metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­(o-phenyl­enedi­amine)­palladium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan, and bDepartment of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 January 2017; accepted 27 January 2017; online 3 February 2017)

The PdII atom in the title compound, [PdCl2{(C6H4)(NH2)2}], lies on a twofold rotation axis and has a square-planar coordination environment defined by two N atoms of an o-phenyl­enedi­amine ligand and two Cl ions. In the crystal, the planar Pd complex mol­ecules are stacked parallel to the c axis, resulting in a columnar structure. In the column, an infinite almost straight Pd chain is formed, suggesting weak metal–metal inter­actions. The crystal packing is stabilized by a three-dimensional N—H⋯Cl hydrogen-bonding network between the amino groups and the Cl ligands of adjacent mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is displayed in Fig. 1[link]. Its asymmetric unit comprises half of a [PdCl2{(C6H4)(NH2)2}] mol­ecule, the other half being completed by application of a twofold rotation operation. The PdII atom is coordinated by two N atoms of an o-phenyl­enedi­amine mol­ecule and two Cl ions in a slightly distorted square-planar configuration (Table 1[link]). The r.m.s. deviation of the least-squares plane formed by atoms Pd1, N1, C1, C2 and C3 is 0.0176 Å. The Pd1—N1 [2.0297 (13) Å] and Pd1—Cl1 [2.3159 (4) Å] bond lengths are consistent with those reported for cis-[PdCl2(NH3)2] [Pd—N = 1.99 (4) and 2.13 (4) Å, Pd—Cl = 2.26 (2) and 2.29 (2) Å; Kirik et al., 1996[Kirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. & Blokhina, M. L. (1996). Acta Cryst. B52, 909-916.]], for [PdCl2(en)] [en is ethyl­enedi­amine; Pd—N = 1.978 (12) Å, Pd—Cl = 2.309 (3) Å; Iball et al., 1975[Iball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672-1674.]] or for [PdCl2(tn)] [tn is 1,3-di­amino­propane; Pd—N = 2.036 (2) Å, Pd—Cl = 2.3296 (15) Å; Odoko & Okabe, 2006[Odoko, M. & Okabe, N. (2006). Acta Cryst. C62, m136-m139.]]. Bond lengths and angles of the o-phenyl­enedi­amine moiety (Table 1[link]) are not significantly different from those of the bis­(o-phenyl­enedi­amine)­platinum(II) complex, [Pt(C6H8N2)2]Cl2·2H2O [N—C = 1.450 (2) Å, C—C = 1.365 (6)–1.389 (4) Å; Konno & Matsushita, 2006[Konno, Y. & Matsushita, N. (2006). Bull. Chem. Soc. Jpn, 79, 1046-1053.]].

Table 1
Selected geometric parameters (Å, °)

N1—C1 1.458 (2) C2—C3 1.371 (3)
C1—C1i 1.375 (3) C3—C3i 1.416 (8)
C1—C2 1.391 (2)    
       
N1—Pd1—N1i 84.36 (8) C1—N1—Pd1 110.22 (10)
N1—Pd1—Cl1 90.71 (4) C1i—C1—C2 120.62 (12)
Cl1i—Pd1—Cl1 94.26 (2) C1i—C1—N1 117.58 (8)
N1—Pd1—Pd1ii 95.75 (4) C2—C1—N1 121.80 (16)
Cl1—Pd1—Pd1ii 94.083 (12) C3—C2—C1 119.3 (2)
N1—Pd1—Pd1iii 84.83 (4) C2—C3—C3i 120.13 (16)
Cl1—Pd1—Pd1iii 85.393 (12)    
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Non-labelled atoms are related to labelled atoms by (−x + 1, y, −z + [{1\over 2}]).

As shown in Fig. 2[link], the neutral planar mol­ecules of the title compound stack parallel to the c axis, resulting in a columnar structure. The planar [PdCl2{(C6H4)(NH2)2}] units are arranged in parallel and the o-phenyl­enedi­amine moieties alternate with each other owing to the c-glide operation. In the column, an infinite almost straight [Pd⋯Pd⋯Pd = 179.232 (7)°] Pd chain is formed with a short inter­atomic distance [Pd⋯Pd = 3.3510 (6) Å], suggesting weak metal–metal inter­actions. The Pd⋯Pd distance of the title compound is slightly shorter than those of cis-[PdCl2(NH3)2] [3.3886 (1) Å; Kirik et al., 1996[Kirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. & Blokhina, M. L. (1996). Acta Cryst. B52, 909-916.]] or [PdCl2(en)] [3.369 Å; Iball et al., 1975[Iball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672-1674.]], which have similar columnar structures.

[Figure 2]
Figure 2
A view of the columnar structure of the title compound. Light-blue dashed lines represent hydrogen bonds between adjacent mol­ecules in the column. Yellow dashed lines display the short contact between Pd atoms in the column. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 1, −y + 1, −z + 1; (iii) x, y, z + 1].

The shorter inter­molecular Pd⋯Pd distance of the title compound suggests that the columnar structure is stabilized by weak metal–metal inter­actions. The columnar structure of the title compound is further stabilized by inter­molecular N—H⋯Cl hydrogen bonds between adjacent mol­ecules in the column (Fig. 2[link] and Table 2[link]). Inter­columnar hydrogen bonds also help to stabilize the crystal packing of the columns (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1iv 0.90 2.54 3.3508 (15) 151
N1—H1B⋯Cl1v 0.90 2.74 3.3860 (15) 129
N1—H1B⋯Cl1vi 0.90 2.66 3.3278 (15) 132
Symmetry codes: (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) -x, -y+1, -z.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the c axis. Light-blue dashed lines represent the inter­columnar hydrogen bonds. Magenta solid lines indicate the unit cell.

Synthesis and crystallization

To an aqueous HCl solution (1.0 M, 20 ml) of K2[PdCl4] (0.050 mmol, 16 mg) was slowly added an aqueous HCl solution (1.0 M, 20 ml) of o-phenyl­enedi­amine (0.050 mmol, 5 mg), and then the solution was sealed in a screw-cap vial and was kept at 323 K for 24 h in the dark. Pale-yellow needle-like crystals suitable for X-ray analysis were obtained (yield 28%). Elemental analysis: found: C, 25.17; H, 2.93; N, 9.64%, calculated for C6H8Cl2N2Pd: C, 25.24; H, 2.82; N, 9.81%. Elemental analysis was carried out by Laboratory of Organic Elemental Analysis, Department of Chemistry, Graduate School of Science, The University of Tokyo.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The maximum and minimum electron density peaks are located 1.68 Å from atom Pd1 and 0.78 Å from atom Pd1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula [PdCl2(C6H8N2)]
Mr 285.44
Crystal system, space group Monoclinic, P2/c
Temperature (K) 296
a, b, c (Å) 7.0734 (8), 10.4076 (12), 6.7019 (12)
β (°) 116.683 (4)
V3) 440.83 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.65
Crystal size (mm) 0.22 × 0.11 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging-plate
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.611, 0.824
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 11439, 1578, 1449
Rint 0.022
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.09
No. of reflections 1578
No. of parameters 52
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.07, −0.77
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Dichlorido(o-phenylenediamine)palladium(II) top
Crystal data top
[PdCl2(C6H8N2)]F(000) = 276
Mr = 285.44Dx = 2.150 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ycCell parameters from 6414 reflections
a = 7.0734 (8) Åθ = 3.9–32.2°
b = 10.4076 (12) ŵ = 2.65 mm1
c = 6.7019 (12) ÅT = 296 K
β = 116.683 (4)°Needle, pale yellow
V = 440.83 (11) Å30.22 × 0.11 × 0.07 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
1578 independent reflections
Radiation source: X-ray sealed tube1449 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 32.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.611, Tmax = 0.824l = 910
11439 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.032P)2 + 0.0862P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1578 reflectionsΔρmax = 1.07 e Å3
52 parametersΔρmin = 0.77 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.126 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.4031 (0.0035) x + 0.0000 (0.0000) y + 6.6544 (0.0013) z = 0.4621 (0.0016)

* 0.0000 (0.0000) Pd1 * -0.0263 (0.0008) Cl1 * 0.0315 (0.0013) N1 * 0.0022 (0.0014) C1 * -0.0016 (0.0015) C2 * 0.0034 (0.0028) C3 * 0.0263 (0.0008) Cl1_$6 * -0.0315 (0.0013) N1_$6 * -0.0022 (0.0014) C1_$6 * 0.0016 (0.0015) C2_$6 * -0.0034 (0.0028) C3_$6

Rms deviation of fitted atoms = 0.0176

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.498921 (11)0.25000.03038 (8)
Cl10.23288 (6)0.65031 (4)0.14958 (7)0.04182 (10)
N10.2865 (2)0.35440 (13)0.1776 (2)0.0406 (3)
H1A0.22180.36040.26620.049*
H1B0.18740.36130.03490.049*
C10.3920 (2)0.23028 (14)0.2113 (2)0.0412 (3)
C20.2807 (4)0.11529 (17)0.1706 (3)0.0571 (4)
H20.13450.11570.11690.069*
C30.3889 (6)0.00139 (14)0.2104 (5)0.0720 (10)
H30.31610.07600.18530.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02747 (9)0.03112 (10)0.02949 (10)0.0000.01007 (6)0.000
Cl10.03435 (16)0.03968 (17)0.0480 (2)0.00551 (12)0.01543 (14)0.00033 (14)
N10.0340 (6)0.0396 (6)0.0424 (6)0.0047 (5)0.0120 (5)0.0018 (5)
C10.0559 (8)0.0341 (6)0.0324 (6)0.0043 (5)0.0188 (6)0.0011 (5)
C20.0783 (12)0.0449 (8)0.0486 (9)0.0199 (8)0.0288 (9)0.0076 (7)
C30.132 (3)0.0362 (9)0.0565 (15)0.0183 (8)0.0496 (19)0.0068 (6)
Geometric parameters (Å, º) top
Pd1—N12.0297 (13)N1—H1B0.9000
Pd1—N1i2.0297 (13)C1—C1i1.375 (3)
Pd1—Cl1i2.3159 (4)C1—C21.391 (2)
Pd1—Cl12.3159 (4)C2—C31.371 (3)
Pd1—Pd1ii3.3510 (6)C2—H20.9300
Pd1—Pd1iii3.3510 (6)C3—C3i1.416 (8)
N1—C11.458 (2)C3—H30.9300
N1—H1A0.9000
N1—Pd1—N1i84.36 (8)C1—N1—Pd1110.22 (10)
N1—Pd1—Cl1i174.81 (4)C1—N1—H1A109.6
N1i—Pd1—Cl1i90.71 (4)Pd1—N1—H1A109.6
N1—Pd1—Cl190.71 (4)C1—N1—H1B109.6
N1i—Pd1—Cl1174.81 (4)Pd1—N1—H1B109.6
Cl1i—Pd1—Cl194.26 (2)H1A—N1—H1B108.1
N1—Pd1—Pd1ii95.75 (4)C1i—C1—C2120.62 (12)
N1i—Pd1—Pd1ii84.83 (4)C1i—C1—N1117.58 (8)
Cl1i—Pd1—Pd1ii85.393 (12)C2—C1—N1121.80 (16)
Cl1—Pd1—Pd1ii94.083 (12)C3—C2—C1119.3 (2)
N1—Pd1—Pd1iii84.83 (4)C3—C2—H2120.4
N1i—Pd1—Pd1iii95.75 (4)C1—C2—H2120.4
Cl1i—Pd1—Pd1iii94.083 (12)C2—C3—C3i120.13 (16)
Cl1—Pd1—Pd1iii85.393 (12)C2—C3—H3119.9
Pd1ii—Pd1—Pd1iii179.232 (7)C3i—C3—H3119.9
N1i—Pd1—N1—C10.57 (7)Pd1—N1—C1—C1i1.8 (2)
Cl1i—Pd1—N1—C118.8 (5)Pd1—N1—C1—C2179.16 (12)
Cl1—Pd1—N1—C1177.81 (10)C1i—C1—C2—C30.6 (3)
Pd1ii—Pd1—N1—C183.63 (10)N1—C1—C2—C3178.4 (2)
Pd1iii—Pd1—N1—C196.89 (10)C1—C2—C3—C3i0.7 (5)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iv0.902.543.3508 (15)151
N1—H1B···Cl1v0.902.743.3860 (15)129
N1—H1B···Cl1vi0.902.663.3278 (15)132
Symmetry codes: (iv) x, y+1, z+1/2; (v) x, y+1, z1/2; (vi) x, y+1, z.
 

Acknowledgements

This work was partly supported by a MEXT-Supported Program for the Strategic Research Foundation at Private Universities (project No. S1311027) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672–1674.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKirik, S. D., Solovyov, L. A., Blokhin, A. I., Yakimov, I. S. & Blokhina, M. L. (1996). Acta Cryst. B52, 909–916.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKonno, Y. & Matsushita, N. (2006). Bull. Chem. Soc. Jpn, 79, 1046–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdoko, M. & Okabe, N. (2006). Acta Cryst. C62, m136–m139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds