metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(μ-benzoato-κ2O:O′)bis­­[(piperidine-κN)rhodium]

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: detlef.selent@catalysis.de

Edited by A. J. Lough, University of Toronto, Canada (Received 24 January 2017; accepted 8 February 2017; online 14 February 2017)

The title compound, [Rh2(C7H5O2)4(C5H11N)2], an adduct of dimeric rhodium(II) benzoate with piperidine, was prepared. The complex lies across an inversion centre with the unique RhII ion in a slightly distorted octa­hedral coordination environment.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure lies across an inversion centre and the coordination geometry around the rhodium atoms is slightly distorted octa­hedral (Fig. 1[link]). The Rh1—Rh1(−x, −y + 2, −z) distance is 2.4116 (2) Å, which is comparable to the value of 2.402 (2) Å determined for the corresponding bis­pyridine complex [Rh2(bzt)4(py)2] (Mehmet & Tocher, 1991[Mehmet, N. & Tocher, D. A. (1991). Inorg. Chim. Acta, 188, 71-77.]). As a result of the sp2-hybridized nitro­gen atoms, the rhodium nitro­gen distance of 2.246 (4) in the latter mol­ecule is shorter, compared to the value of 2.3083 (13) Å found for the title compound. In [Rh2(bzt)4(pip)2], individual C—O distances vary within a narrow range of 0.008 (2) Å thus pointing towards an almost symmetric charge distribution within the carboxyl­ato groups. A deviation of 0.0763 (5) Å from the plane defined by the square arrangement of the oxygen atoms was determined for the symmetry-equivalent rhodium atoms. The piperidine mol­ecules adopt chair conformations.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) (i) −x, −y + 2, −z].

Synthesis and crystallization

A procedure analogous to that for the pyridine adduct has been applied (Legzdins et al., 1970[Legzdins, P., Mitchell, R. W., Rempel, G. L., Ruddick, J. D. & Wilkinson, G. J. (1970). J. Chem. Soc. A, pp. 3322-3326.]). A stirred solution of rhodium trichloride trihydrate (1 g, 0.0038 mol) in methanol (125 ml) was treated with solid benzoic acid (12 g, 0.098 mol), solid sodium benzoate (5 g, 0.0035 mol) and with piperidine (8.515 g, 0.1 mol). The reaction mixture was heated to reflux for 1 h, and the formed precipitate was filtered off. The product was then washed with methanol (2 × 5 ml) and recrystallized from chloro­form/diethyl ether (2:1) to give the title compound as carmine, air-stable crystals. Yield: 0.290 g (0.340 mmol, 18%). Elemental analysis (calculated for Rh2C38H42N2O8, M = 860.58 g mol−1): C, 52.60 (53.04); H, 5.04 (4.92); N, 3.18 (3.26); Rh, 24.12 (23.92)%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Rh2(C7H5O2)4(C5H11N)2]
Mr 860.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.7224 (1), 11.1042 (2), 14.7761 (2)
β (°) 96.078 (1)
V3) 1749.41 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.44 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35557, 5343, 4939
Rint 0.022
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.05
No. of reflections 5343
No. of parameters 230
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Tetrakis(µ-benzoato-κ2O:O')bis[(piperidine-κN)rhodium] top
Crystal data top
[Rh2(C7H5O2)4(C5H11N)2]F(000) = 876
Mr = 860.55Dx = 1.634 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7224 (1) ÅCell parameters from 9954 reflections
b = 11.1042 (2) Åθ = 2.9–30.5°
c = 14.7761 (2) ŵ = 1.00 mm1
β = 96.078 (1)°T = 150 K
V = 1749.41 (4) Å3Prism, red
Z = 20.44 × 0.26 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
5343 independent reflections
Radiation source: fine-focus sealed tube4939 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.022
φ and ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1515
Tmin = 0.684, Tmax = 0.746k = 1514
35557 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0255P)2 + 1.4431P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5343 reflectionsΔρmax = 0.81 e Å3
230 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.02361 (2)0.95634 (2)0.07456 (2)0.01337 (4)
O10.07504 (10)0.80446 (10)0.01222 (7)0.01890 (19)
O20.03436 (10)0.88572 (10)0.12799 (7)0.0193 (2)
O30.19998 (9)1.02805 (10)0.07472 (7)0.0185 (2)
O40.15364 (9)1.10880 (10)0.06514 (7)0.0190 (2)
N10.04978 (12)0.85729 (12)0.21261 (8)0.0204 (2)
H10.026 (2)0.821 (2)0.2074 (14)0.030 (5)*
C10.06780 (12)0.80076 (13)0.07406 (9)0.0161 (2)
C20.10317 (12)0.68370 (13)0.11396 (9)0.0172 (2)
C30.12819 (16)0.67759 (15)0.20431 (10)0.0252 (3)
H30.12160.74780.24130.030*
C40.1627 (2)0.56869 (17)0.24021 (12)0.0364 (4)
H40.18240.56480.30130.044*
C50.1687 (2)0.46555 (17)0.18722 (13)0.0381 (4)
H50.19110.39090.21240.046*
C60.1421 (2)0.47095 (16)0.09732 (12)0.0321 (4)
H60.14460.39990.06130.039*
C70.11185 (15)0.58047 (14)0.06047 (10)0.0228 (3)
H70.09700.58510.00170.027*
C80.22654 (12)1.08853 (13)0.00705 (9)0.0159 (2)
C90.35458 (12)1.14222 (13)0.01039 (9)0.0167 (2)
C100.45244 (13)1.10339 (14)0.07328 (10)0.0206 (3)
H100.43791.04370.11700.025*
C110.57143 (14)1.15254 (16)0.07159 (11)0.0262 (3)
H110.63851.12580.11400.031*
C120.59252 (15)1.23997 (19)0.00863 (13)0.0340 (4)
H120.67411.27280.00750.041*
C130.49488 (16)1.2798 (2)0.05281 (13)0.0364 (4)
H130.50901.34110.09540.044*
C140.37677 (14)1.23026 (16)0.05219 (11)0.0251 (3)
H140.31021.25690.09510.030*
C150.05381 (15)0.93372 (16)0.29481 (11)0.0251 (3)
H15A0.04220.88330.34860.030*
H15B0.01480.99370.28740.030*
C160.17947 (16)0.99760 (16)0.30890 (12)0.0279 (3)
H16A0.18311.04750.36460.033*
H16B0.18811.05170.25670.033*
C170.28741 (16)0.90793 (17)0.31786 (13)0.0312 (4)
H17A0.36820.95180.32210.037*
H17B0.28500.86020.37420.037*
C180.27784 (15)0.82436 (16)0.23619 (12)0.0272 (3)
H18A0.34350.76150.24560.033*
H18B0.29250.87080.18110.033*
C190.14973 (16)0.76498 (14)0.22207 (11)0.0249 (3)
H19A0.14410.71440.16660.030*
H19B0.13820.71220.27460.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01245 (5)0.01576 (6)0.01178 (5)0.00098 (3)0.00075 (3)0.00050 (3)
O10.0226 (5)0.0191 (5)0.0148 (4)0.0022 (4)0.0014 (4)0.0000 (4)
O20.0235 (5)0.0195 (5)0.0149 (4)0.0023 (4)0.0017 (4)0.0004 (4)
O30.0146 (4)0.0238 (5)0.0168 (5)0.0037 (4)0.0003 (3)0.0037 (4)
O40.0139 (4)0.0266 (5)0.0163 (4)0.0044 (4)0.0002 (3)0.0036 (4)
N10.0206 (6)0.0227 (6)0.0176 (5)0.0028 (5)0.0011 (4)0.0012 (5)
C10.0130 (5)0.0181 (6)0.0171 (6)0.0012 (5)0.0011 (4)0.0016 (5)
C20.0148 (5)0.0187 (6)0.0178 (6)0.0010 (5)0.0003 (4)0.0021 (5)
C30.0344 (8)0.0227 (7)0.0184 (7)0.0040 (6)0.0029 (6)0.0004 (5)
C40.0587 (12)0.0303 (9)0.0209 (8)0.0126 (8)0.0081 (8)0.0032 (7)
C50.0615 (13)0.0258 (9)0.0270 (8)0.0161 (8)0.0047 (8)0.0037 (7)
C60.0470 (10)0.0222 (8)0.0268 (8)0.0089 (7)0.0026 (7)0.0012 (6)
C70.0271 (7)0.0215 (7)0.0196 (6)0.0023 (6)0.0019 (5)0.0002 (5)
C80.0137 (5)0.0174 (6)0.0167 (6)0.0007 (5)0.0021 (4)0.0007 (5)
C90.0130 (5)0.0201 (6)0.0171 (6)0.0020 (5)0.0021 (4)0.0018 (5)
C100.0183 (6)0.0226 (7)0.0205 (6)0.0019 (5)0.0004 (5)0.0018 (5)
C110.0167 (6)0.0329 (8)0.0278 (8)0.0022 (6)0.0040 (5)0.0027 (6)
C120.0168 (7)0.0468 (11)0.0375 (9)0.0113 (7)0.0012 (6)0.0094 (8)
C130.0240 (8)0.0479 (11)0.0365 (9)0.0133 (7)0.0015 (7)0.0198 (8)
C140.0170 (6)0.0310 (8)0.0265 (7)0.0044 (6)0.0014 (5)0.0077 (6)
C150.0254 (7)0.0315 (8)0.0186 (7)0.0033 (6)0.0032 (5)0.0008 (6)
C160.0281 (8)0.0270 (8)0.0272 (8)0.0024 (6)0.0038 (6)0.0066 (6)
C170.0255 (7)0.0317 (9)0.0342 (9)0.0033 (6)0.0073 (6)0.0023 (7)
C180.0251 (7)0.0257 (8)0.0305 (8)0.0060 (6)0.0009 (6)0.0016 (6)
C190.0313 (8)0.0206 (7)0.0220 (7)0.0023 (6)0.0011 (6)0.0016 (5)
Geometric parameters (Å, º) top
Rh1—O4i2.0245 (10)C8—C91.4927 (18)
Rh1—O12.0260 (10)C9—C141.383 (2)
Rh1—O2i2.0469 (10)C9—C101.3943 (19)
Rh1—O32.0517 (10)C10—C111.390 (2)
Rh1—N12.3083 (12)C10—H100.9500
Rh1—Rh1i2.4116 (2)C11—C121.380 (2)
O1—C11.2696 (16)C11—H110.9500
O2—C11.2623 (17)C12—C131.384 (2)
O2—Rh1i2.0468 (10)C12—H120.9500
O3—C81.2619 (17)C13—C141.382 (2)
O4—C81.2740 (16)C13—H130.9500
O4—Rh1i2.0244 (10)C14—H140.9500
N1—C151.479 (2)C15—C161.517 (2)
N1—C191.479 (2)C15—H15A0.9900
N1—H10.91 (2)C15—H15B0.9900
C1—C21.4927 (19)C16—C171.522 (2)
C2—C71.390 (2)C16—H16A0.9900
C2—C31.391 (2)C16—H16B0.9900
C3—C41.387 (2)C17—C181.517 (2)
C3—H30.9500C17—H17A0.9900
C4—C51.385 (3)C17—H17B0.9900
C4—H40.9500C18—C191.518 (2)
C5—C61.389 (3)C18—H18A0.9900
C5—H50.9500C18—H18B0.9900
C6—C71.385 (2)C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—H70.9500
O4i—Rh1—O188.29 (4)C14—C9—C10119.57 (13)
O4i—Rh1—O2i90.66 (4)C14—C9—C8118.87 (12)
O1—Rh1—O2i175.60 (4)C10—C9—C8121.54 (13)
O4i—Rh1—O3175.72 (4)C11—C10—C9119.60 (14)
O1—Rh1—O391.63 (4)C11—C10—H10120.2
O2i—Rh1—O389.11 (4)C9—C10—H10120.2
O4i—Rh1—N185.18 (4)C12—C11—C10120.30 (15)
O1—Rh1—N189.53 (4)C12—C11—H11119.9
O2i—Rh1—N194.64 (4)C10—C11—H11119.9
O3—Rh1—N199.10 (4)C11—C12—C13120.05 (15)
O4i—Rh1—Rh1i88.63 (3)C11—C12—H12120.0
O1—Rh1—Rh1i87.72 (3)C13—C12—H12120.0
O2i—Rh1—Rh1i87.99 (3)C14—C13—C12119.91 (16)
O3—Rh1—Rh1i87.09 (3)C14—C13—H13120.0
N1—Rh1—Rh1i173.29 (3)C12—C13—H13120.0
C1—O1—Rh1119.53 (9)C13—C14—C9120.56 (15)
C1—O2—Rh1i118.32 (9)C13—C14—H14119.7
C8—O3—Rh1119.41 (9)C9—C14—H14119.7
C8—O4—Rh1i118.87 (9)N1—C15—C16109.23 (13)
C15—N1—C19111.24 (12)N1—C15—H15A109.8
C15—N1—Rh1116.27 (10)C16—C15—H15A109.8
C19—N1—Rh1115.65 (9)N1—C15—H15B109.8
C15—N1—H1105.9 (14)C16—C15—H15B109.8
C19—N1—H1109.5 (14)H15A—C15—H15B108.3
Rh1—N1—H196.6 (14)C15—C16—C17111.23 (15)
O2—C1—O1126.36 (13)C15—C16—H16A109.4
O2—C1—C2117.94 (12)C17—C16—H16A109.4
O1—C1—C2115.70 (12)C15—C16—H16B109.4
C7—C2—C3119.83 (14)C17—C16—H16B109.4
C7—C2—C1119.87 (13)H16A—C16—H16B108.0
C3—C2—C1120.30 (13)C18—C17—C16110.14 (14)
C4—C3—C2119.75 (15)C18—C17—H17A109.6
C4—C3—H3120.1C16—C17—H17A109.6
C2—C3—H3120.1C18—C17—H17B109.6
C5—C4—C3120.21 (16)C16—C17—H17B109.6
C5—C4—H4119.9H17A—C17—H17B108.1
C3—C4—H4119.9C17—C18—C19111.04 (14)
C4—C5—C6120.19 (16)C17—C18—H18A109.4
C4—C5—H5119.9C19—C18—H18A109.4
C6—C5—H5119.9C17—C18—H18B109.4
C7—C6—C5119.62 (16)C19—C18—H18B109.4
C7—C6—H6120.2H18A—C18—H18B108.0
C5—C6—H6120.2N1—C19—C18110.38 (13)
C6—C7—C2120.33 (14)N1—C19—H19A109.6
C6—C7—H7119.8C18—C19—H19A109.6
C2—C7—H7119.8N1—C19—H19B109.6
O3—C8—O4125.99 (12)C18—C19—H19B109.6
O3—C8—C9118.06 (12)H19A—C19—H19B108.1
O4—C8—C9115.96 (12)
Rh1i—O2—C1—O13.53 (19)O3—C8—C9—C14165.39 (14)
Rh1i—O2—C1—C2176.69 (9)O4—C8—C9—C1414.5 (2)
Rh1—O1—C1—O22.40 (19)O3—C8—C9—C1016.4 (2)
Rh1—O1—C1—C2177.82 (8)O4—C8—C9—C10163.70 (14)
O2—C1—C2—C7164.88 (13)C14—C9—C10—C110.8 (2)
O1—C1—C2—C715.32 (19)C8—C9—C10—C11177.43 (14)
O2—C1—C2—C315.5 (2)C9—C10—C11—C120.6 (3)
O1—C1—C2—C3164.31 (14)C10—C11—C12—C130.5 (3)
C7—C2—C3—C40.6 (2)C11—C12—C13—C141.2 (3)
C1—C2—C3—C4179.06 (16)C12—C13—C14—C91.0 (3)
C2—C3—C4—C51.9 (3)C10—C9—C14—C130.0 (3)
C3—C4—C5—C61.0 (3)C8—C9—C14—C13178.26 (17)
C4—C5—C6—C71.2 (3)C19—N1—C15—C1660.57 (17)
C5—C6—C7—C22.6 (3)Rh1—N1—C15—C1674.65 (14)
C3—C2—C7—C61.7 (2)N1—C15—C16—C1757.91 (18)
C1—C2—C7—C6178.67 (15)C15—C16—C17—C1854.8 (2)
Rh1—O3—C8—O41.5 (2)C16—C17—C18—C1953.59 (19)
Rh1—O3—C8—C9178.39 (9)C15—N1—C19—C1860.09 (16)
Rh1i—O4—C8—O31.6 (2)Rh1—N1—C19—C1875.43 (14)
Rh1i—O4—C8—C9178.30 (9)C17—C18—C19—N156.22 (17)
Symmetry code: (i) x, y+2, z.
 

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLegzdins, P., Mitchell, R. W., Rempel, G. L., Ruddick, J. D. & Wilkinson, G. J. (1970). J. Chem. Soc. A, pp. 3322–3326.  CrossRef Web of Science Google Scholar
First citationMehmet, N. & Tocher, D. A. (1991). Inorg. Chim. Acta, 188, 71–77.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds