organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxa­diazol-2-yl)meth­yl]pyridazin-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: lihongsen19@163.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 February 2017; accepted 8 March 2017; online 10 March 2017)

In the title compound, C17H16ClN5O3, the phenyl and the oxa­diazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intra­molecular C—H⋯Cl contact present. In the crystal, mol­ecules are linked by bifurcated C—(H,H)⋯O hydrogen bonds and a C—H⋯N hydrogen bond, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3,4-Oxa­diazole derivatives are a promising field of study because they possess good bioactivity (Liu et al., 2014[Liu, J. C., Wang, W. D. & He, H. W. (2014). Chin. J. Org. Chem. 37, 1447-1451.]). This substructural unit has been used as a scaffold to design and synthesize chemical compounds with biological, medicinal and agricultural activities (Gan et al., 2016[Gan, X. H., Hu, D. H., Li, P., Wu, J., Chen, X., Xue, W. & Song, B. (2016). Pest. Manag. Sci. 72, 534-543.]; Shaikh & Meshram, 2016[Shaikh, A. & Meshram, J. (2016). J. Heterocycl. Chem. 53, 1176-1182.]; Luqman et al., 2015[Luqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2015). Eur. J. Inorg. Chem. pp. 4935-4945.]; Fershtat et al. 2016[Fershtat, L. L., Kulikov, A. S., Ananyev, I. V., Struchkova, M. I. & Makhova, N. N. (2016). J. Heterocycl. Chem. 53, 102-108.]; Pattison et al., 2009[Pattison, G., Sandford, G., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2009). J. Org. Chem. 74, 5533-5540.]). A series of oxa­diazo­les containing a pyridazinone ring have been designed and synthesized, and we report herein on the crystal structure of one such compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The phenyl (C1–C6) and the oxa­diazole (O1/N1/N2/C7/C8) rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine (N3/N4/C10–C13) ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine (O3/N5/C14–C17) ring has a chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intra­molecular C—H⋯Cl contact present (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯Cl1 0.97 2.57 3.252 (3) 127
C14—H14B⋯O2i 0.97 2.57 3.373 (4) 141
C13—H13⋯O2ii 0.93 2.60 3.507 (3) 165
C9—H9A⋯N2iii 0.97 2.50 3.310 (4) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules are linked by bifurcated C—(H,H)⋯O hydrogen bonds and C—H⋯·N hydrogen bond bonds, forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

To a three-necked flask, 4,5-di­chloro-2-((5- phenyl-1,3,4-oxa­diazol-2-yl)meth­yl)-pyridazin-3-(2H)-one (3.0 g, 9.3 mmol; Li et al., 2005[Li, D.-J., Zhang, J.-B. & Fu, H.-G. (2005). Chin. J. Synth. Chem. 13, 361-363.]) and morpholine (14.0 mmol, 1.22 g) were added and reacted at 333 K for 8 h in the presence of potassium carbonate (2 g) and 20 ml dry DMF. The reaction was monitored by TLC. On completion of the reaction, the mixture was poured into ice–water. The precipitate formed was collected by filtration, dried to give the pure title compound (yield 2.23 g, 64.2%). It was recrystallized from chloro­form, ethyl acetate and petroleum (2:2:5) to give pale-yellow prismatic crystals (m.p. 461–463 K).

1H NMR (CDCl3): 3.47 (t, 4H), 3.86 (t, 4H), 5.64 (s, 2H), 7.53 (m, 3H), 7.68 (s, 1H), 8.06 (m, 2H). IR (KBr, cm−1) ν 2957, 2857, 1641, 1593, 1549, 1487, 1446, 1423, 1257, 1117, 780.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H16ClN5O3
Mr 373.80
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 4.7931 (7), 10.4177 (15), 33.685 (5)
V3) 1682.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.20 × 0.16 × 0.11
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10022, 3282, 2995
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.07
No. of reflections 3282
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.17
Absolute structure Flack x determined using 1105 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2H)-one top
Crystal data top
C17H16ClN5O3Dx = 1.476 Mg m3
Mr = 373.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3057 reflections
a = 4.7931 (7) Åθ = 4.6–50.4°
b = 10.4177 (15) ŵ = 0.26 mm1
c = 33.685 (5) ÅT = 293 K
V = 1682.0 (4) Å3Prismatic, pale-yellow
Z = 40.20 × 0.16 × 0.11 mm
F(000) = 776
Data collection top
Bruker SMART CCD area detector
diffractometer
2995 reflections with I > 2σ(I)
phi and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.0°, θmin = 2.1°
Tmin = 0.658, Tmax = 0.746h = 55
10022 measured reflectionsk = 1212
3282 independent reflectionsl = 4041
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3282 reflectionsΔρmax = 0.21 e Å3
235 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 1105 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59088 (15)0.01685 (6)0.76733 (2)0.0433 (2)
N10.4856 (6)0.2459 (3)0.59442 (7)0.0529 (7)
N20.3286 (6)0.2745 (3)0.62853 (7)0.0486 (7)
N30.0445 (5)0.1687 (2)0.70294 (7)0.0368 (5)
N40.0777 (6)0.2543 (2)0.72725 (7)0.0396 (5)
N50.2681 (5)0.1739 (2)0.82072 (7)0.0405 (6)
O10.1658 (5)0.09679 (19)0.60219 (6)0.0451 (5)
O20.3400 (4)0.00730 (18)0.68817 (6)0.0452 (5)
O30.2610 (7)0.1845 (3)0.90460 (7)0.0765 (9)
C10.3377 (8)0.0400 (4)0.53314 (10)0.0608 (10)
H10.20040.07570.54920.073*
C20.4134 (11)0.1013 (4)0.49869 (11)0.0736 (11)
H20.32780.17790.49140.088*
C30.6176 (10)0.0483 (4)0.47491 (11)0.0722 (11)
H30.66870.08900.45140.087*
C40.7437 (9)0.0626 (4)0.48555 (10)0.0690 (11)
H40.88190.09720.46940.083*
C50.6695 (8)0.1252 (4)0.52024 (10)0.0581 (9)
H50.75780.20120.52740.070*
C60.4629 (7)0.0738 (3)0.54413 (8)0.0462 (8)
C70.3820 (7)0.1421 (3)0.57997 (8)0.0430 (7)
C80.1487 (7)0.1844 (3)0.63175 (8)0.0400 (7)
C90.0686 (7)0.1662 (3)0.66278 (8)0.0421 (7)
H9A0.20750.23340.66020.050*
H9B0.16100.08450.65840.050*
C100.2450 (6)0.0805 (3)0.71332 (8)0.0342 (6)
C110.3255 (5)0.0852 (2)0.75441 (8)0.0316 (6)
C120.2033 (6)0.1676 (2)0.78069 (8)0.0334 (6)
C130.0014 (6)0.2522 (2)0.76394 (8)0.0378 (7)
H130.08630.31060.78100.045*
C140.1841 (9)0.2897 (3)0.84206 (9)0.0505 (9)
H14A0.01670.29010.84560.061*
H14B0.23520.36500.82680.061*
C150.3242 (10)0.2938 (4)0.88161 (10)0.0663 (11)
H15A0.52450.29910.87780.080*
H15B0.26500.37020.89580.080*
C160.3517 (11)0.0713 (4)0.88451 (10)0.0739 (12)
H16A0.30670.00320.90050.089*
H16B0.55280.07420.88140.089*
C170.2186 (9)0.0577 (3)0.84467 (9)0.0538 (9)
H17A0.29560.01650.83110.065*
H17B0.01960.04440.84780.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (4)0.0369 (4)0.0584 (4)0.0064 (3)0.0008 (3)0.0035 (3)
N10.0579 (19)0.0594 (17)0.0416 (14)0.0151 (15)0.0007 (13)0.0019 (12)
N20.0553 (17)0.0510 (14)0.0395 (14)0.0093 (14)0.0015 (12)0.0000 (11)
N30.0351 (13)0.0353 (12)0.0399 (12)0.0023 (11)0.0019 (10)0.0019 (10)
N40.0379 (13)0.0357 (12)0.0451 (14)0.0058 (11)0.0071 (12)0.0019 (10)
N50.0495 (15)0.0341 (13)0.0379 (13)0.0002 (12)0.0075 (11)0.0012 (10)
O10.0496 (13)0.0460 (11)0.0396 (11)0.0079 (11)0.0004 (9)0.0011 (9)
O20.0496 (13)0.0407 (11)0.0455 (11)0.0067 (11)0.0072 (9)0.0061 (9)
O30.108 (2)0.0816 (18)0.0397 (13)0.0122 (19)0.0130 (14)0.0015 (12)
C10.062 (2)0.072 (2)0.0486 (19)0.007 (2)0.0062 (17)0.0053 (17)
C20.081 (3)0.078 (3)0.062 (2)0.004 (3)0.000 (2)0.019 (2)
C30.077 (3)0.094 (3)0.046 (2)0.007 (3)0.005 (2)0.0082 (19)
C40.074 (3)0.085 (3)0.048 (2)0.004 (2)0.0156 (19)0.0109 (19)
C50.067 (2)0.062 (2)0.0454 (19)0.0025 (19)0.0026 (17)0.0083 (15)
C60.0483 (19)0.0574 (18)0.0329 (15)0.0057 (16)0.0071 (13)0.0068 (13)
C70.0435 (17)0.0503 (17)0.0352 (14)0.0045 (15)0.0040 (13)0.0107 (13)
C80.0439 (18)0.0416 (15)0.0345 (14)0.0000 (14)0.0076 (13)0.0044 (12)
C90.0376 (16)0.0464 (16)0.0422 (16)0.0002 (15)0.0043 (14)0.0006 (12)
C100.0294 (14)0.0295 (13)0.0438 (15)0.0030 (12)0.0085 (12)0.0009 (12)
C110.0269 (13)0.0256 (13)0.0423 (15)0.0021 (11)0.0031 (11)0.0022 (11)
C120.0333 (14)0.0265 (13)0.0405 (14)0.0049 (12)0.0063 (12)0.0014 (11)
C130.0398 (16)0.0288 (13)0.0448 (16)0.0040 (12)0.0096 (13)0.0009 (12)
C140.066 (2)0.0415 (16)0.0437 (17)0.0024 (16)0.0098 (16)0.0045 (13)
C150.080 (3)0.068 (2)0.0501 (19)0.006 (2)0.0091 (19)0.0116 (17)
C160.100 (4)0.075 (2)0.0470 (19)0.025 (3)0.008 (2)0.0126 (17)
C170.073 (2)0.0413 (16)0.0475 (18)0.0036 (17)0.0125 (17)0.0095 (14)
Geometric parameters (Å, º) top
Cl1—C111.714 (3)C4—C51.385 (5)
N1—C71.285 (4)C4—H40.9300
N1—N21.405 (4)C5—C61.384 (5)
N2—C81.278 (4)C5—H50.9300
N3—N41.345 (3)C6—C71.454 (4)
N3—C101.375 (4)C8—C91.488 (4)
N3—C91.457 (4)C9—H9A0.9700
N4—C131.289 (4)C9—H9B0.9700
N5—C121.385 (4)C10—C111.438 (4)
N5—C141.461 (4)C11—C121.365 (4)
N5—C171.474 (4)C12—C131.435 (4)
O1—C81.354 (3)C13—H130.9300
O1—C71.363 (4)C14—C151.493 (5)
O2—C101.228 (3)C14—H14A0.9700
O3—C151.411 (4)C14—H14B0.9700
O3—C161.427 (4)C15—H15A0.9700
C1—C21.373 (5)C15—H15B0.9700
C1—C61.380 (5)C16—C171.493 (5)
C1—H10.9300C16—H16A0.9700
C2—C31.380 (6)C16—H16B0.9700
C2—H20.9300C17—H17A0.9700
C3—C41.351 (6)C17—H17B0.9700
C3—H30.9300
C7—N1—N2106.3 (3)C8—C9—H9B109.0
C8—N2—N1106.0 (2)H9A—C9—H9B107.8
N4—N3—C10126.3 (2)O2—C10—N3119.9 (3)
N4—N3—C9114.5 (2)O2—C10—C11125.9 (3)
C10—N3—C9119.0 (2)N3—C10—C11114.2 (2)
C13—N4—N3116.7 (2)C12—C11—C10122.0 (3)
C12—N5—C14117.1 (2)C12—C11—Cl1122.9 (2)
C12—N5—C17117.2 (2)C10—C11—Cl1115.0 (2)
C14—N5—C17111.4 (2)C11—C12—N5124.4 (3)
C8—O1—C7102.5 (2)C11—C12—C13115.1 (2)
C15—O3—C16110.0 (3)N5—C12—C13120.5 (2)
C2—C1—C6120.8 (4)N4—C13—C12125.5 (2)
C2—C1—H1119.6N4—C13—H13117.2
C6—C1—H1119.6C12—C13—H13117.2
C1—C2—C3119.5 (4)N5—C14—C15109.8 (3)
C1—C2—H2120.3N5—C14—H14A109.7
C3—C2—H2120.3C15—C14—H14A109.7
C4—C3—C2120.4 (4)N5—C14—H14B109.7
C4—C3—H3119.8C15—C14—H14B109.7
C2—C3—H3119.8H14A—C14—H14B108.2
C3—C4—C5120.8 (4)O3—C15—C14111.7 (3)
C3—C4—H4119.6O3—C15—H15A109.3
C5—C4—H4119.6C14—C15—H15A109.3
C6—C5—C4119.5 (4)O3—C15—H15B109.3
C6—C5—H5120.3C14—C15—H15B109.3
C4—C5—H5120.3H15A—C15—H15B107.9
C1—C6—C5119.2 (3)O3—C16—C17112.0 (3)
C1—C6—C7121.8 (3)O3—C16—H16A109.2
C5—C6—C7119.0 (3)C17—C16—H16A109.2
N1—C7—O1112.2 (3)O3—C16—H16B109.2
N1—C7—C6128.5 (3)C17—C16—H16B109.2
O1—C7—C6119.3 (3)H16A—C16—H16B107.9
N2—C8—O1113.1 (3)N5—C17—C16110.2 (3)
N2—C8—C9128.7 (3)N5—C17—H17A109.6
O1—C8—C9118.2 (3)C16—C17—H17A109.6
N3—C9—C8112.9 (3)N5—C17—H17B109.6
N3—C9—H9A109.0C16—C17—H17B109.6
C8—C9—H9A109.0H17A—C17—H17B108.1
N3—C9—H9B109.0
C7—N1—N2—C81.0 (3)N4—N3—C10—O2179.9 (3)
C10—N3—N4—C130.9 (4)C9—N3—C10—O25.1 (4)
C9—N3—N4—C13174.2 (3)N4—N3—C10—C110.5 (4)
C6—C1—C2—C30.1 (6)C9—N3—C10—C11175.3 (2)
C1—C2—C3—C40.5 (7)O2—C10—C11—C12178.2 (3)
C2—C3—C4—C50.4 (6)N3—C10—C11—C122.3 (4)
C3—C4—C5—C60.3 (6)O2—C10—C11—Cl13.5 (4)
C2—C1—C6—C50.8 (5)N3—C10—C11—Cl1176.01 (19)
C2—C1—C6—C7178.6 (4)C10—C11—C12—N5178.4 (2)
C4—C5—C6—C10.9 (5)Cl1—C11—C12—N53.4 (4)
C4—C5—C6—C7178.5 (3)C10—C11—C12—C132.5 (4)
N2—N1—C7—O10.7 (3)Cl1—C11—C12—C13175.65 (19)
N2—N1—C7—C6178.0 (3)C14—N5—C12—C11162.1 (3)
C8—O1—C7—N10.1 (3)C17—N5—C12—C1161.4 (4)
C8—O1—C7—C6178.7 (3)C14—N5—C12—C1316.9 (4)
C1—C6—C7—N1177.5 (3)C17—N5—C12—C13119.5 (3)
C5—C6—C7—N13.1 (5)N3—N4—C13—C120.6 (4)
C1—C6—C7—O13.9 (5)C11—C12—C13—N41.0 (4)
C5—C6—C7—O1175.5 (3)N5—C12—C13—N4179.8 (3)
N1—N2—C8—O11.0 (3)C12—N5—C14—C15167.2 (3)
N1—N2—C8—C9179.3 (3)C17—N5—C14—C1553.9 (4)
C7—O1—C8—N20.6 (3)C16—O3—C15—C1460.0 (5)
C7—O1—C8—C9179.7 (2)N5—C14—C15—O358.0 (4)
N4—N3—C9—C8125.5 (3)C15—O3—C16—C1758.7 (5)
C10—N3—C9—C859.1 (3)C12—N5—C17—C16168.4 (3)
N2—C8—C9—N353.4 (4)C14—N5—C17—C1652.8 (4)
O1—C8—C9—N3127.0 (3)O3—C16—C17—N555.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cl10.972.573.252 (3)127
C14—H14B···O2i0.972.573.373 (4)141
C13—H13···O2ii0.932.603.507 (3)165
C9—H9A···N2iii0.972.503.310 (4)141
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z.
 

Funding information

Funding for this research was provided by: Shanghai Municipal Education Commission of China; Shanghai University of Engineering Science (award No. 1–5300-16–020113).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFershtat, L. L., Kulikov, A. S., Ananyev, I. V., Struchkova, M. I. & Makhova, N. N. (2016). J. Heterocycl. Chem. 53, 102–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationGan, X. H., Hu, D. H., Li, P., Wu, J., Chen, X., Xue, W. & Song, B. (2016). Pest. Manag. Sci. 72, 534–543.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, D.-J., Zhang, J.-B. & Fu, H.-G. (2005). Chin. J. Synth. Chem. 13, 361–363.  CAS Google Scholar
First citationLiu, J. C., Wang, W. D. & He, H. W. (2014). Chin. J. Org. Chem. 37, 1447–1451.  Web of Science CSD CrossRef Google Scholar
First citationLuqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2015). Eur. J. Inorg. Chem. pp. 4935–4945.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPattison, G., Sandford, G., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2009). J. Org. Chem. 74, 5533–5540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShaikh, A. & Meshram, J. (2016). J. Heterocycl. Chem. 53, 1176–1182.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds