metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tetra-n-butyl­ammonium) bis­­(5,6-di­cyano­pyrazine-2,3-di­thiol­ato-κ2S,S′)nickelate(II)

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: tomura@ims.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 July 2017; accepted 18 July 2017; online 21 July 2017)

In the title salt, (C16H36N)2[Ni(C6N4S2)2], the centrosymmetric complex dianion is planar, with an r.m.s. deviation of 0.031 (1) Å. The NiII atom, lying on an inversion centre, has an almost undistorted square-planar coordination geometry, with Ni—S bond lengths of 2.1606 (5) and 2.1759 (5) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal di­thiol­ene complexes have been widely investigated as conducting, magnetic or nonlinear optical materials (Cassoux et al., 1991[Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115-160.]; Robertson & Cronin, 2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]). Di­thiol­ene ligands including the 2,3-di­cyano-5,6-dimercapto­pyrazine (dcdmp) moiety have extended π-conjugated systems and are expected to coordinate to transition metals, constructing organometallic coordination polymers (Nomura et al., 2009[Nomura, M., Tsukano, E., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2009). J. Organomet. Chem. 694, 3116-3124.]; Rabaça & Almeida, 2010[Rabaça, S. & Almeida, M. (2010). Coord. Chem. Rev. 254, 1493-1508.]). In addition, inter­molecular S⋯N and S⋯S contacts involving peripheral S and N atoms of these ligands may lead to the formation of unique mol­ecular networks (Yamashita & Tomura, 1998[Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.]). Three tetra­butyl­ammonium salts of such [M(dcdmp)2]2− complexes have been reported, where M = Au (Belo et al., 2004[Belo, D., Santos, I. C. & Almeida, M. (2004). Polyhedron, 23, 1351-1359.]), Pd (Tomura & Yamashita, 2012[Tomura, M. & Yamashita, Y. (2012). Acta Cryst. E68, m57.]) and Cu (Belo et al., 2005[Belo, D., Figueira, M. J., Santos, I. C., Gama, V., Pereira, L. C., Henriques, R. T. & Almeida, M. (2005). Polyhedron, 24, 2035-2042.]). Only one example (Belo et al., 2006[Belo, D., Lopes, E. B., Santos, I. C., Dias, J. C., Figueira, M., Almeida, M., Fourmigué, M. & Rovira, C. (2006). J. Low Temp. Phys. 142, 349-354.]) of the [Ni(dcdmp)2]2− complex anion with two di­thio­pheno-tetra­thia­fulvalenium as counter cations, was found in the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The mol­ecular and crystal structures of the title Ni complex with tetra-n-butyl­ammonium counter-cations is reported here.

The title salt, [NBu4]2[Ni(dcdmp)2], crystallizes in the space group P[\overline{1}] and is isostructural with [NBu4]2[Pd(dcdmp)2] and [NBu4]2[Cu(dcdmp)2]. The mol­ecular structure of the complex dianion is shown in Fig. 1[link]. The dianion is a flat mol­ecule with an r.m.s. deviation of 0.031 (1) Å from the least-squares plane. The Ni1II atom lies on an inversion center and has a square-planar coordination sphere. The Ni1—S1 and Ni1—S2 distances and the S1—Ni1—S2 angle are 2.1606 (5), 2.1759 (5) Å and 91.72 (2)°, respectively. These values are comparable to those found in the salt bis­(tetra-n-butyl­ammonium) bis­(4,5-di­cyano­benzene-1,2-di­thiol­ato-S,S′)nickelate(II) (Simão et al., 2001[Simão, D., Alves, H., Belo, D., Rabaça, S., Lopes, E., Santos, I., Gama, V., Duarte, M., Henriques, R., Novais, H. & Almeida, M. (2001). Eur. J. Inorg. Chem. pp. 3119-3126.]). Fig. 2[link] shows the packing diagram of the title complex in a view along the a axis. The dianionic mol­ecules form a layered structure parallel to (011) with an inter­layer distance of ca 6.1 Å. The ordered tetra-n-butyl­ammonium cations are inserted between these layers. Apart from Coulombic inter­actions, they are bound to the anions through weak C—H⋯N and C—H⋯S inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N4i 0.99 2.59 3.559 (3) 166
C13—H13A⋯S1ii 0.99 2.82 3.748 (2) 157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the complex dianion in the title salt, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labeled atoms by (−x + 1, −y, −z).
[Figure 2]
Figure 2
The crystal packing of the title complex, in a view along the a axis.

Synthesis and crystallization

The title complex was synthesized according to a literature protocol (Tomura et al., 1994[Tomura, M., Tanaka, S. & Yamashita, Y. (1994). Synth. Met. 64, 197-202.]). Red crystals suitable for X-ray analysis were grown from an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Five reflections were omitted due to a poor agreement between observed and calculated intensities.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C6N4S2)2]·2C16H36N
Mr 928.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 9.8217 (15), 10.5369 (15), 12.974 (2)
α, β, γ (°) 69.438 (4), 88.102 (7), 79.086 (7)
V3) 1233.6 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.20 × 0.20 × 0.07
 
Data collection
Diffractometer Rigaku/MSC Mercury CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 11061, 6629, 4998
Rint 0.034
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 0.99
No. of reflections 6629
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.53
Computer programs: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

Bis(tetra-n-butylammonium) bis(5,6-dicyanopyrazine-2,3-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
[Ni(C6N4S2)2]·2C16H36NF(000) = 498
Mr = 928.05Dx = 1.249 Mg m3
Triclinic, P1Melting point: 516 K
a = 9.8217 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5369 (15) ÅCell parameters from 3425 reflections
c = 12.974 (2) Åθ = 1.7–30.7°
α = 69.438 (4)°µ = 0.60 mm1
β = 88.102 (7)°T = 123 K
γ = 79.086 (7)°Block, red
V = 1233.6 (3) Å30.20 × 0.20 × 0.07 mm
Z = 1
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4998 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.034
Graphite Monochromator monochromatorθmax = 31.0°, θmin = 2.1°
Detector resolution: 14.7059 pixels mm-1h = 1113
φ & ω scansk = 1410
11061 measured reflectionsl = 1717
6629 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
6629 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.0000000.0000000.02062 (10)
S10.43264 (4)0.19178 (5)0.08875 (4)0.02579 (12)
S20.71462 (4)0.09135 (5)0.05557 (4)0.02277 (12)
N10.56827 (13)0.42938 (16)0.22516 (13)0.0237 (3)
N20.82580 (13)0.33856 (16)0.19614 (13)0.0232 (3)
N30.68291 (15)0.75826 (18)0.41323 (15)0.0321 (4)
N41.02495 (16)0.64124 (18)0.37563 (17)0.0388 (5)
N51.03854 (13)0.00072 (15)0.26233 (12)0.0195 (3)
C10.57891 (16)0.30369 (19)0.15852 (15)0.0216 (4)
C20.71003 (16)0.25614 (19)0.14286 (15)0.0206 (4)
C30.68651 (17)0.51067 (19)0.27881 (16)0.0232 (4)
C40.81279 (16)0.46538 (19)0.26411 (16)0.0233 (4)
C50.67992 (17)0.6480 (2)0.35339 (16)0.0255 (4)
C60.93412 (17)0.5598 (2)0.32513 (17)0.0267 (4)
C70.92689 (16)0.02356 (19)0.34742 (15)0.0224 (4)
H7A0.9719820.0807470.4203180.027*
H7B0.8825380.0669860.3515660.027*
C80.81482 (17)0.0924 (2)0.32549 (16)0.0274 (4)
H8A0.8574090.1853250.3252540.033*
H8B0.7709710.0376800.2517020.033*
C90.70374 (17)0.1061 (2)0.41151 (16)0.0262 (4)
H9A0.6643890.0139240.4147300.031*
H9B0.7463120.1654770.4848170.031*
C100.58770 (17)0.1685 (2)0.38420 (17)0.0300 (5)
H10A0.5465050.1106480.3111170.045*
H10B0.5163410.1732610.4393460.045*
H10C0.6257540.2616430.3846230.045*
C111.10593 (16)0.13536 (19)0.24719 (15)0.0220 (4)
H11A1.0342740.1689620.2172910.026*
H11B1.1773090.1151800.1911040.026*
C121.17300 (19)0.2504 (2)0.34874 (16)0.0291 (4)
H12A1.1046040.2696970.4073530.035*
H12B1.2510770.2223710.3762350.035*
C131.22608 (18)0.37964 (19)0.32113 (17)0.0283 (4)
H13A1.2936570.3589890.2620000.034*
H13B1.1474640.4061060.2928970.034*
C141.2952 (2)0.5005 (2)0.42034 (19)0.0389 (5)
H14A1.3745500.4757240.4475440.058*
H14B1.3272940.5811330.3986480.058*
H14C1.2282580.5225480.4786740.058*
C151.14395 (15)0.06092 (19)0.30399 (15)0.0216 (4)
H15A1.0938430.1423920.3199460.026*
H15B1.1867120.0078840.3743300.026*
C161.25914 (16)0.1048 (2)0.22618 (15)0.0239 (4)
H16A1.2180410.1691460.1537240.029*
H16B1.3161230.0227410.2151390.029*
C171.35122 (17)0.1753 (2)0.27221 (16)0.0280 (4)
H17A1.2940100.2570130.2836280.034*
H17B1.3924530.1107490.3445690.034*
C181.46686 (18)0.2203 (2)0.19447 (17)0.0332 (5)
H18A1.5278540.1387860.1875780.050*
H18B1.5207140.2700430.2239960.050*
H18C1.4263480.2810700.1218520.050*
C190.97771 (16)0.09409 (18)0.14931 (14)0.0207 (4)
H19A1.0531500.0999010.0962720.025*
H19B0.9087330.0502650.1270990.025*
C200.90824 (17)0.24005 (19)0.13793 (16)0.0259 (4)
H20A0.9725280.2845760.1646630.031*
H20B0.8242820.2382870.1824140.031*
C210.86853 (19)0.3212 (2)0.01593 (16)0.0310 (5)
H21A0.9537200.3232760.0271340.037*
H21B0.8082670.2726880.0104490.037*
C220.7933 (2)0.4686 (2)0.0051 (2)0.0516 (7)
H22A0.7096230.4674930.0382540.077*
H22B0.7672190.5142380.0835970.077*
H22C0.8545760.5191040.0164600.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01826 (16)0.02469 (19)0.01825 (19)0.00601 (12)0.00173 (12)0.00582 (15)
S10.0190 (2)0.0269 (3)0.0277 (3)0.00663 (17)0.00041 (17)0.0037 (2)
S20.0193 (2)0.0276 (3)0.0200 (2)0.00756 (17)0.00133 (17)0.0051 (2)
N10.0212 (7)0.0251 (9)0.0248 (9)0.0045 (6)0.0014 (6)0.0087 (7)
N20.0194 (7)0.0274 (9)0.0236 (9)0.0042 (6)0.0027 (6)0.0102 (7)
N30.0341 (8)0.0265 (10)0.0358 (11)0.0056 (7)0.0003 (7)0.0111 (8)
N40.0294 (8)0.0315 (10)0.0534 (13)0.0031 (7)0.0063 (8)0.0132 (10)
N50.0183 (6)0.0228 (8)0.0174 (8)0.0036 (5)0.0011 (5)0.0073 (7)
C10.0221 (8)0.0257 (10)0.0183 (9)0.0057 (7)0.0030 (7)0.0091 (8)
C20.0210 (8)0.0235 (9)0.0186 (9)0.0043 (7)0.0035 (6)0.0093 (8)
C30.0233 (8)0.0239 (10)0.0235 (10)0.0047 (7)0.0028 (7)0.0097 (8)
C40.0217 (8)0.0244 (10)0.0249 (10)0.0028 (7)0.0008 (7)0.0110 (8)
C50.0222 (8)0.0294 (11)0.0271 (11)0.0048 (7)0.0015 (7)0.0128 (9)
C60.0226 (8)0.0262 (10)0.0329 (11)0.0053 (7)0.0022 (8)0.0120 (9)
C70.0217 (8)0.0255 (10)0.0198 (10)0.0026 (7)0.0040 (7)0.0089 (8)
C80.0244 (8)0.0372 (12)0.0237 (10)0.0090 (8)0.0056 (7)0.0132 (9)
C90.0241 (8)0.0273 (11)0.0267 (11)0.0041 (7)0.0056 (7)0.0096 (9)
C100.0262 (9)0.0314 (11)0.0284 (11)0.0070 (8)0.0047 (8)0.0051 (9)
C110.0200 (8)0.0246 (10)0.0233 (10)0.0032 (7)0.0030 (7)0.0118 (8)
C120.0318 (9)0.0265 (11)0.0270 (11)0.0011 (8)0.0025 (8)0.0101 (9)
C130.0329 (9)0.0207 (10)0.0284 (11)0.0056 (7)0.0082 (8)0.0054 (9)
C140.0421 (11)0.0262 (11)0.0424 (14)0.0005 (9)0.0006 (10)0.0080 (11)
C150.0199 (8)0.0251 (10)0.0212 (10)0.0028 (7)0.0021 (7)0.0104 (8)
C160.0213 (8)0.0301 (10)0.0223 (10)0.0056 (7)0.0001 (7)0.0111 (9)
C170.0260 (9)0.0361 (12)0.0266 (11)0.0081 (8)0.0002 (7)0.0156 (9)
C180.0287 (9)0.0454 (13)0.0313 (12)0.0152 (8)0.0013 (8)0.0163 (11)
C190.0196 (7)0.0261 (10)0.0162 (9)0.0052 (7)0.0008 (6)0.0068 (8)
C200.0267 (8)0.0266 (10)0.0226 (10)0.0017 (7)0.0008 (7)0.0080 (9)
C210.0336 (10)0.0302 (11)0.0243 (11)0.0013 (8)0.0063 (8)0.0053 (9)
C220.0662 (15)0.0362 (14)0.0351 (14)0.0136 (11)0.0079 (12)0.0025 (12)
Geometric parameters (Å, º) top
Ni1—S12.1606 (5)C11—H11B0.9900
Ni1—S1i2.1607 (5)C12—C131.522 (3)
Ni1—S22.1759 (5)C12—H12A0.9900
Ni1—S2i2.1759 (5)C12—H12B0.9900
S1—C11.7229 (17)C13—C141.523 (3)
S2—C21.7159 (19)C13—H13A0.9900
N1—C11.325 (2)C13—H13B0.9900
N1—C31.351 (2)C14—H14A0.9800
N2—C21.335 (2)C14—H14B0.9800
N2—C41.345 (2)C14—H14C0.9800
N3—C51.144 (2)C15—C161.519 (2)
N4—C61.147 (2)C15—H15A0.9900
N5—C191.519 (2)C15—H15B0.9900
N5—C71.521 (2)C16—C171.526 (2)
N5—C151.525 (2)C16—H16A0.9900
N5—C111.523 (2)C16—H16B0.9900
C1—C21.451 (2)C17—C181.525 (2)
C3—C41.395 (2)C17—H17A0.9900
C3—C51.443 (3)C17—H17B0.9900
C4—C61.448 (2)C18—H18A0.9800
C7—C81.512 (2)C18—H18B0.9800
C7—H7A0.9900C18—H18C0.9800
C7—H7B0.9900C19—C201.517 (2)
C8—C91.524 (2)C19—H19A0.9900
C8—H8A0.9900C19—H19B0.9900
C8—H8B0.9900C20—C211.534 (3)
C9—C101.527 (3)C20—H20A0.9900
C9—H9A0.9900C20—H20B0.9900
C9—H9B0.9900C21—C221.521 (3)
C10—H10A0.9800C21—H21A0.9900
C10—H10B0.9800C21—H21B0.9900
C10—H10C0.9800C22—H22A0.9800
C11—C121.507 (3)C22—H22B0.9800
C11—H11A0.9900C22—H22C0.9800
S1—Ni1—S1i180.0C11—C12—H12B109.8
S1—Ni1—S291.724 (19)C13—C12—H12B109.8
S1i—Ni1—S288.275 (19)H12A—C12—H12B108.2
S1—Ni1—S2i88.275 (19)C12—C13—C14112.47 (17)
S1i—Ni1—S2i91.725 (19)C12—C13—H13A109.1
S2—Ni1—S2i180.0C14—C13—H13A109.1
C1—S1—Ni1105.40 (6)C12—C13—H13B109.1
C2—S2—Ni1104.96 (6)C14—C13—H13B109.1
C1—N1—C3116.12 (15)H13A—C13—H13B107.8
C2—N2—C4116.28 (14)C13—C14—H14A109.5
C19—N5—C7111.36 (12)C13—C14—H14B109.5
C19—N5—C15111.42 (13)H14A—C14—H14B109.5
C7—N5—C15106.35 (13)C13—C14—H14C109.5
C19—N5—C11105.17 (13)H14A—C14—H14C109.5
C7—N5—C11111.23 (13)H14B—C14—H14C109.5
C15—N5—C11111.41 (12)C16—C15—N5115.56 (14)
N1—C1—C2122.13 (15)C16—C15—H15A108.4
N1—C1—S1119.28 (13)N5—C15—H15A108.4
C2—C1—S1118.59 (14)C16—C15—H15B108.4
N2—C2—C1120.75 (16)N5—C15—H15B108.4
N2—C2—S2120.08 (13)H15A—C15—H15B107.5
C1—C2—S2119.17 (13)C15—C16—C17110.93 (15)
N1—C3—C4121.96 (17)C15—C16—H16A109.5
N1—C3—C5118.20 (15)C17—C16—H16A109.5
C4—C3—C5119.84 (16)C15—C16—H16B109.5
N2—C4—C3122.75 (15)C17—C16—H16B109.5
N2—C4—C6119.19 (15)H16A—C16—H16B108.0
C3—C4—C6118.05 (17)C18—C17—C16111.35 (16)
N3—C5—C3176.02 (18)C18—C17—H17A109.4
N4—C6—C4175.5 (2)C16—C17—H17A109.4
C8—C7—N5115.26 (15)C18—C17—H17B109.4
C8—C7—H7A108.5C16—C17—H17B109.4
N5—C7—H7A108.5H17A—C17—H17B108.0
C8—C7—H7B108.5C17—C18—H18A109.5
N5—C7—H7B108.5C17—C18—H18B109.5
H7A—C7—H7B107.5H18A—C18—H18B109.5
C7—C8—C9112.11 (16)C17—C18—H18C109.5
C7—C8—H8A109.2H18A—C18—H18C109.5
C9—C8—H8A109.2H18B—C18—H18C109.5
C7—C8—H8B109.2C20—C19—N5117.09 (15)
C9—C8—H8B109.2C20—C19—H19A108.0
H8A—C8—H8B107.9N5—C19—H19A108.0
C8—C9—C10111.19 (16)C20—C19—H19B108.0
C8—C9—H9A109.4N5—C19—H19B108.0
C10—C9—H9A109.4H19A—C19—H19B107.3
C8—C9—H9B109.4C19—C20—C21108.27 (16)
C10—C9—H9B109.4C19—C20—H20A110.0
H9A—C9—H9B108.0C21—C20—H20A110.0
C9—C10—H10A109.5C19—C20—H20B110.0
C9—C10—H10B109.5C21—C20—H20B110.0
H10A—C10—H10B109.5H20A—C20—H20B108.4
C9—C10—H10C109.5C22—C21—C20112.99 (18)
H10A—C10—H10C109.5C22—C21—H21A109.0
H10B—C10—H10C109.5C20—C21—H21A109.0
C12—C11—N5116.35 (15)C22—C21—H21B109.0
C12—C11—H11A108.2C20—C21—H21B109.0
N5—C11—H11A108.2H21A—C21—H21B107.8
C12—C11—H11B108.2C21—C22—H22A109.5
N5—C11—H11B108.2C21—C22—H22B109.5
H11A—C11—H11B107.4H22A—C22—H22B109.5
C11—C12—C13109.60 (16)C21—C22—H22C109.5
C11—C12—H12A109.8H22A—C22—H22C109.5
C13—C12—H12A109.8H22B—C22—H22C109.5
C3—N1—C1—C20.7 (3)C19—N5—C7—C861.82 (19)
C3—N1—C1—S1178.76 (14)C15—N5—C7—C8176.62 (15)
Ni1—S1—C1—N1176.83 (13)C11—N5—C7—C855.14 (19)
Ni1—S1—C1—C22.61 (16)N5—C7—C8—C9177.56 (14)
C4—N2—C2—C10.3 (3)C7—C8—C9—C10176.84 (16)
C4—N2—C2—S2179.10 (13)C19—N5—C11—C12178.87 (14)
N1—C1—C2—N20.2 (3)C7—N5—C11—C1258.20 (19)
S1—C1—C2—N2179.21 (14)C15—N5—C11—C1260.28 (19)
N1—C1—C2—S2179.64 (14)N5—C11—C12—C13176.10 (14)
S1—C1—C2—S20.2 (2)C11—C12—C13—C14179.93 (15)
Ni1—S2—C2—N2176.53 (13)C19—N5—C15—C1653.08 (18)
Ni1—S2—C2—C12.90 (15)C7—N5—C15—C16174.61 (14)
C1—N1—C3—C40.6 (3)C11—N5—C15—C1664.03 (19)
C1—N1—C3—C5179.27 (16)N5—C15—C16—C17175.43 (14)
C2—N2—C4—C30.4 (3)C15—C16—C17—C18179.76 (15)
C2—N2—C4—C6179.57 (17)C7—N5—C19—C2061.98 (19)
N1—C3—C4—N20.1 (3)C15—N5—C19—C2056.59 (18)
C5—C3—C4—N2179.79 (17)C11—N5—C19—C20177.43 (14)
N1—C3—C4—C6179.97 (17)N5—C19—C20—C21174.11 (14)
C5—C3—C4—C60.2 (3)C19—C20—C21—C22178.07 (17)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N4ii0.992.593.559 (3)166
C13—H13A···S1iii0.992.823.748 (2)157
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The author would like to thank the Instrument Center of Institute for Mol­ecular Science for the X-ray crystallographic analysis.

Funding information

Funding for this research was provided by: Inter-University Research Institute Corporation, National Institutes of Natural Sciences, Institute for Molecular Science.

References

First citationBelo, D., Figueira, M. J., Santos, I. C., Gama, V., Pereira, L. C., Henriques, R. T. & Almeida, M. (2005). Polyhedron, 24, 2035–2042.  CSD CrossRef CAS Google Scholar
First citationBelo, D., Lopes, E. B., Santos, I. C., Dias, J. C., Figueira, M., Almeida, M., Fourmigué, M. & Rovira, C. (2006). J. Low Temp. Phys. 142, 349–354.  CSD CrossRef CAS Google Scholar
First citationBelo, D., Santos, I. C. & Almeida, M. (2004). Polyhedron, 23, 1351–1359.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115–160.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNomura, M., Tsukano, E., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2009). J. Organomet. Chem. 694, 3116–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationRabaça, S. & Almeida, M. (2010). Coord. Chem. Rev. 254, 1493–1508.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimão, D., Alves, H., Belo, D., Rabaça, S., Lopes, E., Santos, I., Gama, V., Duarte, M., Henriques, R., Novais, H. & Almeida, M. (2001). Eur. J. Inorg. Chem. pp. 3119–3126.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M., Tanaka, S. & Yamashita, Y. (1994). Synth. Met. 64, 197–202.  CSD CrossRef CAS Web of Science Google Scholar
First citationTomura, M. & Yamashita, Y. (2012). Acta Cryst. E68, m57.  CSD CrossRef IUCr Journals Google Scholar
First citationYamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933–1944.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds