metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

fac-Bis[bis­­(pyridin-2-yl)methanamine]­iron(II) bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenide) dihydrate

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435, USA
*Correspondence e-mail: sylvain_bernes@hotmail.com, fat_setifi@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 June 2017; accepted 6 July 2017; online 18 July 2017)

The hydrated complex [Fe(DIPA)2](tcnoet)2·2H2O [DIPA is bis­(pyridin-2-yl)methanamine, C11H11N3, and tcnoet is the anion 1,1,3,3-tetra­cyano-2-eth­oxy­propenide, C9H5N4O], crystallizes with the [Fe(DIPA)2]2+ cation located on an inversion centre. The coordination geometry for FeII is strongly distorted from octa­hedral, as a consequence of the bite angles formed by the tridentate DIPA ligand. The water mol­ecules included in the voids left by the cations and anions form hydrogen bonds with the cyano and amine groups.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polynitrile anions have recently received considerable attention in the fields of coordination chemistry and mol­ecular materials (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]). These organic anions are of inter­est due to their ability to act towards metal atoms with various coordination modes and for their high degree of electronic delocalization (Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Setifi, Domasevitch et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]; Setifi, Charles et al., 2013[Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242-247.]; Setifi, Milin et al., 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Setifi, Setifi et al., 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]).

We are inter­ested in using these anionic ligands in combination with other neutral bridging co-ligands to explore their structural features and properties relevant to the field of mol­ecular materials exhibiting the spin-crossover phenomenon. In an attempt to prepare such an iron(II) complex using hydro­thermal synthesis, we obtained instead the title compound.

In the title compound, the complex cation lies on an inversion centre, while the organic anion and the lattice water mol­ecule are in general positions, giving the chemical formula [Fe(DIPA)2](tcnoet)2·2H2O, where DIPA is the tridentate amine ligand bis­(pyridin-2-yl)methanamine and tcnoet is the anion 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (Fig. 1[link]). The tri­amine ligand displays a butterfly conformation, imposed by the sp3 hybridization of the central C atom C6, giving a dihedral angle between the pyridyl rings of 75.87 (8)°. The three N donors coordinate in a facial arrangement, with very similar Fe—N bond lengths [range: 1.9904 (18)–2.0106 (19) Å]. However, the octa­hedral coordination geometry for the metal is strongly distorted as a consequence of the steric strain originating from the bite angles formed by the ligand in the five-membered metalacycles: N1—Fe1—N2 = 80.28 (8)° and N2—Fe1—N3 = 80.95 (8)°. Such a distortion has been observed in other octa­hedral complexes featuring this ligand with different transition metals (FeII, CoIII, NiII, CuII: Bernhardt et al., 1992[Bernhardt, P. V., Comba, P., Mahu-Rickenbach, A., Stebler, S., Steiner, S., Várnagy, K. & Zehnder, M. (1992). Inorg. Chem. 31, 4194-4200.]; FeIII: Renz et al., 1999[Renz, M., Hemmert, C., Gornitzka, H. & Meunier, B. (1999). New J. Chem. 23, 773-776.]; MnII: Bräuer et al., 2011[Bräuer, B., Schaarschmidt, D., Flohrer, C., Rüffer, T., Tripke, S., Hildebrandt, A., Walfort, B., Sorace, L. & Lang, H. (2011). Inorg. Chim. Acta, 365, 277-281.]). Regarding the free anion tcnoet, its twisted conformation, characterized by a dihedral angle of 29.8 (2)° between the di­cyano C(CN)2 mean planes, is not uncommon, and is indeed comparable to that observed in the 2,2′-bipyridin-1-ium salt (Setifi et al., 2015[Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509-515.]; dihedral angle: 22.4°).

[Figure 1]
Figure 1
The structures of the mol­ecular components in the title compound, with displacement ellipsoids drawn at the 30% probability level. Non-labelled atoms in the cation are generated by the symmetry operation 1 − x, 1 − y, 1 − z.

The water mol­ecule behaves both as donor and acceptor for hydrogen bonding, stabilizing the crystal structure with three weak hydrogen bonds involving two symmetry-related tcnoet anions and the central amine group of the DIPA ligand (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N15i 0.86 (4) 2.12 (4) 2.976 (3) 172 (3)
O1—H2⋯N17 0.84 (4) 2.09 (4) 2.921 (3) 175 (4)
N2—H2B⋯O1ii 0.91 2.25 3.065 (3) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Part of the crystal structure, showing the hydrogen bonds formed by the water mol­ecule (dashed lines). [Symmetry codes: i 1 − x, 2 − y, 1 − z; ii 1 − x, [{1\over 2}] + y, [{3\over 2}] − z.]

Synthesis and crystallization

The salt K(tcnoet) was prepared using the published method (Middleton et al., 1958[Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795-2806.]). The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of FeSO4·7H2O (28 mg, 0.1 mmol), DIPA (19 mg, 0.1 mmol) and K(tcnoet) (45 mg, 0.2 mmol) in water–methanol (4:1 v/v, 20 cm3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 days, and then cooled to ambient temperature at a rate of 10 K h−1 (yield: 23%). Red prisms of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two reflections ([\overline{1}] 9 1, [\overline{2}] 9 1) were omitted because of poor agreement between calculated and observed intensities.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C11H11N3)2](C9H5N4O)2·2H2O
Mr 832.68
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.8904 (3), 7.5824 (3), 22.5912 (7)
β (°) 102.648 (3)
V3) 1987.35 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.55
Crystal size (mm) 0.12 × 0.08 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.843, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8154, 3799, 3393
Rint 0.025
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.07
No. of reflections 3799
No. of parameters 275
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

fac-Bis[bis(pyridin-2-yl)methanamine]iron(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide) dihydrate top
Crystal data top
[Fe(C11H11N3)2](C9H5N4O)2·2H2OF(000) = 864
Mr = 832.68Dx = 1.391 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.8904 (3) ÅCell parameters from 3092 reflections
b = 7.5824 (3) Åθ = 4.9–71.4°
c = 22.5912 (7) ŵ = 3.55 mm1
β = 102.648 (3)°T = 173 K
V = 1987.35 (11) Å3Prism, red
Z = 20.12 × 0.08 × 0.07 mm
Data collection top
Agilent Xcalibur
diffractometer
3799 independent reflections
Radiation source: Enhance (Cu) X-ray Source3393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 3.8°
ω scansh = 814
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 99
Tmin = 0.843, Tmax = 1.000l = 2726
8154 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0542P)2 + 1.1004P]
where P = (Fo2 + 2Fc2)/3
3799 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Special details top

Refinement. H atoms for the water molecule, H1 and H2, were found in a difference map and refined freely, while other H atoms were placed in calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.02633 (14)
N10.47707 (16)0.5225 (2)0.41019 (8)0.0283 (4)
N20.58098 (16)0.7306 (3)0.49521 (8)0.0303 (4)
H2B0.5304190.8196420.4819110.036*
H2C0.6272710.7608810.5314350.036*
N30.65696 (15)0.4086 (3)0.50006 (8)0.0287 (4)
C10.3948 (2)0.4541 (3)0.36576 (11)0.0349 (5)
H1A0.3348450.3862830.3762080.042*
C20.3951 (2)0.4799 (4)0.30524 (11)0.0428 (6)
H2A0.3362480.4298190.2745360.051*
C30.4821 (2)0.5793 (4)0.28976 (11)0.0448 (6)
H3A0.4841640.5970590.2483870.054*
C40.5656 (2)0.6523 (4)0.33527 (11)0.0381 (5)
H4A0.6253190.7229210.3258220.046*
C50.56069 (18)0.6207 (3)0.39475 (10)0.0300 (5)
C60.64886 (19)0.6820 (3)0.44945 (10)0.0317 (5)
H6A0.6977650.7810020.4400690.038*
C70.71790 (19)0.5212 (3)0.47388 (10)0.0305 (5)
C80.82888 (19)0.4864 (3)0.46739 (11)0.0339 (5)
H8A0.8695370.5692490.4484100.041*
C90.8789 (2)0.3285 (4)0.48920 (11)0.0374 (5)
H9A0.9550880.3006550.4858000.045*
C100.8163 (2)0.2115 (4)0.51606 (11)0.0389 (5)
H10A0.8489660.1014610.5309230.047*
C110.7063 (2)0.2551 (3)0.52122 (10)0.0344 (5)
H11A0.6642120.1744510.5402370.041*
C120.09125 (19)0.7045 (3)0.67459 (10)0.0304 (5)
C130.21113 (19)0.6807 (3)0.69238 (10)0.0337 (5)
C140.2614 (2)0.5841 (4)0.74535 (11)0.0397 (6)
N150.3030 (2)0.5080 (4)0.78845 (11)0.0539 (7)
C160.28834 (19)0.7605 (3)0.66036 (10)0.0343 (5)
N170.35231 (17)0.8214 (3)0.63518 (10)0.0431 (5)
C180.03496 (19)0.8350 (3)0.63568 (10)0.0319 (5)
C190.0856 (2)0.8176 (3)0.61052 (11)0.0359 (5)
N200.18179 (19)0.8052 (3)0.58885 (11)0.0495 (6)
C210.0890 (2)0.9891 (3)0.61936 (13)0.0406 (6)
N220.1294 (2)1.1153 (4)0.60585 (15)0.0630 (8)
O230.01861 (14)0.5995 (2)0.69608 (8)0.0359 (4)
C240.0371 (2)0.4105 (4)0.70181 (12)0.0420 (6)
H24A0.0662600.3778620.7448690.050*
H24B0.0939960.3723970.6783500.050*
C250.0772 (3)0.3253 (4)0.67742 (14)0.0521 (7)
H25A0.0690290.1969120.6810800.078*
H25B0.1043170.3571790.6346320.078*
H25C0.1329360.3659790.7005680.078*
O10.54085 (17)0.9789 (3)0.58946 (8)0.0392 (4)
H10.591 (3)0.990 (4)0.6229 (18)0.059*
H20.487 (3)0.928 (5)0.6009 (16)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0235 (2)0.0339 (3)0.0221 (2)0.0020 (2)0.00606 (17)0.0021 (2)
N10.0273 (9)0.0310 (10)0.0267 (9)0.0039 (7)0.0060 (7)0.0008 (7)
N20.0303 (9)0.0317 (10)0.0284 (9)0.0034 (8)0.0053 (7)0.0018 (8)
N30.0269 (8)0.0354 (10)0.0237 (8)0.0022 (8)0.0051 (7)0.0026 (8)
C10.0321 (11)0.0411 (13)0.0302 (11)0.0022 (10)0.0040 (9)0.0021 (10)
C20.0405 (13)0.0561 (17)0.0284 (12)0.0081 (12)0.0005 (10)0.0026 (11)
C30.0489 (14)0.0619 (18)0.0246 (11)0.0167 (13)0.0101 (10)0.0075 (11)
C40.0367 (12)0.0447 (14)0.0349 (12)0.0072 (11)0.0118 (10)0.0113 (11)
C50.0308 (10)0.0299 (11)0.0305 (11)0.0066 (9)0.0096 (9)0.0051 (9)
C60.0316 (10)0.0313 (12)0.0333 (11)0.0043 (9)0.0098 (9)0.0015 (9)
C70.0294 (11)0.0352 (12)0.0261 (10)0.0040 (9)0.0041 (9)0.0004 (9)
C80.0277 (11)0.0425 (14)0.0309 (11)0.0053 (10)0.0050 (9)0.0002 (10)
C90.0280 (10)0.0495 (15)0.0331 (12)0.0044 (10)0.0035 (9)0.0044 (11)
C100.0408 (12)0.0390 (13)0.0334 (12)0.0058 (11)0.0004 (10)0.0033 (10)
C110.0390 (12)0.0353 (13)0.0282 (10)0.0003 (10)0.0058 (9)0.0045 (10)
C120.0309 (10)0.0350 (12)0.0272 (10)0.0021 (9)0.0101 (9)0.0021 (9)
C130.0310 (11)0.0423 (14)0.0287 (11)0.0007 (10)0.0085 (9)0.0036 (10)
C140.0297 (11)0.0538 (16)0.0372 (13)0.0040 (11)0.0109 (10)0.0052 (12)
N150.0409 (12)0.0785 (19)0.0416 (13)0.0115 (12)0.0074 (10)0.0193 (13)
C160.0280 (10)0.0444 (14)0.0284 (11)0.0005 (10)0.0013 (9)0.0008 (10)
N170.0291 (9)0.0625 (15)0.0378 (11)0.0054 (10)0.0074 (9)0.0055 (10)
C180.0286 (10)0.0354 (13)0.0329 (11)0.0019 (9)0.0093 (9)0.0031 (10)
C190.0368 (13)0.0357 (13)0.0354 (12)0.0031 (10)0.0084 (10)0.0055 (10)
N200.0375 (12)0.0540 (15)0.0526 (13)0.0038 (10)0.0006 (10)0.0110 (12)
C210.0349 (12)0.0391 (14)0.0515 (15)0.0061 (11)0.0174 (11)0.0070 (12)
N220.0562 (14)0.0428 (14)0.102 (2)0.0016 (12)0.0435 (15)0.0168 (15)
O230.0346 (8)0.0367 (9)0.0398 (9)0.0000 (7)0.0156 (7)0.0070 (7)
C240.0467 (14)0.0387 (14)0.0432 (14)0.0013 (11)0.0156 (11)0.0057 (11)
C250.0606 (17)0.0489 (17)0.0465 (15)0.0134 (14)0.0112 (13)0.0009 (13)
O10.0429 (10)0.0412 (10)0.0338 (9)0.0055 (8)0.0094 (8)0.0029 (8)
Geometric parameters (Å, º) top
Fe1—N3i1.9904 (18)C8—H8A0.9500
Fe1—N31.9904 (18)C9—C101.380 (4)
Fe1—N1i1.9944 (18)C9—H9A0.9500
Fe1—N11.9944 (18)C10—C111.379 (3)
Fe1—N2i2.0106 (19)C10—H10A0.9500
Fe1—N22.0106 (19)C11—H11A0.9500
N1—C11.343 (3)C12—O231.341 (3)
N1—C51.348 (3)C12—C181.393 (3)
N2—C61.490 (3)C12—C131.405 (3)
N2—H2B0.9100C13—C141.418 (3)
N2—H2C0.9100C13—C161.423 (3)
N3—C71.338 (3)C14—N151.147 (3)
N3—C111.343 (3)C16—N171.142 (3)
C1—C21.382 (3)C18—C211.420 (3)
C1—H1A0.9500C18—C191.428 (3)
C2—C31.385 (4)C19—N201.145 (3)
C2—H2A0.9500C21—N221.142 (4)
C3—C41.379 (4)O23—C241.451 (3)
C3—H3A0.9500C24—C251.496 (4)
C4—C51.379 (3)C24—H24A0.9900
C4—H4A0.9500C24—H24B0.9900
C5—C61.508 (3)C25—H25A0.9800
C6—C71.506 (3)C25—H25B0.9800
C6—H6A1.0000C25—H25C0.9800
C7—C81.385 (3)O1—H10.86 (4)
C8—C91.379 (4)O1—H20.84 (4)
N3i—Fe1—N3180.0N2—C6—H6A112.9
N3i—Fe1—N1i87.13 (7)C7—C6—H6A112.9
N3—Fe1—N1i92.87 (7)C5—C6—H6A112.9
N3i—Fe1—N192.88 (7)N3—C7—C8123.1 (2)
N3—Fe1—N187.13 (7)N3—C7—C6111.96 (19)
N1i—Fe1—N1180.0C8—C7—C6124.8 (2)
N3i—Fe1—N2i80.95 (8)C9—C8—C7118.3 (2)
N3—Fe1—N2i99.05 (8)C9—C8—H8A120.9
N1i—Fe1—N2i80.28 (8)C7—C8—H8A120.9
N1—Fe1—N2i99.72 (8)C8—C9—C10118.9 (2)
N3i—Fe1—N299.05 (8)C8—C9—H9A120.5
N3—Fe1—N280.95 (8)C10—C9—H9A120.5
N1i—Fe1—N299.72 (8)C11—C10—C9119.7 (2)
N1—Fe1—N280.27 (8)C11—C10—H10A120.1
N2i—Fe1—N2180.0C9—C10—H10A120.1
C1—N1—C5118.5 (2)N3—C11—C10121.7 (2)
C1—N1—Fe1129.96 (16)N3—C11—H11A119.1
C5—N1—Fe1111.50 (15)C10—C11—H11A119.1
C6—N2—Fe199.26 (13)O23—C12—C18113.05 (19)
C6—N2—H2B111.9O23—C12—C13120.9 (2)
Fe1—N2—H2B111.9C18—C12—C13126.1 (2)
C6—N2—H2C111.9C12—C13—C14121.4 (2)
Fe1—N2—H2C111.9C12—C13—C16121.8 (2)
H2B—N2—H2C109.6C14—C13—C16116.7 (2)
C7—N3—C11118.26 (19)N15—C14—C13179.0 (3)
C7—N3—Fe1112.10 (16)N17—C16—C13178.3 (3)
C11—N3—Fe1129.63 (16)C12—C18—C21124.5 (2)
N1—C1—C2121.7 (2)C12—C18—C19119.2 (2)
N1—C1—H1A119.1C21—C18—C19116.4 (2)
C2—C1—H1A119.1N20—C19—C18178.1 (3)
C1—C2—C3119.4 (2)N22—C21—C18178.0 (3)
C1—C2—H2A120.3C12—O23—C24121.45 (18)
C3—C2—H2A120.3O23—C24—C25106.6 (2)
C4—C3—C2119.1 (2)O23—C24—H24A110.4
C4—C3—H3A120.5C25—C24—H24A110.4
C2—C3—H3A120.5O23—C24—H24B110.4
C5—C4—C3118.6 (2)C25—C24—H24B110.4
C5—C4—H4A120.7H24A—C24—H24B108.6
C3—C4—H4A120.7C24—C25—H25A109.5
N1—C5—C4122.7 (2)C24—C25—H25B109.5
N1—C5—C6112.21 (19)H25A—C25—H25B109.5
C4—C5—C6125.1 (2)C24—C25—H25C109.5
N2—C6—C7106.29 (18)H25A—C25—H25C109.5
N2—C6—C5105.05 (17)H25B—C25—H25C109.5
C7—C6—C5106.01 (19)H1—O1—H2102 (3)
C5—N1—C1—C21.0 (3)C5—C6—C7—N371.4 (2)
Fe1—N1—C1—C2177.85 (19)N2—C6—C7—C8143.5 (2)
N1—C1—C2—C30.3 (4)C5—C6—C7—C8105.0 (2)
C1—C2—C3—C40.8 (4)N3—C7—C8—C90.2 (4)
C2—C3—C4—C51.2 (4)C6—C7—C8—C9176.3 (2)
C1—N1—C5—C40.6 (3)C7—C8—C9—C100.5 (3)
Fe1—N1—C5—C4178.47 (18)C8—C9—C10—C110.7 (4)
C1—N1—C5—C6177.8 (2)C7—N3—C11—C100.5 (3)
Fe1—N1—C5—C61.2 (2)Fe1—N3—C11—C10178.39 (17)
C3—C4—C5—N10.5 (4)C9—C10—C11—N30.8 (4)
C3—C4—C5—C6176.3 (2)O23—C12—C13—C1418.8 (4)
Fe1—N2—C6—C755.23 (17)C18—C12—C13—C14159.7 (3)
Fe1—N2—C6—C556.87 (17)O23—C12—C13—C16165.0 (2)
N1—C5—C6—N240.1 (2)C18—C12—C13—C1616.5 (4)
C4—C5—C6—N2142.7 (2)O23—C12—C18—C21162.7 (2)
N1—C5—C6—C772.2 (2)C13—C12—C18—C2115.9 (4)
C4—C5—C6—C7105.0 (3)O23—C12—C18—C1916.3 (3)
C11—N3—C7—C80.3 (3)C13—C12—C18—C19165.1 (2)
Fe1—N3—C7—C8178.85 (18)C18—C12—O23—C24139.3 (2)
C11—N3—C7—C6176.80 (19)C13—C12—O23—C2442.0 (3)
Fe1—N3—C7—C62.3 (2)C12—O23—C24—C25135.0 (2)
N2—C6—C7—N340.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N15ii0.86 (4)2.12 (4)2.976 (3)172 (3)
O1—H2···N170.84 (4)2.09 (4)2.921 (3)175 (4)
N2—H2B···O1iii0.912.253.065 (3)149
N2—H2C···N20iv0.912.383.184 (3)148
N2—H2C···O10.912.472.958 (3)114
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x+1, y, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Funding information

FS gratefully acknowledges the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAddala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernhardt, P. V., Comba, P., Mahu-Rickenbach, A., Stebler, S., Steiner, S., Várnagy, K. & Zehnder, M. (1992). Inorg. Chem. 31, 4194–4200.  CSD CrossRef CAS Google Scholar
First citationBräuer, B., Schaarschmidt, D., Flohrer, C., Rüffer, T., Tripke, S., Hildebrandt, A., Walfort, B., Sorace, L. & Lang, H. (2011). Inorg. Chim. Acta, 365, 277–281.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiddleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.  CrossRef CAS Web of Science Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationRenz, M., Hemmert, C., Gornitzka, H. & Meunier, B. (1999). New J. Chem. 23, 773–776.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.  CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds