metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis,trans-Di­carbonyl­di­chlorido­(1,10-phenanthroline-5,6-dione-κ2N,N′)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, bDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and cDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 February 2017; accepted 21 February 2017; online 28 February 2017)

In the title compound, [RuCl2(C12H6N2O2)(CO)2], the RuII atom (site symmetry ..2) adopts a distorted octa­hedral coordination sphere defined by two carbonyl C atoms, two Cl anions and two N atoms from the chelating 1,10-phenanthroline-5,6-dione (phendione) ligand. The carbonyl ligands are cis to each other, while the Cl atoms are trans. In the phendione ligand, the C=O [1.239 (5) Å] and the C—C [1.537 (5) Å] bond lengths in the diketone moiety have typical values. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds lead to the formation of a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­carbonyl­ruthenium(II) complexes bearing bidentate polypyridyl co-ligands such as 2,2'-bi­pyridine and 1,10-phenanthroline can catalyse a variety of useful chemical reactions such as multi-electron reductions of CO2 (Machan et al., 2015[Machan, C. W., Sampson, M. D. & Kubiak, C. P. (2015). J. Am. Chem. Soc. 137, 8564-8571.]). In addition, metal complexes with 1,10-phenanthroline-5,6-dione (phendione) are also of inter­est due to its dual chelating ability as either a di­imine (N,N′-bidentate) or a dioxolene (O,O′-bidentate) (Calderazzo et al., 1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]; Fujihara et al., 2003[Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221-3226.]). We report here the synthesis and structural characterization of [Ru(CO)2Cl2(phendione)].

The neutral complex crystallizes without disorder or solvent. The mol­ecule has crystallographically imposed twofold symmetry with the RuII atom located on the twofold rotation axis. As shown in Fig. 1[link], the RuII atom has a distorted octa­hedral coordination environment, with two N atoms of the bidentate phendione ligand, two carbonyl carbon atoms and two chloride ions completing the first coordination sphere. Thus, the crystal structure indicates that the phendione ligand selectively coordinates to the RuII atom in the N,N′-bidentate mode. The title compound displays a cis orientation of the carbonyl ligands and a trans orientation of the chlorido ligands. The Ru—C—O bond angle of the complex [176.1 (3)°] is nearly linear, and the C≡O [1.128 (4) Å], Ru—C [1.893 (4) Å], Ru—Cl [2.3880 (7) Å] and Ru—N [2.116 (3) Å] distances are comparable to those in similar complexes (Ding et al., 2016[Ding, X., Tuikka, M. J., Hirva, P., Kukushkin, V. Y., Novikov, A. S. & Haukka, M. (2016). CrystEngComm, 18, 1987-1995.]; Oyama et al., 2009[Oyama, D., Asuma, A., Hamada, T. & Takase, T. (2009). Inorg. Chim. Acta, 362, 2581-2588.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (y, x, −z + 1).

It is important to utilize the results of the structure determination in order to distinguish the carbon–oxygen bond as double or as single in quinone-based ligands. The C=O bond length of metal-free phendione is 1.210 Å (averaged) (Calderazzo et al., 1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]), while C=O bond lengths of metal complexes containing phendione as a ligand are in the range 1.154–1.264 Å (Fujihara et al., 2003[Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221-3226.], 2004[Fujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645-652.]; Larsson & Öhrström, 2004[Larsson, K. & Öhrström, L. (2004). Inorg. Chim. Acta, 357, 657-664.]; Yokoyama et al., 2006[Yokoyama, K., Wakabayashi, A., Noguchi, K., Nakamura, N. & Ohno, H. (2006). Inorg. Chim. Acta, 359, 807-814.]) and the C—O bond lengths of the corresponding diol ligand are 1.364–1.367 Å (Guan et al., 2008[Guan, X.-H., Wu, J.-Z., Yu, Y. & Yang, P. (2008). Acta Cryst. C64, m311-m313.]; Larsson & Öhrström, 2004[Larsson, K. & Öhrström, L. (2004). Inorg. Chim. Acta, 357, 657-664.]). The C=O bond length of the phendione ligand in the complex [1.239 (5) Å] is nearly the same as that of metal-free phendione (Calderazzo et al., 1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]) or those of other RuII–phendione complexes (Fujihara et al., 2003[Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221-3226.], 2004[Fujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645-652.]; Yokoyama et al., 2006[Yokoyama, K., Wakabayashi, A., Noguchi, K., Nakamura, N. & Ohno, H. (2006). Inorg. Chim. Acta, 359, 807-814.]), indicating that the phendione ligand in the complex retains its double-bond character. Additionally, the C7—C7i [symmetry code: (i) y, x, −z + 1] distance in the diketone moiety of phendione represents a typical single bond [1.537 (5) Å], compared with 1.534 Å in the metal-free compound (Calderazzo et al., 1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]).

In the crystal, (ar­yl)C—H⋯Cl and (ar­yl)C—H⋯O hydrogen-bonds (Table 1[link]) lead to the formation of a three-dimensional supra­molecular network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H1⋯Cl1i 0.95 2.66 3.478 (4) 145
C3—H2⋯O2ii 0.95 2.53 3.206 (4) 128
C4—H3⋯Cl1iii 0.95 2.78 3.660 (4) 155
Symmetry codes: (i) [y-{\script{1\over 2}}, -x+{\script{3\over 2}}, z+{\script{1\over 4}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{5\over 2}}, -z+{\script{7\over 4}}]; (iii) y, x+1, -z+1.
[Figure 2]
Figure 2
A view approximately along the b axis of the title compound, with hydrogen bonds shown as dashed lines (for numerical values see Table 1[link]).

Synthesis and crystallization

The ligand 1,10-phenanthroline-5,6-dione (phendione) was prepared as described by Yamada et al. (1992[Yamada, M., Tanaka, Y., Yoshimoto, Y., Kuroda, S. & Shimao, I. (1992). Bull. Chem. Soc. Jpn, 65, 1006-1011.]). It proved to be analytically and spectroscopically pure (IR and 1H NMR data). A methanol solution (5 ml) containing [Ru(CO)2Cl2]n (50 mg) and phendione (70 mg) was refluxed for 1 h. The reaction mixture was allowed to stand at 277 K overnight. The light-brown-colored precipitate was collected by filtration and washed with diethyl ether, and then dried under vacuum (yield 56 mg, 38%). Crystals suitable for the X-ray diffraction experiment were grown by diffusion of diethyl ether into a DMF solution of the complex over a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RuCl2(C12H6N2O2)(CO)2]
Mr 438.19
Crystal system, space group Tetragonal, P43212
Temperature (K) 93
a, c (Å) 8.8003 (6), 19.772 (2)
V3) 1531.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.812, 0.870
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 15312, 1728, 1653
Rint 0.039
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.08
No. of reflections 1728
No. of parameters 105
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.26
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 657 Friedel pairs
Absolute structure parameter −0.02 (5)
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

cis,trans-Dicarbonyldichlorido(1,10-phenanthroline-5,6-dione-κ2N,N')ruthenium(II) top
Crystal data top
[RuCl2(C12H6N2O2)(CO)2]Dx = 1.901 Mg m3
Mr = 438.19Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P43212Cell parameters from 4550 reflections
Hall symbol: P 4nw 2abwθ = 3.1–27.5°
a = 8.8003 (6) ŵ = 1.39 mm1
c = 19.772 (2) ÅT = 93 K
V = 1531.3 (3) Å3Prism, brown
Z = 40.15 × 0.15 × 0.10 mm
F(000) = 856.00
Data collection top
Rigaku Saturn724
diffractometer
1653 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.039
ω scansθmax = 27.3°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1011
Tmin = 0.812, Tmax = 0.870k = 1111
15312 measured reflectionsl = 2525
1728 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.6276P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
1728 reflectionsΔρmax = 0.89 e Å3
105 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 657 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Secondary atom site location: difference Fourier map
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.62055 (3)0.62055 (3)0.50000.02048 (10)
Cl10.54739 (9)0.70536 (9)0.38999 (3)0.02686 (17)
O10.5929 (4)0.3029 (3)0.44361 (13)0.0466 (7)
O21.0393 (4)1.2397 (3)0.52859 (11)0.0386 (7)
N10.6585 (3)0.8483 (3)0.52981 (13)0.0229 (6)
C10.6036 (4)0.4194 (4)0.46692 (15)0.0311 (7)
C20.5590 (4)0.9404 (4)0.56163 (16)0.0306 (8)
C30.5959 (5)1.0865 (4)0.58117 (16)0.0360 (9)
C40.7374 (5)1.1435 (4)0.56831 (16)0.0326 (8)
C50.8430 (4)1.0512 (4)0.53461 (14)0.0239 (7)
C60.7996 (4)0.9032 (4)0.51691 (13)0.0210 (6)
C70.9973 (4)1.1078 (5)0.51736 (14)0.0293 (7)
H10.45980.90340.57090.0368*
H20.52261.14760.60370.0432*
H30.76381.24360.58190.0391*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02169 (12)0.02169 (12)0.01805 (14)0.00119 (14)0.00289 (9)0.00289 (9)
Cl10.0252 (4)0.0342 (5)0.0211 (4)0.0016 (3)0.0024 (3)0.0085 (3)
O10.072 (3)0.0292 (14)0.0389 (14)0.0112 (14)0.0159 (14)0.0037 (12)
O20.0642 (18)0.0247 (13)0.0270 (12)0.0067 (12)0.0128 (12)0.0002 (10)
N10.0259 (14)0.0229 (14)0.0198 (11)0.0057 (10)0.0031 (10)0.0028 (10)
C10.0369 (18)0.0338 (18)0.0226 (14)0.0064 (15)0.0094 (14)0.0043 (13)
C20.0307 (18)0.0354 (19)0.0258 (15)0.0123 (15)0.0056 (14)0.0015 (14)
C30.048 (3)0.0335 (19)0.0271 (16)0.0165 (16)0.0025 (15)0.0074 (13)
C40.049 (3)0.0230 (17)0.0260 (16)0.0075 (15)0.0040 (15)0.0040 (13)
C50.0314 (18)0.0228 (15)0.0175 (13)0.0008 (13)0.0047 (11)0.0008 (12)
C60.0209 (14)0.0255 (16)0.0166 (12)0.0045 (13)0.0011 (11)0.0029 (11)
C70.0389 (19)0.0285 (17)0.0205 (14)0.0058 (15)0.0084 (13)0.0033 (13)
Geometric parameters (Å, º) top
Ru1—Cl12.3880 (7)C2—C31.381 (5)
Ru1—Cl1i2.3880 (7)C3—C41.366 (6)
Ru1—N12.116 (3)C4—C51.403 (5)
Ru1—N1i2.116 (3)C5—C61.401 (5)
Ru1—C11.893 (4)C5—C71.486 (5)
Ru1—C1i1.893 (4)C6—C6i1.452 (4)
O1—C11.128 (4)C7—C7i1.537 (5)
O2—C71.239 (5)C2—H10.950
N1—C21.349 (5)C3—H20.950
N1—C61.356 (4)C4—H30.950
Ru1···O1i3.020 (3)C7···Cl1ix3.331 (4)
Ru1···C2i3.115 (4)C7···Cl1vi3.251 (3)
Ru1···C6i2.963 (3)Ru1···H13.1883
O1···C1i3.531 (5)Ru1···H1i3.1883
O2···O2i2.739 (4)O1···H1i3.0752
O2···C42.897 (5)O2···H32.6443
N1···C42.794 (5)N1···H23.2400
C1···C2i3.258 (5)C1···H1i2.7657
C2···C52.735 (5)C2···H33.2444
C3···C62.726 (5)C4···H13.2305
C5···C5i2.930 (5)C5···H23.2454
C6···C7i2.916 (5)C6···H13.1755
Cl1···O2ii3.433 (3)C6···H33.2750
Cl1···C2iii3.478 (4)C7···H32.6986
Cl1···C7iv3.331 (4)H1···H22.3113
Cl1···C7ii3.251 (3)H2···H32.3241
O1···N1iv3.517 (4)Cl1···H1iii2.6578
O1···C2iv3.391 (5)Cl1···H2iii3.3550
O1···C3v3.320 (5)Cl1···H3xi2.7786
O1···C3iv3.279 (5)O1···H2v3.5019
O1···C4v3.109 (5)O1···H3v3.1641
O1···C4iv3.286 (5)O2···H1vii3.0084
O1···C5iv3.408 (4)O2···H2viii2.5348
O1···C6iv3.494 (4)O2···H3viii3.3956
O2···Cl1vi3.433 (3)C1···H3v3.0904
O2···C2vii3.440 (5)C4···H2viii3.4731
O2···C3viii3.206 (4)C7···H2viii3.3448
N1···O1ix3.517 (4)H1···Cl1x2.6578
C1···C4v3.362 (5)H1···O2xi3.0084
C2···Cl1x3.478 (4)H2···Cl1x3.3550
C2···O1ix3.391 (5)H2···O1xii3.5019
C2···O2xi3.440 (5)H2···O2xiii2.5348
C3···O1xii3.320 (5)H2···C4xiii3.4731
C3···O1ix3.279 (5)H2···C7xiii3.3448
C3···O2xiii3.206 (4)H2···H3xiii2.7802
C4···O1xii3.109 (5)H3···Cl1vii2.7786
C4···O1ix3.286 (5)H3···O1xii3.1641
C4···C1xii3.362 (5)H3···O2xiii3.3956
C5···O1ix3.408 (4)H3···C1xii3.0904
C6···O1ix3.494 (4)H3···H2viii2.7802
Cl1—Ru1—Cl1i176.52 (3)N1—C2—C3122.5 (4)
Cl1—Ru1—N190.01 (8)C2—C3—C4120.3 (4)
Cl1—Ru1—N1i87.27 (8)C3—C4—C5118.7 (3)
Cl1—Ru1—C187.50 (10)C4—C5—C6118.4 (3)
Cl1—Ru1—C1i95.00 (10)C4—C5—C7121.3 (3)
Cl1i—Ru1—N187.27 (8)C6—C5—C7120.2 (3)
Cl1i—Ru1—N1i90.01 (8)N1—C6—C5122.2 (3)
Cl1i—Ru1—C195.00 (10)N1—C6—C6i116.0 (3)
Cl1i—Ru1—C1i87.50 (10)C5—C6—C6i121.8 (3)
N1—Ru1—N1i77.18 (10)O2—C7—C5123.1 (3)
N1—Ru1—C1174.02 (13)O2—C7—C7i119.0 (3)
N1—Ru1—C1i97.26 (13)C5—C7—C7i117.9 (3)
N1i—Ru1—C197.26 (13)N1—C2—H1118.764
N1i—Ru1—C1i174.02 (13)C3—C2—H1118.772
C1—Ru1—C1i88.38 (15)C2—C3—H2119.871
Ru1—N1—C2126.6 (3)C4—C3—H2119.866
Ru1—N1—C6115.43 (19)C3—C4—H3120.672
C2—N1—C6117.9 (3)C5—C4—H3120.668
Ru1—C1—O1176.1 (3)
Cl1—Ru1—N1—C294.41 (19)C6—N1—C2—C30.0 (5)
Cl1—Ru1—N1—C687.72 (16)N1—C2—C3—C40.3 (5)
Cl1—Ru1—N1i—C2i87.76 (19)C2—C3—C4—C50.5 (5)
Cl1—Ru1—N1i—C6i90.11 (16)C3—C4—C5—C61.4 (5)
Cl1i—Ru1—N1—C287.76 (19)C3—C4—C5—C7178.2 (3)
Cl1i—Ru1—N1—C690.11 (16)C4—C5—C6—N11.6 (4)
Cl1i—Ru1—N1i—C2i94.41 (19)C4—C5—C6—C6i178.8 (3)
Cl1i—Ru1—N1i—C6i87.72 (16)C4—C5—C7—O23.4 (5)
N1—Ru1—N1i—C2i178.4 (3)C4—C5—C7—C7i177.9 (3)
N1—Ru1—N1i—C6i0.53 (16)C6—C5—C7—O2176.2 (3)
N1i—Ru1—N1—C2178.4 (3)C6—C5—C7—C7i2.5 (4)
N1i—Ru1—N1—C60.53 (16)C7—C5—C6—N1178.0 (3)
C1i—Ru1—N1—C20.6 (3)C7—C5—C6—C6i1.6 (4)
C1i—Ru1—N1—C6177.23 (18)N1—C6—C6i—N1i1.9 (4)
C1—Ru1—N1i—C2i0.6 (3)N1—C6—C6i—C5i178.5 (3)
C1—Ru1—N1i—C6i177.23 (18)C5—C6—C6i—N1i178.5 (3)
Ru1—N1—C2—C3177.77 (18)C5—C6—C6i—C5i1.1 (4)
Ru1—N1—C6—C5178.98 (16)O2—C7—C7i—O2i5.5 (4)
Ru1—N1—C6—C6i1.4 (3)O2—C7—C7i—C5i175.8 (3)
C2—N1—C6—C50.9 (4)C5—C7—C7i—O2i175.8 (3)
C2—N1—C6—C6i179.5 (3)C5—C7—C7i—C5i2.9 (4)
Symmetry codes: (i) y, x, z+1; (ii) x+3/2, y1/2, z+3/4; (iii) y+3/2, x+1/2, z1/4; (iv) y+3/2, x1/2, z1/4; (v) x, y1, z; (vi) x+3/2, y+1/2, z+3/4; (vii) y, x+1, z+1; (viii) x+1/2, y+5/2, z+5/4; (ix) y+1/2, x+3/2, z+1/4; (x) y1/2, x+3/2, z+1/4; (xi) y1, x, z+1; (xii) x, y+1, z; (xiii) x1/2, y+5/2, z+5/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···Cl1x0.952.663.478 (4)145
C3—H2···O2xiv0.952.533.206 (4)128
C4—H3···Cl1vii0.952.783.660 (4)155
Symmetry codes: (vii) y, x+1, z+1; (x) y1/2, x+3/2, z+1/4; (xiv) x1/2, y+5/2, z+7/4.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (award No. 25410059; Grant-in-Aid for Scientific Research (C)).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.  Web of Science CSD CrossRef Google Scholar
First citationDing, X., Tuikka, M. J., Hirva, P., Kukushkin, V. Y., Novikov, A. S. & Haukka, M. (2016). CrystEngComm, 18, 1987–1995.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221–3226.  Web of Science CSD CrossRef Google Scholar
First citationFujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645–652.  Web of Science CSD CrossRef Google Scholar
First citationGuan, X.-H., Wu, J.-Z., Yu, Y. & Yang, P. (2008). Acta Cryst. C64, m311–m313.  CrossRef IUCr Journals Google Scholar
First citationLarsson, K. & Öhrström, L. (2004). Inorg. Chim. Acta, 357, 657–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationMachan, C. W., Sampson, M. D. & Kubiak, C. P. (2015). J. Am. Chem. Soc. 137, 8564–8571.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOyama, D., Asuma, A., Hamada, T. & Takase, T. (2009). Inorg. Chim. Acta, 362, 2581–2588.  CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, M., Tanaka, Y., Yoshimoto, Y., Kuroda, S. & Shimao, I. (1992). Bull. Chem. Soc. Jpn, 65, 1006–1011.  CrossRef CAS Web of Science Google Scholar
First citationYokoyama, K., Wakabayashi, A., Noguchi, K., Nakamura, N. & Ohno, H. (2006). Inorg. Chim. Acta, 359, 807–814.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds