metal-organic compounds
cis,trans-Dicarbonyldichlorido(1,10-phenanthroline-5,6-dione-κ2N,N′)ruthenium(II)
aInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, bDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and cDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp
In the title compound, [RuCl2(C12H6N2O2)(CO)2], the RuII atom (site symmetry ..2) adopts a distorted octahedral coordination sphere defined by two carbonyl C atoms, two Cl− anions and two N atoms from the chelating 1,10-phenanthroline-5,6-dione (phendione) ligand. The carbonyl ligands are cis to each other, while the Cl atoms are trans. In the phendione ligand, the C=O [1.239 (5) Å] and the C—C [1.537 (5) Å] bond lengths in the diketone moiety have typical values. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds lead to the formation of a three-dimensional supramolecular network.
Keywords: crystal structure; ruthenium(II) complex; o-quinonoid framework; phenanthroline derivative.
CCDC reference: 1533844
Structure description
Dicarbonylruthenium(II) complexes bearing bidentate polypyridyl co-ligands such as 2,2'-bipyridine and 1,10-phenanthroline can catalyse a variety of useful chemical reactions such as multi-electron reductions of CO2 (Machan et al., 2015). In addition, metal complexes with 1,10-phenanthroline-5,6-dione (phendione) are also of interest due to its dual chelating ability as either a diimine (N,N′-bidentate) or a dioxolene (O,O′-bidentate) (Calderazzo et al., 1999; Fujihara et al., 2003). We report here the synthesis and structural characterization of [Ru(CO)2Cl2(phendione)].
The neutral complex crystallizes without disorder or solvent. The molecule has crystallographically imposed twofold symmetry with the RuII atom located on the twofold rotation axis. As shown in Fig. 1, the RuII atom has a distorted octahedral coordination environment, with two N atoms of the bidentate phendione ligand, two carbonyl carbon atoms and two chloride ions completing the first coordination sphere. Thus, the indicates that the phendione ligand selectively coordinates to the RuII atom in the N,N′-bidentate mode. The title compound displays a cis orientation of the carbonyl ligands and a trans orientation of the chlorido ligands. The Ru—C—O bond angle of the complex [176.1 (3)°] is nearly linear, and the C≡O [1.128 (4) Å], Ru—C [1.893 (4) Å], Ru—Cl [2.3880 (7) Å] and Ru—N [2.116 (3) Å] distances are comparable to those in similar complexes (Ding et al., 2016; Oyama et al., 2009).
It is important to utilize the results of the et al., 1999), while C=O bond lengths of metal complexes containing phendione as a ligand are in the range 1.154–1.264 Å (Fujihara et al., 2003, 2004; Larsson & Öhrström, 2004; Yokoyama et al., 2006) and the C—O bond lengths of the corresponding diol ligand are 1.364–1.367 Å (Guan et al., 2008; Larsson & Öhrström, 2004). The C=O bond length of the phendione ligand in the complex [1.239 (5) Å] is nearly the same as that of metal-free phendione (Calderazzo et al., 1999) or those of other RuII–phendione complexes (Fujihara et al., 2003, 2004; Yokoyama et al., 2006), indicating that the phendione ligand in the complex retains its double-bond character. Additionally, the C7—C7i [symmetry code: (i) y, x, −z + 1] distance in the diketone moiety of phendione represents a typical single bond [1.537 (5) Å], compared with 1.534 Å in the metal-free compound (Calderazzo et al., 1999).
in order to distinguish the carbon–oxygen bond as double or as single in quinone-based ligands. The C=O bond length of metal-free phendione is 1.210 Å (averaged) (CalderazzoIn the crystal, (aryl)C—H⋯Cl and (aryl)C—H⋯O hydrogen-bonds (Table 1) lead to the formation of a three-dimensional supramolecular network (Fig. 2).
Synthesis and crystallization
The ligand 1,10-phenanthroline-5,6-dione (phendione) was prepared as described by Yamada et al. (1992). It proved to be analytically and spectroscopically pure (IR and 1H NMR data). A methanol solution (5 ml) containing [Ru(CO)2Cl2]n (50 mg) and phendione (70 mg) was refluxed for 1 h. The reaction mixture was allowed to stand at 277 K overnight. The light-brown-colored precipitate was collected by filtration and washed with diethyl ether, and then dried under vacuum (yield 56 mg, 38%). Crystals suitable for the X-ray diffraction experiment were grown by diffusion of diethyl ether into a DMF solution of the complex over a few days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1533844
https://doi.org/10.1107/S2414314617002887/wm4039sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002887/wm4039Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002887/wm4039Isup3.mol
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[RuCl2(C12H6N2O2)(CO)2] | Dx = 1.901 Mg m−3 |
Mr = 438.19 | Mo Kα radiation, λ = 0.71075 Å |
Tetragonal, P43212 | Cell parameters from 4550 reflections |
Hall symbol: P 4nw 2abw | θ = 3.1–27.5° |
a = 8.8003 (6) Å | µ = 1.39 mm−1 |
c = 19.772 (2) Å | T = 93 K |
V = 1531.3 (3) Å3 | Prism, brown |
Z = 4 | 0.15 × 0.15 × 0.10 mm |
F(000) = 856.00 |
Rigaku Saturn724 diffractometer | 1653 reflections with F2 > 2.0σ(F2) |
Detector resolution: 7.111 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 27.3° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −10→11 |
Tmin = 0.812, Tmax = 0.870 | k = −11→11 |
15312 measured reflections | l = −25→25 |
1728 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.6276P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
1728 reflections | Δρmax = 0.89 e Å−3 |
105 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 657 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (5) |
Secondary atom site location: difference Fourier map |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.62055 (3) | 0.62055 (3) | 0.5000 | 0.02048 (10) | |
Cl1 | 0.54739 (9) | 0.70536 (9) | 0.38999 (3) | 0.02686 (17) | |
O1 | 0.5929 (4) | 0.3029 (3) | 0.44361 (13) | 0.0466 (7) | |
O2 | 1.0393 (4) | 1.2397 (3) | 0.52859 (11) | 0.0386 (7) | |
N1 | 0.6585 (3) | 0.8483 (3) | 0.52981 (13) | 0.0229 (6) | |
C1 | 0.6036 (4) | 0.4194 (4) | 0.46692 (15) | 0.0311 (7) | |
C2 | 0.5590 (4) | 0.9404 (4) | 0.56163 (16) | 0.0306 (8) | |
C3 | 0.5959 (5) | 1.0865 (4) | 0.58117 (16) | 0.0360 (9) | |
C4 | 0.7374 (5) | 1.1435 (4) | 0.56831 (16) | 0.0326 (8) | |
C5 | 0.8430 (4) | 1.0512 (4) | 0.53461 (14) | 0.0239 (7) | |
C6 | 0.7996 (4) | 0.9032 (4) | 0.51691 (13) | 0.0210 (6) | |
C7 | 0.9973 (4) | 1.1078 (5) | 0.51736 (14) | 0.0293 (7) | |
H1 | 0.4598 | 0.9034 | 0.5709 | 0.0368* | |
H2 | 0.5226 | 1.1476 | 0.6037 | 0.0432* | |
H3 | 0.7638 | 1.2436 | 0.5819 | 0.0391* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.02169 (12) | 0.02169 (12) | 0.01805 (14) | −0.00119 (14) | −0.00289 (9) | 0.00289 (9) |
Cl1 | 0.0252 (4) | 0.0342 (5) | 0.0211 (4) | −0.0016 (3) | −0.0024 (3) | 0.0085 (3) |
O1 | 0.072 (3) | 0.0292 (14) | 0.0389 (14) | −0.0112 (14) | −0.0159 (14) | −0.0037 (12) |
O2 | 0.0642 (18) | 0.0247 (13) | 0.0270 (12) | −0.0067 (12) | −0.0128 (12) | 0.0002 (10) |
N1 | 0.0259 (14) | 0.0229 (14) | 0.0198 (11) | 0.0057 (10) | 0.0031 (10) | 0.0028 (10) |
C1 | 0.0369 (18) | 0.0338 (18) | 0.0226 (14) | −0.0064 (15) | −0.0094 (14) | 0.0043 (13) |
C2 | 0.0307 (18) | 0.0354 (19) | 0.0258 (15) | 0.0123 (15) | 0.0056 (14) | 0.0015 (14) |
C3 | 0.048 (3) | 0.0335 (19) | 0.0271 (16) | 0.0165 (16) | 0.0025 (15) | −0.0074 (13) |
C4 | 0.049 (3) | 0.0230 (17) | 0.0260 (16) | 0.0075 (15) | −0.0040 (15) | −0.0040 (13) |
C5 | 0.0314 (18) | 0.0228 (15) | 0.0175 (13) | 0.0008 (13) | −0.0047 (11) | 0.0008 (12) |
C6 | 0.0209 (14) | 0.0255 (16) | 0.0166 (12) | 0.0045 (13) | −0.0011 (11) | 0.0029 (11) |
C7 | 0.0389 (19) | 0.0285 (17) | 0.0205 (14) | −0.0058 (15) | −0.0084 (13) | 0.0033 (13) |
Ru1—Cl1 | 2.3880 (7) | C2—C3 | 1.381 (5) |
Ru1—Cl1i | 2.3880 (7) | C3—C4 | 1.366 (6) |
Ru1—N1 | 2.116 (3) | C4—C5 | 1.403 (5) |
Ru1—N1i | 2.116 (3) | C5—C6 | 1.401 (5) |
Ru1—C1 | 1.893 (4) | C5—C7 | 1.486 (5) |
Ru1—C1i | 1.893 (4) | C6—C6i | 1.452 (4) |
O1—C1 | 1.128 (4) | C7—C7i | 1.537 (5) |
O2—C7 | 1.239 (5) | C2—H1 | 0.950 |
N1—C2 | 1.349 (5) | C3—H2 | 0.950 |
N1—C6 | 1.356 (4) | C4—H3 | 0.950 |
Ru1···O1i | 3.020 (3) | C7···Cl1ix | 3.331 (4) |
Ru1···C2i | 3.115 (4) | C7···Cl1vi | 3.251 (3) |
Ru1···C6i | 2.963 (3) | Ru1···H1 | 3.1883 |
O1···C1i | 3.531 (5) | Ru1···H1i | 3.1883 |
O2···O2i | 2.739 (4) | O1···H1i | 3.0752 |
O2···C4 | 2.897 (5) | O2···H3 | 2.6443 |
N1···C4 | 2.794 (5) | N1···H2 | 3.2400 |
C1···C2i | 3.258 (5) | C1···H1i | 2.7657 |
C2···C5 | 2.735 (5) | C2···H3 | 3.2444 |
C3···C6 | 2.726 (5) | C4···H1 | 3.2305 |
C5···C5i | 2.930 (5) | C5···H2 | 3.2454 |
C6···C7i | 2.916 (5) | C6···H1 | 3.1755 |
Cl1···O2ii | 3.433 (3) | C6···H3 | 3.2750 |
Cl1···C2iii | 3.478 (4) | C7···H3 | 2.6986 |
Cl1···C7iv | 3.331 (4) | H1···H2 | 2.3113 |
Cl1···C7ii | 3.251 (3) | H2···H3 | 2.3241 |
O1···N1iv | 3.517 (4) | Cl1···H1iii | 2.6578 |
O1···C2iv | 3.391 (5) | Cl1···H2iii | 3.3550 |
O1···C3v | 3.320 (5) | Cl1···H3xi | 2.7786 |
O1···C3iv | 3.279 (5) | O1···H2v | 3.5019 |
O1···C4v | 3.109 (5) | O1···H3v | 3.1641 |
O1···C4iv | 3.286 (5) | O2···H1vii | 3.0084 |
O1···C5iv | 3.408 (4) | O2···H2viii | 2.5348 |
O1···C6iv | 3.494 (4) | O2···H3viii | 3.3956 |
O2···Cl1vi | 3.433 (3) | C1···H3v | 3.0904 |
O2···C2vii | 3.440 (5) | C4···H2viii | 3.4731 |
O2···C3viii | 3.206 (4) | C7···H2viii | 3.3448 |
N1···O1ix | 3.517 (4) | H1···Cl1x | 2.6578 |
C1···C4v | 3.362 (5) | H1···O2xi | 3.0084 |
C2···Cl1x | 3.478 (4) | H2···Cl1x | 3.3550 |
C2···O1ix | 3.391 (5) | H2···O1xii | 3.5019 |
C2···O2xi | 3.440 (5) | H2···O2xiii | 2.5348 |
C3···O1xii | 3.320 (5) | H2···C4xiii | 3.4731 |
C3···O1ix | 3.279 (5) | H2···C7xiii | 3.3448 |
C3···O2xiii | 3.206 (4) | H2···H3xiii | 2.7802 |
C4···O1xii | 3.109 (5) | H3···Cl1vii | 2.7786 |
C4···O1ix | 3.286 (5) | H3···O1xii | 3.1641 |
C4···C1xii | 3.362 (5) | H3···O2xiii | 3.3956 |
C5···O1ix | 3.408 (4) | H3···C1xii | 3.0904 |
C6···O1ix | 3.494 (4) | H3···H2viii | 2.7802 |
Cl1—Ru1—Cl1i | 176.52 (3) | N1—C2—C3 | 122.5 (4) |
Cl1—Ru1—N1 | 90.01 (8) | C2—C3—C4 | 120.3 (4) |
Cl1—Ru1—N1i | 87.27 (8) | C3—C4—C5 | 118.7 (3) |
Cl1—Ru1—C1 | 87.50 (10) | C4—C5—C6 | 118.4 (3) |
Cl1—Ru1—C1i | 95.00 (10) | C4—C5—C7 | 121.3 (3) |
Cl1i—Ru1—N1 | 87.27 (8) | C6—C5—C7 | 120.2 (3) |
Cl1i—Ru1—N1i | 90.01 (8) | N1—C6—C5 | 122.2 (3) |
Cl1i—Ru1—C1 | 95.00 (10) | N1—C6—C6i | 116.0 (3) |
Cl1i—Ru1—C1i | 87.50 (10) | C5—C6—C6i | 121.8 (3) |
N1—Ru1—N1i | 77.18 (10) | O2—C7—C5 | 123.1 (3) |
N1—Ru1—C1 | 174.02 (13) | O2—C7—C7i | 119.0 (3) |
N1—Ru1—C1i | 97.26 (13) | C5—C7—C7i | 117.9 (3) |
N1i—Ru1—C1 | 97.26 (13) | N1—C2—H1 | 118.764 |
N1i—Ru1—C1i | 174.02 (13) | C3—C2—H1 | 118.772 |
C1—Ru1—C1i | 88.38 (15) | C2—C3—H2 | 119.871 |
Ru1—N1—C2 | 126.6 (3) | C4—C3—H2 | 119.866 |
Ru1—N1—C6 | 115.43 (19) | C3—C4—H3 | 120.672 |
C2—N1—C6 | 117.9 (3) | C5—C4—H3 | 120.668 |
Ru1—C1—O1 | 176.1 (3) | ||
Cl1—Ru1—N1—C2 | 94.41 (19) | C6—N1—C2—C3 | −0.0 (5) |
Cl1—Ru1—N1—C6 | −87.72 (16) | N1—C2—C3—C4 | 0.3 (5) |
Cl1—Ru1—N1i—C2i | −87.76 (19) | C2—C3—C4—C5 | 0.5 (5) |
Cl1—Ru1—N1i—C6i | 90.11 (16) | C3—C4—C5—C6 | −1.4 (5) |
Cl1i—Ru1—N1—C2 | −87.76 (19) | C3—C4—C5—C7 | 178.2 (3) |
Cl1i—Ru1—N1—C6 | 90.11 (16) | C4—C5—C6—N1 | 1.6 (4) |
Cl1i—Ru1—N1i—C2i | 94.41 (19) | C4—C5—C6—C6i | −178.8 (3) |
Cl1i—Ru1—N1i—C6i | −87.72 (16) | C4—C5—C7—O2 | −3.4 (5) |
N1—Ru1—N1i—C2i | −178.4 (3) | C4—C5—C7—C7i | 177.9 (3) |
N1—Ru1—N1i—C6i | −0.53 (16) | C6—C5—C7—O2 | 176.2 (3) |
N1i—Ru1—N1—C2 | −178.4 (3) | C6—C5—C7—C7i | −2.5 (4) |
N1i—Ru1—N1—C6 | −0.53 (16) | C7—C5—C6—N1 | −178.0 (3) |
C1i—Ru1—N1—C2 | −0.6 (3) | C7—C5—C6—C6i | 1.6 (4) |
C1i—Ru1—N1—C6 | 177.23 (18) | N1—C6—C6i—N1i | −1.9 (4) |
C1—Ru1—N1i—C2i | −0.6 (3) | N1—C6—C6i—C5i | 178.5 (3) |
C1—Ru1—N1i—C6i | 177.23 (18) | C5—C6—C6i—N1i | 178.5 (3) |
Ru1—N1—C2—C3 | 177.77 (18) | C5—C6—C6i—C5i | −1.1 (4) |
Ru1—N1—C6—C5 | −178.98 (16) | O2—C7—C7i—O2i | 5.5 (4) |
Ru1—N1—C6—C6i | 1.4 (3) | O2—C7—C7i—C5i | −175.8 (3) |
C2—N1—C6—C5 | −0.9 (4) | C5—C7—C7i—O2i | −175.8 (3) |
C2—N1—C6—C6i | 179.5 (3) | C5—C7—C7i—C5i | 2.9 (4) |
Symmetry codes: (i) y, x, −z+1; (ii) −x+3/2, y−1/2, −z+3/4; (iii) −y+3/2, x+1/2, z−1/4; (iv) −y+3/2, x−1/2, z−1/4; (v) x, y−1, z; (vi) −x+3/2, y+1/2, −z+3/4; (vii) y, x+1, −z+1; (viii) x+1/2, −y+5/2, −z+5/4; (ix) y+1/2, −x+3/2, z+1/4; (x) y−1/2, −x+3/2, z+1/4; (xi) y−1, x, −z+1; (xii) x, y+1, z; (xiii) x−1/2, −y+5/2, −z+5/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H1···Cl1x | 0.95 | 2.66 | 3.478 (4) | 145 |
C3—H2···O2xiv | 0.95 | 2.53 | 3.206 (4) | 128 |
C4—H3···Cl1vii | 0.95 | 2.78 | 3.660 (4) | 155 |
Symmetry codes: (vii) y, x+1, −z+1; (x) y−1/2, −x+3/2, z+1/4; (xiv) −x−1/2, y+5/2, −z+7/4. |
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Sciencehttps://doi.org/10.13039/501100001691 (award No. 25410059; Grant-in-Aid for Scientific Research (C)).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396. Web of Science CSD CrossRef Google Scholar
Ding, X., Tuikka, M. J., Hirva, P., Kukushkin, V. Y., Novikov, A. S. & Haukka, M. (2016). CrystEngComm, 18, 1987–1995. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221–3226. Web of Science CSD CrossRef Google Scholar
Fujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645–652. Web of Science CSD CrossRef Google Scholar
Guan, X.-H., Wu, J.-Z., Yu, Y. & Yang, P. (2008). Acta Cryst. C64, m311–m313. CrossRef IUCr Journals Google Scholar
Larsson, K. & Öhrström, L. (2004). Inorg. Chim. Acta, 357, 657–664. Web of Science CSD CrossRef CAS Google Scholar
Machan, C. W., Sampson, M. D. & Kubiak, C. P. (2015). J. Am. Chem. Soc. 137, 8564–8571. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oyama, D., Asuma, A., Hamada, T. & Takase, T. (2009). Inorg. Chim. Acta, 362, 2581–2588. CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, M., Tanaka, Y., Yoshimoto, Y., Kuroda, S. & Shimao, I. (1992). Bull. Chem. Soc. Jpn, 65, 1006–1011. CrossRef CAS Web of Science Google Scholar
Yokoyama, K., Wakabayashi, A., Noguchi, K., Nakamura, N. & Ohno, H. (2006). Inorg. Chim. Acta, 359, 807–814. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.