organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­meth­­oxy­phenyl 4-methyl­benzene­sulfonate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 June 2017; accepted 3 July 2017; online 7 July 2017)

Mol­ecules of the title compound, C15H16O5S, are composed of a 3,5-di­meth­oxy­phenyl moiety substituted with a toluene-4-sulfonate group. The dihedral angle between two aromatic rings is 57.23 (4)°. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds and S⋯O van der Waals inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl tosyl­ates attract considerable attention as electrophiles in transition-metal-catalyzed cross-coupling reactions (Chen et al., 2015[Chen, X., Quan, Z.-J. & Wang, X.-C. (2015). Appl. Organomet. Chem. 29, 296-300.]; Nguyen et al., 2003[Nguyen, H. N., Huang, X. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 125, 11818-11819.]). 4-Methyl­benzene­sulfonate derivatives emerged as substrates for first-row transition metal catalysts. These non-precious transition metal elements are suitable alternatives to execute challenging cross-coupling with higher efficiency (Ananikov, 2015[Ananikov, V. P. (2015). ACS Catal. 5, 1964-1971.]).

In the asymmetric unit of the title compound there is one independent mol­ecule. The mol­ecular structure is shown in Fig. 1[link]. In the mol­ecular structure, the bond lengths and angles are within normal ranges (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The dihedral angle between two aromatic moieties is 57.23 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The crystal structure (Fig. 2[link]) features weak C—H⋯O hydrogen bonds (Table 1[link]) and S1⋯O1i van der Waals inter­actions [symmetry code: (i) −x + 2, −y + 2, −z + 1. The S1⋯O1i distance is 3.2929 (10) Å]. The S1⋯O1i contacts connect the mol­ecules into dimers, while C—H⋯O bonds arrange the mol­ecules into chains along b axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O4i 0.96 2.35 3.2051 (18) 147
C15—H15C⋯O2ii 0.96 2.51 3.4063 (19) 155
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis.

Synthesis and crystallization

3,5-Di­meth­oxy­phenyl 4-methyl­benzene­sulfonate was synthesized according to the procedure described by Murai and co-workers (Murai et al., 2012[Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818-2821.]). The crystallization was performed in a diethyl ether solution. Diethyl ether (0.6 ml) was placed in storage reaction vials (8 ml) with silicone septa. The title compound was placed in small portions until a saturated solution was obtained. The solution was warmed, then left to stand in a refrigerator (−20°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16O5S
Mr 308.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.8066 (2), 8.9238 (2), 11.9303 (3)
α, β, γ (°) 106.583 (2), 94.701 (2), 111.358 (2)
V3) 725.58 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.26 × 0.25 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 4805, 2795, 2316
Rint 0.013
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.05
No. of reflections 2795
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.35
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3,5-Dimethoxyphenyl 4-methylbenzenesulfonate top
Crystal data top
C15H16O5SZ = 2
Mr = 308.34F(000) = 324
Triclinic, P1Dx = 1.411 Mg m3
a = 7.8066 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9238 (2) ÅCell parameters from 4805 reflections
c = 11.9303 (3) Åθ = 3.1–26.0°
α = 106.583 (2)°µ = 0.24 mm1
β = 94.701 (2)°T = 100 K
γ = 111.358 (2)°Irregular, colourless
V = 725.58 (3) Å30.26 × 0.25 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2316 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω–scanh = 89
4805 measured reflectionsk = 1010
2795 independent reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.0255P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2795 reflectionsΔρmax = 0.38 e Å3
193 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with CAr—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and with Cmethyl—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73013 (5)0.83595 (4)0.47367 (3)0.01539 (11)
O10.81146 (14)0.96873 (12)0.42577 (9)0.0195 (2)
C10.80548 (19)0.67126 (18)0.41824 (12)0.0147 (3)
C20.91926 (19)0.68105 (18)0.33471 (12)0.0157 (3)
H20.96730.77940.31450.019*
O20.73567 (14)0.87416 (13)0.59863 (9)0.0217 (2)
O30.50777 (13)0.74229 (12)0.41772 (8)0.0157 (2)
C30.95988 (19)0.54111 (18)0.28197 (12)0.0168 (3)
H31.03490.54600.22530.020*
C40.89064 (19)0.39332 (18)0.31217 (12)0.0166 (3)
O40.26779 (15)0.29839 (13)0.04463 (9)0.0234 (3)
C50.78274 (19)0.39000 (18)0.39973 (12)0.0173 (3)
H50.73940.29400.42290.021*
O50.32254 (15)0.85268 (13)0.06289 (9)0.0221 (2)
C60.7393 (2)0.52739 (18)0.45258 (12)0.0165 (3)
H60.66650.52360.51050.020*
C80.44594 (18)0.69113 (18)0.29240 (12)0.0148 (3)
C70.9329 (2)0.24146 (19)0.25186 (14)0.0224 (3)
H7A0.89540.20840.16670.034*
H7B0.86490.14790.27740.034*
H7C1.06530.27140.27300.034*
C90.39824 (19)0.52299 (18)0.22586 (12)0.0163 (3)
H90.41730.44790.26070.020*
C100.3204 (2)0.46833 (18)0.10448 (13)0.0173 (3)
C110.29768 (19)0.58182 (18)0.05261 (12)0.0172 (3)
H110.24720.54490.02870.021*
C120.3511 (2)0.75243 (19)0.12328 (13)0.0163 (3)
C130.42417 (19)0.80989 (18)0.24526 (12)0.0157 (3)
H130.45700.92270.29310.019*
C140.1783 (2)0.2341 (2)0.07898 (13)0.0261 (4)
H14A0.26290.29050.12250.039*
H14B0.06680.25570.08680.039*
H14C0.14510.11320.11060.039*
C150.3825 (2)1.0314 (2)0.12916 (14)0.0275 (4)
H15A0.36401.08960.07590.041*
H15B0.51341.07910.16610.041*
H15C0.31021.04490.18970.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01689 (19)0.01626 (19)0.01268 (19)0.00745 (15)0.00219 (13)0.00373 (14)
O10.0201 (5)0.0157 (5)0.0223 (6)0.0064 (4)0.0022 (4)0.0074 (4)
C10.0143 (7)0.0157 (7)0.0124 (7)0.0067 (6)0.0007 (5)0.0026 (6)
C20.0148 (7)0.0159 (7)0.0139 (7)0.0036 (6)0.0006 (6)0.0058 (6)
O20.0265 (6)0.0261 (6)0.0124 (5)0.0139 (5)0.0019 (4)0.0024 (4)
O30.0157 (5)0.0206 (5)0.0119 (5)0.0081 (4)0.0040 (4)0.0056 (4)
C30.0144 (7)0.0214 (8)0.0142 (7)0.0069 (6)0.0037 (6)0.0057 (6)
C40.0142 (7)0.0172 (7)0.0160 (7)0.0065 (6)0.0008 (6)0.0033 (6)
O40.0343 (6)0.0172 (6)0.0176 (6)0.0134 (5)0.0002 (5)0.0020 (4)
C50.0160 (7)0.0167 (7)0.0189 (7)0.0048 (6)0.0014 (6)0.0086 (6)
O50.0329 (6)0.0195 (6)0.0188 (5)0.0137 (5)0.0041 (5)0.0097 (4)
C60.0158 (7)0.0202 (8)0.0139 (7)0.0067 (6)0.0040 (6)0.0069 (6)
C80.0120 (7)0.0207 (8)0.0121 (7)0.0067 (6)0.0036 (5)0.0056 (6)
C70.0242 (8)0.0205 (8)0.0237 (8)0.0106 (7)0.0069 (7)0.0066 (7)
C90.0166 (7)0.0190 (7)0.0185 (8)0.0102 (6)0.0049 (6)0.0097 (6)
C100.0174 (7)0.0162 (7)0.0187 (8)0.0090 (6)0.0048 (6)0.0033 (6)
C110.0176 (7)0.0213 (8)0.0129 (7)0.0089 (6)0.0027 (6)0.0047 (6)
C120.0156 (7)0.0199 (8)0.0188 (7)0.0097 (6)0.0068 (6)0.0103 (6)
C130.0150 (7)0.0147 (7)0.0180 (7)0.0068 (6)0.0060 (6)0.0047 (6)
C140.0329 (9)0.0219 (8)0.0185 (8)0.0128 (7)0.0013 (7)0.0006 (7)
C150.0440 (10)0.0207 (8)0.0242 (9)0.0174 (8)0.0080 (7)0.0112 (7)
Geometric parameters (Å, º) top
S1—O21.4244 (10)C6—H60.9300
S1—O11.4254 (10)C8—C91.373 (2)
S1—O31.6101 (10)C8—C131.3871 (19)
S1—C11.7556 (14)C7—H7A0.9600
S1—O1i3.2929 (10)C7—H7B0.9600
C1—C21.3885 (19)C7—H7C0.9600
C1—C61.3910 (19)C9—C101.3931 (19)
C2—C31.3887 (19)C9—H90.9300
C2—H20.9300C10—C111.382 (2)
O3—C81.4171 (15)C11—C121.396 (2)
C3—C41.395 (2)C11—H110.9300
C3—H30.9300C12—C131.3896 (19)
C4—C51.3947 (19)C13—H130.9300
C4—C71.5070 (19)C14—H14A0.9600
O4—C101.3633 (17)C14—H14B0.9600
O4—C141.4313 (17)C14—H14C0.9600
C5—C61.383 (2)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
O5—C121.3623 (17)C15—H15C0.9600
O5—C151.4366 (18)
O2—S1—O1120.88 (6)C4—C7—H7A109.5
O2—S1—O3102.37 (6)C4—C7—H7B109.5
O1—S1—O3108.43 (5)H7A—C7—H7B109.5
O2—S1—C1110.89 (6)C4—C7—H7C109.5
O1—S1—C1110.05 (6)H7A—C7—H7C109.5
O3—S1—C1102.28 (6)H7B—C7—H7C109.5
O2—S1—O1i80.61 (5)C8—C9—C10117.91 (13)
O1—S1—O1i68.92 (5)C8—C9—H9121.0
O3—S1—O1i176.85 (4)C10—C9—H9121.0
C1—S1—O1i77.41 (5)O4—C10—C11124.24 (13)
C2—C1—C6121.02 (13)O4—C10—C9115.06 (12)
C2—C1—S1119.61 (11)C11—C10—C9120.70 (13)
C6—C1—S1119.22 (11)C10—C11—C12119.46 (13)
C1—C2—C3118.68 (13)C10—C11—H11120.3
C1—C2—H2120.7C12—C11—H11120.3
C3—C2—H2120.7O5—C12—C13124.31 (13)
C8—O3—S1118.80 (8)O5—C12—C11114.44 (13)
C2—C3—C4121.42 (13)C13—C12—C11121.24 (13)
C2—C3—H3119.3C8—C13—C12116.89 (13)
C4—C3—H3119.3C8—C13—H13121.6
C5—C4—C3118.48 (13)C12—C13—H13121.6
C5—C4—C7120.97 (13)O4—C14—H14A109.5
C3—C4—C7120.55 (13)O4—C14—H14B109.5
C10—O4—C14117.21 (11)H14A—C14—H14B109.5
C6—C5—C4120.99 (13)O4—C14—H14C109.5
C6—C5—H5119.5H14A—C14—H14C109.5
C4—C5—H5119.5H14B—C14—H14C109.5
C12—O5—C15117.31 (12)O5—C15—H15A109.5
C5—C6—C1119.33 (13)O5—C15—H15B109.5
C5—C6—H6120.3H15A—C15—H15B109.5
C1—C6—H6120.3O5—C15—H15C109.5
C9—C8—C13123.77 (13)H15A—C15—H15C109.5
C9—C8—O3117.73 (12)H15B—C15—H15C109.5
C13—C8—O3118.33 (12)
O2—S1—C1—C2139.74 (11)S1—C1—C6—C5173.38 (11)
O1—S1—C1—C23.35 (13)S1—O3—C8—C998.87 (13)
O3—S1—C1—C2111.74 (11)S1—O3—C8—C1385.70 (13)
O1i—S1—C1—C265.06 (11)C13—C8—C9—C101.2 (2)
O2—S1—C1—C644.73 (13)O3—C8—C9—C10173.96 (11)
O1—S1—C1—C6178.88 (11)C14—O4—C10—C112.0 (2)
O3—S1—C1—C663.80 (12)C14—O4—C10—C9176.90 (13)
O1i—S1—C1—C6119.40 (11)C8—C9—C10—O4176.98 (12)
C6—C1—C2—C32.6 (2)C8—C9—C10—C111.9 (2)
S1—C1—C2—C3172.83 (10)O4—C10—C11—C12177.91 (12)
O2—S1—O3—C8177.23 (9)C9—C10—C11—C120.9 (2)
O1—S1—O3—C848.40 (11)C15—O5—C12—C133.8 (2)
C1—S1—O3—C867.86 (10)C15—O5—C12—C11177.20 (12)
C1—C2—C3—C40.7 (2)C10—C11—C12—O5179.96 (12)
C2—C3—C4—C51.7 (2)C10—C11—C12—C131.0 (2)
C2—C3—C4—C7178.63 (13)C9—C8—C13—C120.6 (2)
C3—C4—C5—C62.3 (2)O3—C8—C13—C12175.70 (11)
C7—C4—C5—C6178.07 (13)O5—C12—C13—C8179.37 (13)
C4—C5—C6—C10.4 (2)C11—C12—C13—C81.7 (2)
C2—C1—C6—C52.1 (2)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O4ii0.962.353.2051 (18)147
C15—H15C···O2iii0.962.513.4063 (19)155
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnanikov, V. P. (2015). ACS Catal. 5, 1964–1971.  Web of Science CrossRef CAS Google Scholar
First citationChen, X., Quan, Z.-J. & Wang, X.-C. (2015). Appl. Organomet. Chem. 29, 296–300.  Web of Science CrossRef CAS Google Scholar
First citationNguyen, H. N., Huang, X. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 125, 11818–11819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds