

IUCrData

ISSN 2414-3146

Received 28 February 2017 Accepted 8 March 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 1,3,4-oxadiazole; pyridazin-3-one; morpholino; hydrogen bonding.

CCDC reference: 1536569

Structural data: full structural data are available from iucrdata.iucr.org

4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4oxadiazol-2-yl)methyl]pyridazin-3(2*H*)-one

Yanwen Sun, Haolei Wu, Changheng Wei, Mei Gao, Zeyi Shen and Hongsen Li*

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China. *Correspondence e-mail: lihongsen19@163.com

In the title compound, $C_{17}H_{16}ClN_5O_3$, the phenyl and the oxadiazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular $C-H\cdots Cl$ contact present. In the crystal, molecules are linked by bifurcated $C-(H,H)\cdots O$ hydrogen bonds and a $C-H\cdots N$ hydrogen bond, forming layers parallel to the *ab* plane.

Structure description

1,3,4-Oxadiazole derivatives are a promising field of study because they possess good bioactivity (Liu *et al.*, 2014). This substructural unit has been used as a scaffold to design and synthesize chemical compounds with biological, medicinal and agricultural activities (Gan *et al.*, 2016; Shaikh & Meshram, 2016; Luqman *et al.*, 2015; Fershtat *et al.* 2016; Pattison *et al.*, 2009). A series of oxadiazoles containing a pyridazinone ring have been designed and synthesized, and we report herein on the crystal structure of one such compound.

The molecular structure of the title compound is shown in Fig. 1. The phenyl (C1–C6) and the oxadiazole (O1/N1/N2/C7/C8) rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine (N3/N4/C10–C13) ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine (O3/N5/C14–C17) ring has a chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular C–H···Cl contact present (Table 1, Fig. 1).

Figure 1

The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, molecules are linked by bifurcated C–(H,H)···O hydrogen bonds and C–H····N hydrogen bond bonds, forming layers parallel to the *ab* plane (Table 1 and Fig. 2).

Synthesis and crystallization

To a three-necked flask, 4,5-dichloro-2-((5- phenyl-1,3,4-oxadiazol-2-yl)methyl)-pyridazin-3-(2*H*)-one (3.0 g, 9.3 mmol; Li *et al.*, 2005) and morpholine (14.0 mmol, 1.22 g) were added and reacted at 333 K for 8 h in the presence of potassium carbonate (2 g) and 20 ml dry DMF. The reaction was monitored by TLC. On completion of the reaction, the mixture was poured into ice-water. The precipitate formed was collected by filtration, dried to give the pure title compound (yield 2.23 g, 64.2%). It was recrystallized from chloroform, ethyl acetate and petroleum (2:2:5) to give pale-yellow prismatic crystals (m.p. 461–463 K).

¹H NMR (CDCl₃): 3.47 (*t*, 4H), 3.86 (*t*, 4H), 5.64 (*s*, 2H), 7.53 (*m*, 3H), 7.68 (*s*, 1H), 8.06 (*m*, 2H). IR (KBr, cm⁻¹) ν 2957, 2857, 1641, 1593, 1549, 1487, 1446, 1423, 1257, 1117, 780.

Figure 2

A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1).

 Table 1

 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0.97	2.57	3.252 (3)	127
0.97	2.57	3.373 (4)	141
0.93	2.60	3.507 (3)	165
0.97	2.50	3.310 (4)	141
	<i>D</i> -H 0.97 0.97 0.93 0.97	D-H H···A 0.97 2.57 0.97 2.57 0.93 2.60 0.97 2.50	$D-H$ $H\cdots A$ $D\cdots A$ 0.97 2.57 3.252 (3) 0.97 2.57 3.373 (4) 0.93 2.60 3.507 (3) 0.97 2.50 3.310 (4)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x - 1, y, z.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{17}H_{16}ClN_5O_3$
M _r	373.80
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	293
a, b, c (Å)	4.7931 (7), 10.4177 (15), 33.685 (5)
$V(Å^3)$	1682.0 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.26
Crystal size (mm)	$0.20 \times 0.16 \times 0.11$
Data collection	
Diffractometer	Bruker SMART CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.658, 0.746
No. of measured, independent and	10022, 3282, 2995
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.096, 1.07
No. of reflections	3282
No. of parameters	235
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.21, -0.17
Absolute structure	Flack x determined using 1105 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.05 (3)

Computer programs: *SMART* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2013* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: Shanghai Municipal Education Commission of China; Shanghai University of Engineering Science (award No. 1–5300-16–020113).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fershtat, L. L., Kulikov, A. S., Ananyev, I. V., Struchkova, M. I. & Makhova, N. N. (2016). J. Heterocycl. Chem. 53, 102–108.

- Gan, X. H., Hu, D. H., Li, P., Wu, J., Chen, X., Xue, W. & Song, B. (2016). Pest. Manag. Sci. 72, 534–543.
- Li, D.-J., Zhang, J.-B. & Fu, H.-G. (2005). Chin. J. Synth. Chem. 13, 361–363.
- Liu, J. C., Wang, W. D. & He, H. W. (2014). Chin. J. Org. Chem. 37, 1447–1451.
- Luqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2015). *Eur. J. Inorg. Chem.* pp. 4935–4945.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pattison, G., Sandford, G., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2009). J. Org. Chem. 74, 5533–5540.
- Shaikh, A. & Meshram, J. (2016). J. Heterocycl. Chem. 53, 1176– 1182.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). **2**, x170370 [https://doi.org/10.1107/S2414314617003704]

4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2*H*)-one

Yanwen Sun, Haolei Wu, Changheng Wei, Mei Gao, Zeyi Shen and Hongsen Li

4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2H)-one

Crystal data

 $C_{17}H_{16}CIN_5O_3$ $M_r = 373.80$ Orthorhombic, $P2_{1}2_{1}2_1$ a = 4.7931 (7) Å b = 10.4177 (15) Å c = 33.685 (5) Å V = 1682.0 (4) Å³ Z = 4F(000) = 776

Data collection

Bruker SMART CCD area detector diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.658$, $T_{\max} = 0.746$ 10022 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.096$ S = 1.073282 reflections 235 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $D_x = 1.476 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3057 reflections $\theta = 4.6-50.4^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 293 KPrismatic, pale-yellow $0.20 \times 0.16 \times 0.11 \text{ mm}$

3282 independent reflections 2995 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -5 \rightarrow 5$ $k = -12 \rightarrow 12$ $l = -40 \rightarrow 41$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0555P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Absolute structure: Flack *x* determined using 1105 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.59088 (15)	-0.01685 (6)	0.76733 (2)	0.0433 (2)	
N1	0.4856 (6)	0.2459 (3)	0.59442 (7)	0.0529 (7)	
N2	0.3286 (6)	0.2745 (3)	0.62853 (7)	0.0486 (7)	
N3	0.0445 (5)	0.1687 (2)	0.70294 (7)	0.0368 (5)	
N4	-0.0777 (6)	0.2543 (2)	0.72725 (7)	0.0396 (5)	
N5	0.2681 (5)	0.1739 (2)	0.82072 (7)	0.0405 (6)	
01	0.1658 (5)	0.09679 (19)	0.60219 (6)	0.0451 (5)	
O2	0.3400 (4)	0.00730 (18)	0.68817 (6)	0.0452 (5)	
O3	0.2610 (7)	0.1845 (3)	0.90460 (7)	0.0765 (9)	
C1	0.3377 (8)	-0.0400 (4)	0.53314 (10)	0.0608 (10)	
H1	0.2004	-0.0757	0.5492	0.073*	
C2	0.4134 (11)	-0.1013 (4)	0.49869 (11)	0.0736 (11)	
H2	0.3278	-0.1779	0.4914	0.088*	
C3	0.6176 (10)	-0.0483 (4)	0.47491 (11)	0.0722 (11)	
Н3	0.6687	-0.0890	0.4514	0.087*	
C4	0.7437 (9)	0.0626 (4)	0.48555 (10)	0.0690 (11)	
H4	0.8819	0.0972	0.4694	0.083*	
C5	0.6695 (8)	0.1252 (4)	0.52024 (10)	0.0581 (9)	
Н5	0.7578	0.2012	0.5274	0.070*	
C6	0.4629 (7)	0.0738 (3)	0.54413 (8)	0.0462 (8)	
C7	0.3820 (7)	0.1421 (3)	0.57997 (8)	0.0430 (7)	
C8	0.1487 (7)	0.1844 (3)	0.63175 (8)	0.0400 (7)	
C9	-0.0686 (7)	0.1662 (3)	0.66278 (8)	0.0421 (7)	
H9A	-0.2075	0.2334	0.6602	0.050*	
H9B	-0.1610	0.0845	0.6584	0.050*	
C10	0.2450 (6)	0.0805 (3)	0.71332 (8)	0.0342 (6)	
C11	0.3255 (5)	0.0852 (2)	0.75441 (8)	0.0316 (6)	
C12	0.2033 (6)	0.1676 (2)	0.78069 (8)	0.0334 (6)	
C13	-0.0014 (6)	0.2522 (2)	0.76394 (8)	0.0378 (7)	
H13	-0.0863	0.3106	0.7810	0.045*	
C14	0.1841 (9)	0.2897 (3)	0.84206 (9)	0.0505 (9)	
H14A	-0.0167	0.2901	0.8456	0.061*	
H14B	0.2352	0.3650	0.8268	0.061*	
C15	0.3242 (10)	0.2938 (4)	0.88161 (10)	0.0663 (11)	
H15A	0.5245	0.2991	0.8778	0.080*	
H15B	0.2650	0.3702	0.8958	0.080*	
C16	0.3517 (11)	0.0713 (4)	0.88451 (10)	0.0739 (12)	
H16A	0.3067	-0.0032	0.9005	0.089*	
H16B	0.5528	0.0742	0.8814	0.089*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

C17	0.2186 (9)	0.0577 (3)	0.84467 (9)	0.0538 (9)	
H17A	0.2956	-0.0165	0.8311	0.065*	
H17B	0.0196	0.0444	0.8478	0.065*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0348 (4)	0.0369 (4)	0.0584 (4)	0.0064 (3)	0.0008 (3)	0.0035 (3)
N1	0.0579 (19)	0.0594 (17)	0.0416 (14)	-0.0151 (15)	0.0007 (13)	0.0019 (12)
N2	0.0553 (17)	0.0510 (14)	0.0395 (14)	-0.0093 (14)	-0.0015 (12)	0.0000 (11)
N3	0.0351 (13)	0.0353 (12)	0.0399 (12)	0.0023 (11)	0.0019 (10)	0.0019 (10)
N4	0.0379 (13)	0.0357 (12)	0.0451 (14)	0.0058 (11)	0.0071 (12)	0.0019 (10)
N5	0.0495 (15)	0.0341 (13)	0.0379 (13)	-0.0002 (12)	0.0075 (11)	0.0012 (10)
01	0.0496 (13)	0.0460 (11)	0.0396 (11)	-0.0079 (11)	0.0004 (9)	-0.0011 (9)
O2	0.0496 (13)	0.0407 (11)	0.0455 (11)	0.0067 (11)	0.0072 (9)	-0.0061 (9)
O3	0.108 (2)	0.0816 (18)	0.0397 (13)	0.0122 (19)	0.0130 (14)	0.0015 (12)
C1	0.062 (2)	0.072 (2)	0.0486 (19)	-0.007(2)	0.0062 (17)	-0.0053 (17)
C2	0.081 (3)	0.078 (3)	0.062 (2)	-0.004 (3)	0.000 (2)	-0.019 (2)
C3	0.077 (3)	0.094 (3)	0.046 (2)	0.007 (3)	0.005 (2)	-0.0082 (19)
C4	0.074 (3)	0.085 (3)	0.048 (2)	0.004 (2)	0.0156 (19)	0.0109 (19)
C5	0.067 (2)	0.062 (2)	0.0454 (19)	-0.0025 (19)	0.0026 (17)	0.0083 (15)
C6	0.0483 (19)	0.0574 (18)	0.0329 (15)	0.0057 (16)	-0.0071 (13)	0.0068 (13)
C7	0.0435 (17)	0.0503 (17)	0.0352 (14)	-0.0045 (15)	-0.0040 (13)	0.0107 (13)
C8	0.0439 (18)	0.0416 (15)	0.0345 (14)	0.0000 (14)	-0.0076 (13)	0.0044 (12)
C9	0.0376 (16)	0.0464 (16)	0.0422 (16)	0.0002 (15)	-0.0043 (14)	0.0006 (12)
C10	0.0294 (14)	0.0295 (13)	0.0438 (15)	-0.0030 (12)	0.0085 (12)	-0.0009 (12)
C11	0.0269 (13)	0.0256 (13)	0.0423 (15)	-0.0021 (11)	0.0031 (11)	0.0022 (11)
C12	0.0333 (14)	0.0265 (13)	0.0405 (14)	-0.0049 (12)	0.0063 (12)	0.0014 (11)
C13	0.0398 (16)	0.0288 (13)	0.0448 (16)	0.0040 (12)	0.0096 (13)	-0.0009 (12)
C14	0.066 (2)	0.0415 (16)	0.0437 (17)	-0.0024 (16)	0.0098 (16)	-0.0045 (13)
C15	0.080 (3)	0.068 (2)	0.0501 (19)	-0.006(2)	0.0091 (19)	-0.0116 (17)
C16	0.100 (4)	0.075 (2)	0.0470 (19)	0.025 (3)	0.008 (2)	0.0126 (17)
C17	0.073 (2)	0.0413 (16)	0.0475 (18)	0.0036 (17)	0.0125 (17)	0.0095 (14)

Geometric parameters (Å, °)

Cl1—Cl1	1.714 (3)	C4—C5	1.385 (5)
N1C7	1.285 (4)	C4—H4	0.9300
N1—N2	1.405 (4)	C5—C6	1.384 (5)
N2—C8	1.278 (4)	С5—Н5	0.9300
N3—N4	1.345 (3)	C6—C7	1.454 (4)
N3—C10	1.375 (4)	C8—C9	1.488 (4)
N3—C9	1.457 (4)	C9—H9A	0.9700
N4—C13	1.289 (4)	C9—H9B	0.9700
N5-C12	1.385 (4)	C10—C11	1.438 (4)
N5-C14	1.461 (4)	C11—C12	1.365 (4)
N5-C17	1.474 (4)	C12—C13	1.435 (4)
O1—C8	1.354 (3)	C13—H13	0.9300

01 07	1 2 62 (4)		1 402 (5)
01-07	1.363 (4)	C14—C15	1.493 (5)
O2—C10	1.228 (3)	C14—H14A	0.9700
O3—C15	1.411 (4)	C14—H14B	0.9700
O3—C16	1.427 (4)	C15—H15A	0.9700
C1—C2	1.373 (5)	C15—H15B	0.9700
C1—C6	1.380 (5)	C16—C17	1.493 (5)
C1—H1	0.9300	C16—H16A	0.9700
$C^2 - C^3$	1 380 (6)	C16—H16B	0.9700
$C_2 = C_3$	0.0300	C17 H17A	0.9700
$C_2 = C_1$	1 251 (6)	C17 H17P	0.9700
$C_3 = U_2$	1.551 (0)	С1/—п1/В	0.9700
С3—Н3	0.9300		
C7—N1—N2	106.3 (3)	С8—С9—Н9В	109.0
C8—N2—N1	106.0(2)	H9A—C9—H9B	107.8
N4_N3_C10	126.3(2)	Ω^2 $C10$ N3	10,0 110,0(3)
N4 N3 C9	120.5(2) 114.5(2)	02 - C10 - R3	117.7(3) 125.0(3)
114 - 113 - C9	114.3(2)	N2 C10 C11	123.9(3)
C10-N3-C9	119.0 (2)		114.2(2)
C13—N4—N3	116.7 (2)		122.0 (3)
C12—N5—C14	117.1 (2)	C12—C11—C11	122.9 (2)
C12—N5—C17	117.2 (2)	C10—C11—Cl1	115.0 (2)
C14—N5—C17	111.4 (2)	C11—C12—N5	124.4 (3)
C8—O1—C7	102.5 (2)	C11—C12—C13	115.1 (2)
C15—O3—C16	110.0 (3)	N5—C12—C13	120.5 (2)
C2—C1—C6	120.8 (4)	N4—C13—C12	125.5 (2)
C2—C1—H1	119.6	N4—C13—H13	117.2
C6—C1—H1	119.6	C12—C13—H13	117.2
C1—C2—C3	119.5 (4)	N5—C14—C15	109.8 (3)
C1—C2—H2	120.3	N5-C14-H14A	109.7
$C_3 - C_2 - H_2$	120.3	C15—C14—H14A	109.7
C_{4} C_{3} C_{2}	120.3 120.4(4)	N5_C14_H14B	109.7
C_{4} C_{3} H_{3}	110.8	C_{15} C_{14} H_{14B}	109.7
C_{1}	119.8	$U_{14} = C_{14} = U_{14} D$	109.7
$C_2 = C_3 = C_5$	119.0	$\begin{array}{c} \Pi 4A - \Pi 4B \\ \Omega 2 - \Pi 5 - \Pi 4 \\ \Omega 4B $	106.2
$C_3 - C_4 - C_5$	120.8 (4)	03 - 015 - 014	111.7 (3)
C3—C4—H4	119.6	03—CI5—HISA	109.3
С5—С4—Н4	119.6	C14—C15—H15A	109.3
C6—C5—C4	119.5 (4)	O3—C15—H15B	109.3
С6—С5—Н5	120.3	C14—C15—H15B	109.3
C4—C5—H5	120.3	H15A—C15—H15B	107.9
C1—C6—C5	119.2 (3)	O3—C16—C17	112.0 (3)
C1—C6—C7	121.8 (3)	O3—C16—H16A	109.2
C5—C6—C7	119.0 (3)	C17—C16—H16A	109.2
N1—C7—O1	112.2 (3)	O3—C16—H16B	109.2
N1—C7—C6	128.5 (3)	C17—C16—H16B	109.2
O1—C7—C6	119.3 (3)	H16A—C16—H16B	107.9
N2-C8-01	113.1 (3)	N5-C17-C16	110.2 (3)
N2-C8-C9	128 7 (3)	N5-C17-H17A	109.6
01 - C8 - C9	118 2 (3)	C_{16} C_{17} H_{17}	109.6
$N_3 C_9 C_8$	112.0 (3)	N5 C17 H17P	100.6
113-07-00	112.7 (3)	NJ-UI/-III/D	107.0

N3—C9—H9A C8—C9—H9A N3—C9—H9B	109.0 109.0 109.0	C16—C17—H17B H17A—C17—H17B	109.6 108.1
C7—N1—N2—C8 C10—N3—N4—C13 C9—N3—N4—C13 C6—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C2—C1—C6—C5 C2—C1—C6—C7	$\begin{array}{c} 1.0 (3) \\ -0.9 (4) \\ 174.2 (3) \\ 0.1 (6) \\ 0.5 (7) \\ -0.4 (6) \\ -0.3 (6) \\ -0.8 (5) \\ 178.6 (4) \end{array}$	N4—N3—C10—O2 C9—N3—C10—O2 N4—N3—C10—C11 C9—N3—C10—C11 O2—C10—C11—C12 N3—C10—C11—C12 O2—C10—C11—C11 N3—C10—C11—C11 N3—C10—C11—C11 C10—C11—C12—N5	179.9 (3) 5.1 (4) -0.5 (4) -175.3 (2) -178.2 (3) 2.3 (4) 3.5 (4) -176.01 (19) 178.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.9 (5) \\ -178.5 (3) \\ -0.7 (3) \\ 178.0 (3) \\ 0.1 (3) \\ -178.7 (3) \\ 177.5 (3) \\ -3.1 (5) \\ -3.9 (5) \end{array}$	Cl1—Cl1—Cl2—N5 Cl0—Cl1—Cl2—Cl3 Cl1—Cl1—Cl2—Cl3 Cl4—N5—Cl2—Cl1 Cl4—N5—Cl2—Cl1 Cl4—N5—Cl2—Cl3 Cl7—N5—Cl2—Cl3 N3—N4—Cl3—Cl2 Cl1—Cl2—Cl3—N4	$\begin{array}{c} -3.4 (4) \\ -2.5 (4) \\ 175.65 (19) \\ 162.1 (3) \\ -61.4 (4) \\ -16.9 (4) \\ 119.5 (3) \\ 0.6 (4) \\ 10 (4) \end{array}$
C5 - C6 - C7 - O1 $N1 - N2 - C8 - O1$ $N1 - N2 - C8 - C9$ $C7 - O1 - C8 - N2$ $C7 - O1 - C8 - C9$ $N4 - N3 - C9 - C8$ $C10 - N3 - C9 - C8$ $N2 - C8 - C9 - N3$ $O1 - C8 - C9 - N3$	$ \begin{array}{c} 175.5 (3) \\ -1.0 (3) \\ 179.3 (3) \\ 0.6 (3) \\ -179.7 (2) \\ 125.5 (3) \\ -59.1 (3) \\ -53.4 (4) \\ 127.0 (3) \end{array} $	N5-C12-C13-N4 C12-N5-C14-C15 C17-N5-C14-C15 C16-O3-C15-C14 N5-C14-C15-O3 C15-O3-C16-C17 C12-N5-C17-C16 C14-N5-C17-C16 O3-C16-C17-N5	$\begin{array}{c} -179.8 (3) \\ -179.8 (3) \\ -167.2 (3) \\ 53.9 (4) \\ 60.0 (5) \\ -58.0 (4) \\ -58.7 (5) \\ 168.4 (3) \\ -52.8 (4) \\ 55.0 (5) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C17—H17A…Cl1	0.97	2.57	3.252 (3)	127
C14—H14 B ···O2 ⁱ	0.97	2.57	3.373 (4)	141
C13—H13…O2 ⁱⁱ	0.93	2.60	3.507 (3)	165
C9—H9A····N2 ⁱⁱⁱ	0.97	2.50	3.310 (4)	141

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*, *y*+1/2, -*z*+3/2; (iii) *x*-1, *y*, *z*.