organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7′-Nitro-6′-phenyl-1′,6′,7′,7a′-tetra­hydro-spiro[indeno[1,2-b]quinoxaline-11,5′-pyrrolo[1,2-c][1,3]thiazole]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, Tamilnadu, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India, cDepartment of Physics, University College of Engineering, Anna University, Nagercoil 629 004, Tamilnadu, India, and dDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 4 September 2017; accepted 12 September 2017; online 19 September 2017)

In the title compound, C26H20N4O2S, the thia­zole and pyrrolidine rings adopt envelope conformations with the respective flap atoms being the N atom and the nitro-bearing C atom. The phenyl and indeno­quinoxaline planes are oriented at an angle of 66.72 (1)° to each other. The mol­ecular structure features two intra­molecular inter­actions, viz. C—H⋯N and C—H⋯O. In the crystal, the mol­ecules are connected through C—H⋯N and C—H⋯O inter­actions, forming ring motifs [two R21(7), R22(14), R22(22) and R22(16)]. These ring motifs are connected through a C(9) motif chain.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline compounds and their derivatives possess many pharmaceutical applications, including as anti­cancer, anti­viral and anti­bacterial agents (Seitz et al., 2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]; He et al., 2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]). Recently, new compounds have been investigated because of their biological and pharmaceutical applications (Zeb et al., 2014[Zeb, A., Hameed, A., Khan, L., Khan, I., Dalvandi, K., Choudhary, M. I. & Basha, F. (2014). Med. Chem. 10, 724-729.]; Arun et al., 2014[Arun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50-64.]). Naturally occurring spiro­pyrrolidine derivatives are characterized by highly pronounced biological properties and are potential anti­leukemic, anti­convulsant, anti­viral and anti-inflammatory agents (Anuradha et al., 2014[Anuradha, T., Naga Siva Rao, J., Seshadri, P. R. & Raghunathan, R. (2014). Acta Cryst. E70, o38-o39.]; Jiang et al., 2006[Jiang, H., Zhao, J., Han, X. & Zhu, S. (2006). Tetrahedron, 62, 11008-11011.]; Shao et al., 2004[Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517-o2519.]). In addition, thia­zole and its derivatives exhibit herbicidal, fungicidal, anti­tumour, anti­cancer, anti­viral, anti­bacterial, anti­fungal and anti-inflammatory activities (He et al., 2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]; Campeau et al., 2008[Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276-3277.]; Muralikrishna et al., 2013[Muralikrishna, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Pharma Chem. 5, 87-93.], Shruthy et al., 2014[Shruthy, V. S. & Shakkeela, Y. (2014). Int. J. Pharm. Pharm. Sci. 6, 271-275.]). In view of the above, the title compound, containing spiro­pyrrolidine and thia­zole groups, was synthesized and crystallized.

The title compound (Fig. 1[link]) crystallizes with one mol­ecule in the asymmetric unit. The thia­zole ring exhibits an envelope conformation with the flap atom N3 deviating by 0.4598 (12) Å from the plane through the remaining ring atoms. The pyrroline ring also adopts an envelope conformation; the flap atom C17 deviates by 0.6678 (16) Å from the plane through the remaining ring atoms. The phenyl and indeno­quinoxaline ring systems subtend an angle of 66.72 (1)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯N and C—H⋯O inter­actions (Table 1[link]), each of which forms an S(6) motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1 0.98 2.56 3.208 (2) 123
C19—H19B⋯O1 0.97 2.54 3.182 (3) 124
C16—H16⋯O1i 0.98 2.66 3.629 (2) 169
C10—H10⋯O1i 0.93 2.62 3.355 (2) 136
C19—H19B⋯O1i 0.97 2.98 3.832 (3) 148
C20—H20A⋯N2ii 0.97 2.64 3.592 (2) 166
C4—H4⋯O2iii 0.93 2.74 3.669 (3) 173
C13—H13⋯O2iv 0.93 2.69 3.214 (2) 116
C18—H18⋯N3v 0.98 2.76 3.7077 (19) 162
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Perspective view of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.

In the crystal (Fig. 2[link]), the mol­ecules are connected through C16—H16⋯O1i, C10—H10⋯O1i, C20—H20A⋯N2ii, C4—H4⋯O2iii and C18—H18⋯N3v inter­actions, leading to R21(7), R21(7), R22(14), R22(22) and R22(6) ring motifs, respectively (Fig. 3[link]; see Table 1[link] for symmetry codes). C13—H13⋯O2iv inter­actions connect these hydrogen-bonded rings, leading to a C(9) chain motif along the b-axis direction (Fig. 4[link]).

[Figure 2]
Figure 2
Packing diagram of the title compound viewed down the a axis. Hydrogen bonds (Table 1[link]) are shown as dashed lines. H bonds not shown
[Figure 3]
Figure 3
Centrosymmetric R22(22) ring motif formed through C—H⋯O inter­actions. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Chain C(9) motif, formed through a C—H⋯O inter­action, extending along the b-axis direction. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

20 ml of methanol was added to equimolar amounts of benzene-1,2-di­amine, 1H-indene-1,2,3-trione and thia­zolidine-4-carb­oxy­lic acid and refluxed in a water bath for 15 min. Then, an equimolar amount of substituted trans-β-nitro­styrenes was added to the reaction mixture and continued to reflux until completion of the reaction after 5 h, as monitored by TLC. The precipitated solid was filtered and washed with methanol to obtain the title compound in good yields (92–96%). Colourless block-shaped crystals were obtained by recrystallization from chloroform solution by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H20N4O2S
Mr 452.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.6591 (9), 10.5962 (11), 10.8001 (9)
α, β, γ (°) 80.389 (13), 85.626 (15), 85.030 (14)
V3) 1083.62 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.22 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]
Tmin, Tmax 0.692, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36403, 3811, 3556
Rint 0.020
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.05
No. of reflections 3811
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.45
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

7'-Nitro-6'-phenyl-1',6',7',7a'-tetrahydro-spiro[indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c][1,3]thiazole] top
Crystal data top
C26H20N4O2SZ = 2
Mr = 452.52F(000) = 472
Triclinic, P1Dx = 1.387 Mg m3
a = 9.6591 (9) ÅMo Kα radiation, λ = 0.71072 Å
b = 10.5962 (11) ÅCell parameters from 2626 reflections
c = 10.8001 (9) Åθ = 2.3–25.1°
α = 80.389 (13)°µ = 0.18 mm1
β = 85.626 (15)°T = 293 K
γ = 85.030 (14)°Block, colourless
V = 1083.62 (18) Å30.22 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3556 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014
h = 1111
Tmin = 0.692, Tmax = 0.746k = 1212
36403 measured reflectionsl = 1212
3811 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.4417P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
3811 reflectionsΔρmin = 0.45 e Å3
299 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.025 (3)
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71072 9.659 10.596 10.800 80.389 85.626 85.030

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were constrained and refined in the riding atom approximation with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(parent carbon atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16821 (16)0.94782 (16)0.43525 (14)0.0419 (4)
C20.08043 (18)1.0250 (2)0.34855 (16)0.0552 (5)
H20.08701.11330.33140.066*
C30.01329 (19)0.9704 (2)0.29033 (16)0.0628 (6)
H30.07031.02180.23350.075*
C40.02495 (19)0.8380 (2)0.31488 (17)0.0640 (6)
H40.09170.80270.27630.077*
C50.06089 (19)0.7593 (2)0.39528 (16)0.0555 (5)
H50.05340.67110.40980.067*
C60.16019 (16)0.81288 (17)0.45565 (14)0.0423 (4)
C70.33029 (15)0.79076 (14)0.59133 (13)0.0338 (3)
C80.44071 (15)0.72538 (13)0.67951 (13)0.0320 (3)
C90.49965 (15)0.84094 (13)0.71767 (13)0.0334 (3)
C100.59533 (16)0.84225 (15)0.80668 (14)0.0398 (3)
H100.64130.76640.84430.048*
C110.62108 (18)0.95912 (17)0.83850 (17)0.0494 (4)
H110.68450.96140.89860.059*
C120.5539 (2)1.07226 (17)0.78235 (18)0.0543 (5)
H120.57271.14960.80520.065*
C130.45922 (18)1.07213 (15)0.69270 (17)0.0479 (4)
H130.41461.14850.65460.057*
C140.43210 (15)0.95551 (14)0.66074 (13)0.0358 (3)
C150.33201 (15)0.92623 (14)0.57640 (13)0.0349 (3)
C160.38043 (15)0.63542 (13)0.79674 (12)0.0323 (3)
H160.45130.62110.85890.039*
C170.38082 (17)0.51239 (13)0.74259 (14)0.0376 (3)
H170.30800.52220.68250.045*
C180.52387 (17)0.50359 (14)0.67073 (14)0.0406 (4)
H180.52130.44940.60590.049*
C190.6508 (2)0.45782 (18)0.75106 (18)0.0568 (5)
H19A0.68370.37070.74120.068*
H19B0.62460.45930.83940.068*
C200.67779 (17)0.66080 (16)0.57722 (17)0.0471 (4)
H20A0.69060.75130.57290.057*
H20B0.70510.63700.49540.057*
C210.24702 (15)0.68381 (14)0.86165 (13)0.0355 (3)
C220.25499 (18)0.76582 (17)0.94828 (15)0.0470 (4)
H220.34130.79150.96260.056*
C230.1374 (2)0.8099 (2)1.01342 (18)0.0599 (5)
H230.14490.86521.07060.072*
C240.0088 (2)0.7723 (2)0.99425 (18)0.0625 (5)
H240.07050.80151.03870.075*
C250.00121 (19)0.6919 (2)0.90945 (19)0.0651 (5)
H250.08780.66610.89650.078*
C260.11658 (18)0.64828 (19)0.84232 (17)0.0527 (4)
H260.10790.59470.78380.063*
N10.24762 (14)0.73187 (13)0.53455 (11)0.0404 (3)
N20.25567 (13)1.00594 (13)0.49817 (12)0.0415 (3)
N30.53473 (13)0.63686 (11)0.61145 (11)0.0351 (3)
N40.35731 (15)0.39744 (12)0.84065 (14)0.0482 (4)
O10.3921 (2)0.39548 (16)0.94584 (14)0.0938 (6)
O20.30317 (17)0.31038 (13)0.80879 (15)0.0753 (4)
S10.78439 (6)0.56426 (5)0.69783 (6)0.0733 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (8)0.0552 (10)0.0292 (7)0.0073 (7)0.0049 (6)0.0002 (6)
C20.0432 (9)0.0741 (12)0.0388 (9)0.0140 (8)0.0033 (7)0.0059 (8)
C30.0438 (10)0.1011 (17)0.0359 (9)0.0196 (10)0.0031 (7)0.0015 (9)
C40.0438 (10)0.1116 (19)0.0388 (9)0.0078 (10)0.0100 (8)0.0222 (10)
C50.0506 (10)0.0767 (13)0.0427 (9)0.0018 (9)0.0103 (8)0.0202 (9)
C60.0389 (8)0.0593 (10)0.0279 (7)0.0031 (7)0.0023 (6)0.0084 (7)
C70.0385 (7)0.0358 (7)0.0264 (7)0.0030 (6)0.0008 (6)0.0037 (5)
C80.0375 (7)0.0304 (7)0.0286 (7)0.0048 (6)0.0048 (6)0.0035 (5)
C90.0377 (7)0.0319 (7)0.0310 (7)0.0075 (6)0.0023 (6)0.0055 (5)
C100.0427 (8)0.0399 (8)0.0384 (8)0.0099 (6)0.0038 (6)0.0065 (6)
C110.0500 (9)0.0531 (10)0.0501 (9)0.0162 (8)0.0034 (8)0.0167 (8)
C120.0612 (11)0.0420 (9)0.0655 (11)0.0135 (8)0.0012 (9)0.0235 (8)
C130.0551 (10)0.0323 (8)0.0560 (10)0.0024 (7)0.0041 (8)0.0105 (7)
C140.0380 (8)0.0336 (7)0.0348 (7)0.0047 (6)0.0060 (6)0.0053 (6)
C150.0353 (7)0.0356 (7)0.0307 (7)0.0000 (6)0.0058 (6)0.0014 (6)
C160.0395 (8)0.0304 (7)0.0280 (7)0.0077 (6)0.0079 (6)0.0024 (5)
C170.0503 (9)0.0299 (7)0.0337 (7)0.0089 (6)0.0094 (6)0.0023 (6)
C180.0570 (9)0.0307 (7)0.0352 (8)0.0033 (6)0.0050 (7)0.0079 (6)
C190.0604 (11)0.0520 (10)0.0522 (10)0.0139 (8)0.0065 (8)0.0007 (8)
C200.0444 (9)0.0466 (9)0.0524 (10)0.0049 (7)0.0017 (7)0.0149 (7)
C210.0406 (8)0.0374 (8)0.0277 (7)0.0075 (6)0.0048 (6)0.0005 (6)
C220.0452 (9)0.0590 (10)0.0401 (8)0.0128 (8)0.0002 (7)0.0147 (7)
C230.0583 (11)0.0767 (13)0.0494 (10)0.0087 (9)0.0063 (8)0.0262 (9)
C240.0484 (10)0.0895 (15)0.0493 (10)0.0025 (10)0.0067 (8)0.0161 (10)
C250.0402 (10)0.0965 (16)0.0622 (12)0.0155 (10)0.0042 (8)0.0172 (11)
C260.0475 (9)0.0670 (11)0.0486 (9)0.0140 (8)0.0060 (8)0.0178 (8)
N10.0444 (7)0.0442 (7)0.0337 (6)0.0024 (6)0.0087 (5)0.0070 (5)
N20.0389 (7)0.0421 (7)0.0379 (7)0.0051 (5)0.0045 (5)0.0022 (5)
N30.0417 (7)0.0315 (6)0.0324 (6)0.0036 (5)0.0022 (5)0.0053 (5)
N40.0587 (9)0.0323 (7)0.0525 (9)0.0099 (6)0.0005 (7)0.0023 (6)
O10.1585 (18)0.0699 (10)0.0520 (9)0.0439 (11)0.0338 (10)0.0234 (7)
O20.0975 (11)0.0412 (7)0.0912 (11)0.0303 (7)0.0084 (9)0.0158 (7)
S10.0592 (3)0.0578 (3)0.1089 (5)0.0028 (2)0.0391 (3)0.0195 (3)
Geometric parameters (Å, º) top
C1—N21.368 (2)C16—C211.511 (2)
C1—C21.418 (2)C16—C171.5150 (19)
C1—C61.418 (2)C16—H160.9800
C2—C31.360 (3)C17—N41.4957 (19)
C2—H20.9300C17—C181.536 (2)
C3—C41.396 (3)C17—H170.9800
C3—H30.9300C18—N31.4590 (19)
C4—C51.373 (3)C18—C191.552 (2)
C4—H40.9300C18—H180.9800
C5—C61.407 (2)C19—S11.786 (2)
C5—H50.9300C19—H19A0.9700
C6—N11.384 (2)C19—H19B0.9700
C7—N11.3007 (19)C20—N31.436 (2)
C7—C151.419 (2)C20—S11.8387 (18)
C7—C81.5268 (19)C20—H20A0.9700
C8—N31.4918 (18)C20—H20B0.9700
C8—C91.5227 (19)C21—C261.386 (2)
C8—C161.5592 (19)C21—C221.389 (2)
C9—C101.386 (2)C22—C231.378 (3)
C9—C141.397 (2)C22—H220.9300
C10—C111.386 (2)C23—C241.377 (3)
C10—H100.9300C23—H230.9300
C11—C121.381 (3)C24—C251.365 (3)
C11—H110.9300C24—H240.9300
C12—C131.382 (3)C25—C261.389 (3)
C12—H120.9300C25—H250.9300
C13—C141.388 (2)C26—H260.9300
C13—H130.9300N4—O11.205 (2)
C14—C151.463 (2)N4—O21.2082 (19)
C15—N21.3114 (19)
N2—C1—C2119.06 (16)C8—C16—H16106.9
N2—C1—C6122.22 (14)N4—C17—C16113.18 (12)
C2—C1—C6118.71 (16)N4—C17—C18113.06 (13)
C3—C2—C1120.3 (2)C16—C17—C18103.43 (12)
C3—C2—H2119.9N4—C17—H17109.0
C1—C2—H2119.9C16—C17—H17109.0
C2—C3—C4120.77 (17)C18—C17—H17109.0
C2—C3—H3119.6N3—C18—C17101.11 (12)
C4—C3—H3119.6N3—C18—C19109.68 (13)
C5—C4—C3120.84 (19)C17—C18—C19116.57 (13)
C5—C4—H4119.6N3—C18—H18109.7
C3—C4—H4119.6C17—C18—H18109.7
C4—C5—C6119.7 (2)C19—C18—H18109.7
C4—C5—H5120.2C18—C19—S1107.71 (12)
C6—C5—H5120.2C18—C19—H19A110.2
N1—C6—C5118.86 (16)S1—C19—H19A110.2
N1—C6—C1121.49 (14)C18—C19—H19B110.2
C5—C6—C1119.66 (15)S1—C19—H19B110.2
N1—C7—C15123.98 (14)H19A—C19—H19B108.5
N1—C7—C8125.36 (13)N3—C20—S1107.83 (11)
C15—C7—C8110.64 (12)N3—C20—H20A110.1
N3—C8—C9119.03 (12)S1—C20—H20A110.1
N3—C8—C7108.41 (11)N3—C20—H20B110.1
C9—C8—C7101.22 (11)S1—C20—H20B110.1
N3—C8—C16103.78 (11)H20A—C20—H20B108.5
C9—C8—C16111.13 (11)C26—C21—C22117.76 (15)
C7—C8—C16113.64 (11)C26—C21—C16123.68 (14)
C10—C9—C14120.35 (13)C22—C21—C16118.53 (13)
C10—C9—C8128.25 (13)C23—C22—C21121.20 (16)
C14—C9—C8111.01 (12)C23—C22—H22119.4
C9—C10—C11118.57 (15)C21—C22—H22119.4
C9—C10—H10120.7C24—C23—C22120.28 (18)
C11—C10—H10120.7C24—C23—H23119.9
C12—C11—C10121.00 (16)C22—C23—H23119.9
C12—C11—H11119.5C25—C24—C23119.41 (18)
C10—C11—H11119.5C25—C24—H24120.3
C11—C12—C13120.90 (15)C23—C24—H24120.3
C11—C12—H12119.6C24—C25—C26120.68 (17)
C13—C12—H12119.6C24—C25—H25119.7
C12—C13—C14118.54 (16)C26—C25—H25119.7
C12—C13—H13120.7C21—C26—C25120.65 (17)
C14—C13—H13120.7C21—C26—H26119.7
C13—C14—C9120.63 (15)C25—C26—H26119.7
C13—C14—C15130.20 (14)C7—N1—C6114.26 (13)
C9—C14—C15109.07 (13)C15—N2—C1114.29 (14)
N2—C15—C7123.56 (14)C20—N3—C18110.29 (12)
N2—C15—C14128.65 (14)C20—N3—C8121.53 (12)
C7—C15—C14107.79 (12)C18—N3—C8110.98 (11)
C21—C16—C17118.23 (12)O1—N4—O2123.38 (15)
C21—C16—C8117.04 (12)O1—N4—C17119.57 (13)
C17—C16—C899.98 (11)O2—N4—C17117.05 (15)
C21—C16—H16106.9C19—S1—C2092.82 (8)
C17—C16—H16106.9
N2—C1—C2—C3176.11 (15)C21—C16—C17—N464.47 (17)
C6—C1—C2—C32.6 (2)C8—C16—C17—N4167.34 (12)
C1—C2—C3—C40.1 (3)C21—C16—C17—C18172.83 (12)
C2—C3—C4—C52.1 (3)C8—C16—C17—C1844.63 (13)
C3—C4—C5—C61.2 (3)N4—C17—C18—N3164.28 (12)
C4—C5—C6—N1178.79 (15)C16—C17—C18—N341.50 (13)
C4—C5—C6—C11.6 (2)N4—C17—C18—C1945.48 (18)
N2—C1—C6—N14.4 (2)C16—C17—C18—C1977.31 (15)
C2—C1—C6—N1176.92 (13)N3—C18—C19—S119.19 (16)
N2—C1—C6—C5175.24 (14)C17—C18—C19—S1133.25 (12)
C2—C1—C6—C53.5 (2)C17—C16—C21—C2620.8 (2)
N1—C7—C8—N355.24 (18)C8—C16—C21—C2698.89 (17)
C15—C7—C8—N3123.18 (12)C17—C16—C21—C22157.41 (14)
N1—C7—C8—C9178.78 (13)C8—C16—C21—C2282.94 (17)
C15—C7—C8—C92.80 (14)C26—C21—C22—C230.4 (3)
N1—C7—C8—C1659.58 (18)C16—C21—C22—C23177.91 (16)
C15—C7—C8—C16122.01 (13)C21—C22—C23—C240.5 (3)
N3—C8—C9—C1068.10 (19)C22—C23—C24—C250.5 (3)
C7—C8—C9—C10173.32 (14)C23—C24—C25—C260.2 (3)
C16—C8—C9—C1052.33 (19)C22—C21—C26—C251.1 (3)
N3—C8—C9—C14119.07 (13)C16—C21—C26—C25177.07 (17)
C7—C8—C9—C140.50 (15)C24—C25—C26—C211.1 (3)
C16—C8—C9—C14120.50 (13)C15—C7—N1—C60.6 (2)
C14—C9—C10—C110.6 (2)C8—C7—N1—C6177.62 (13)
C8—C9—C10—C11171.59 (14)C5—C6—N1—C7176.33 (14)
C9—C10—C11—C120.5 (2)C1—C6—N1—C73.3 (2)
C10—C11—C12—C130.1 (3)C7—C15—N2—C12.9 (2)
C11—C12—C13—C140.4 (3)C14—C15—N2—C1177.84 (13)
C12—C13—C14—C90.3 (2)C2—C1—N2—C15179.77 (13)
C12—C13—C14—C15175.64 (15)C6—C1—N2—C151.1 (2)
C10—C9—C14—C130.3 (2)S1—C20—N3—C1835.00 (14)
C8—C9—C14—C13173.21 (13)S1—C20—N3—C897.43 (13)
C10—C9—C14—C15176.97 (13)C17—C18—N3—C20159.14 (12)
C8—C9—C14—C153.50 (16)C19—C18—N3—C2035.48 (17)
N1—C7—C15—N24.0 (2)C17—C18—N3—C821.51 (14)
C8—C7—C15—N2174.44 (12)C19—C18—N3—C8102.16 (14)
N1—C7—C15—C14176.59 (13)C9—C8—N3—C202.32 (19)
C8—C7—C15—C144.97 (15)C7—C8—N3—C20112.47 (14)
C13—C14—C15—N29.6 (3)C16—C8—N3—C20126.41 (14)
C9—C14—C15—N2174.13 (14)C9—C8—N3—C18129.83 (13)
C13—C14—C15—C7171.05 (15)C7—C8—N3—C18115.38 (13)
C9—C14—C15—C75.25 (16)C16—C8—N3—C185.73 (14)
N3—C8—C16—C21159.76 (11)C16—C17—N4—O128.0 (2)
C9—C8—C16—C2171.16 (15)C18—C17—N4—O189.1 (2)
C7—C8—C16—C2142.22 (16)C16—C17—N4—O2151.84 (15)
N3—C8—C16—C1730.78 (13)C18—C17—N4—O290.97 (18)
C9—C8—C16—C17159.87 (12)C18—C19—S1—C200.35 (13)
C7—C8—C16—C1786.75 (13)N3—C20—S1—C1919.92 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N10.982.563.208 (2)123
C19—H19B···O10.972.543.182 (3)124
C16—H16···O1i0.982.663.629 (2)169
C10—H10···O1i0.932.623.355 (2)136
C19—H19B···O1i0.972.983.832 (3)148
C20—H20A···N2ii0.972.643.592 (2)166
C4—H4···O2iii0.932.743.669 (3)173
C13—H13···O2iv0.932.693.214 (2)116
C18—H18···N3v0.982.763.7077 (19)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

CM, BR and SP thank the management of Devanga Arts College, Aruppukkottai, for their support and encouragement.

References

First citationAnuradha, T., Naga Siva Rao, J., Seshadri, P. R. & Raghunathan, R. (2014). Acta Cryst. E70, o38–o39.  CSD CrossRef IUCr Journals Google Scholar
First citationArun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50–64.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276–3277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, H., Zhao, J., Han, X. & Zhu, S. (2006). Tetrahedron, 62, 11008–11011.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuralikrishna, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Pharma Chem. 5, 87–93.  Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517–o2519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShruthy, V. S. & Shakkeela, Y. (2014). Int. J. Pharm. Pharm. Sci. 6, 271–275.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeb, A., Hameed, A., Khan, L., Khan, I., Dalvandi, K., Choudhary, M. I. & Basha, F. (2014). Med. Chem. 10, 724–729.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]