—C11—C13 | −96.0 (5) | Ru1—C21—C22—C23 | −61.5 (2) |
C5—C1—C11—C12 | 173.1 (5) | C20—C21—C22—Ru1 | 61.2 (2) |
C2—C1—C11—C12 | −6.1 (8) | C21—C22—C23—C19 | 0.2 (3) |
Ru2—C1—C11—C12 | 81.9 (6) | Ru1—C22—C23—C19 | −61.4 (2) |
C13—C11—C12—O1 | 179.4 (7) | C21—C22—C23—Ru1 | 61.6 (2) |
C1—C11—C12—O1 | 0.6 (11) | C20—C19—C23—C22 | −0.1 (3) |
C1—C11—C12—C13 | −178.7 (6) | Ru1—C19—C23—C22 | 61.8 (2) |
C1—C11—C13—C12 | 178.8 (6) | C20—C19—C23—Ru1 | −61.9 (2) |
C12—C11—C13—C14 | 179.0 (6) |
Acknowledgements
Technical assistance from Gerardo Cedillo is gratefully acknowledged.
Funding information
The authors thank PAPIIT-DGAPA-UNAM (IN-215015) and CONACYT (251437) for their financial support of this work.
References
Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England Google Scholar
Agranat, I. & Aharon-Shalom, E. (1975). J. Am. Chem. Soc. 97, 3829–3830. CrossRef CAS Google Scholar
Beagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Moss, J. R. & Smith, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 4426–4433. CSD CrossRef Google Scholar
Benson, R. C., Flygare, W. H., Oda, M. & Breslow, R. (1973). J. Am. Chem. Soc. 87, 2772–2777. CrossRef Google Scholar
Breslow, R., Oda, M. & Pecoraro, J. (1972). Tetrahedron Lett. 13, 4415–4417. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. Web of Science CrossRef CAS PubMed Google Scholar
Hauser, R. & Lednicer, D. (1972). Angew. Chem. Int. Ed. Engl. 11, 1025–1027. PubMed Google Scholar
Jaouen, G., Vessieres, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817. CrossRef CAS PubMed Google Scholar
Klimova, T., Klimova, E. I., Flores-Alamo, M., Backinowsky, L. & García, M. (2006). Synthesis, 21, 3706–3710. Google Scholar
Klimova, E. I., Klimova, T., Ruiz-Ramirez, L., Cinquantini, A., Corsini, M., Zanello, P., Hernandez-Ortega, S. & Martinez-Garcia, M. (2003). Eur. J. Org. Chem. 4265–4275. Google Scholar
Klimova, E. I., Klimova, T., Toscano, R., Mèndez-Stivalet, J. & Martìnez-Garcìa, M. (2007). Synth. Commun. 37, 889–900. CSD CrossRef CAS Google Scholar
Klimova, E. I., Vazquez-López, E. A., Flores-Alamo, M., Klimova, T. & Martìnez-García, M. (2009). Eur. J. Org. Chem. 25, 4352–4356. CSD CrossRef Google Scholar
Li, Y., Josowicz, M. & Tolbert, L. M. (2010). J. Am. Chem. Soc. 132, 10374–10382. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ornelas, C. (2011). New J. Chem. 35, 1973–1985. Web of Science CrossRef CAS Google Scholar
Patra, M., Gasser, G., Wenzel, M., Merz, K., Bandow, J. E. & Metzler-Nolte, N. (2010). Organometallics, 29, 4312–4319. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Tsukada, H., Shimanouchi, H. & Sasada, Y. (1974). Chem. Lett. pp. 639–642. CSD CrossRef Google Scholar
Ward, M. D. (1995). Chem. Soc. Rev. 24, 121–134. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.