organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(6-Fluoro-2-oxo-2H-chromen-4-yl)methyl di­ethyl­carbamodi­thio­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Physics, R. V. College of Engineering, Bangalore-560 059, India, and cDepartment of Physics, SJB Institute of Technology, Kengeri, Bangalore 560 060, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 December 2016; accepted 31 December 2016; online 6 January 2017)

The title compound, C15H16FNO2S2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. They differ essentially in the orientation of the ethyl groups. The chromene rings are planar (r.m.s. deviations = 0.013 Å for both mol­ecules), with the maximum deviation from the ring planes being 0.014 (2) and 0.018 (2) Å for atoms C9A and C9B, respectively. The mean plane of the chromene ring makes dihedral angles of 80.01 (7) and 76.97 (8)° with the carbamodi­thio­ate moiety [(N—C(=S)—S] of mol­ecules A and B, respectively. In the crystal, the two mol­ecules are linked by C—H⋯S hydrogen bonds, forming a ladder-like arrangement propagating along the a-axis direction. Within the ladders there are offset ππ inter­actions involving the coumarins rings of the B mol­ecules [inter­centroid distances vary from 3.705 (2) to 3.860 (1) Å]. Neighbouring ladders are linked via offset ππ inter­actions involving the coumarins rings of the A mol­ecules [inter­centroid distances vary from 3.539 (1) to 3.601 (1) Å]. These latter inter­actions lead to the formation of layers parallel to the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins and their derivatives represent an inter­esting class of heterocyclic compounds, which have attracted attention because of their biological and medicinal properties, such as anti-bacterial (Basanagouda et al., 2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]), anti-oxidant (Vukovic et al., 2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]) and anti-inflammatory (Emmanuel-Giota et al., 2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717-722.]). As part of our ongoing studies of coumarin derivatives (El-Khatatneh et al., 2016[El-Khatatneh, N., Chandra, , Shamala, D., Shivashankar, K. & Mahendra, M. (2016). IUCrData, 1, x161989.]), the title compound was synthesized and we report herein on its crystal structure.

The title compound, Fig. 1[link], crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The coumarin units are planar with their maximum deviations being 0.014 (2) and 0.018 (2) Å, for atoms C9A and C9B, respectively. The mean plane of the chromene rings make dihedral angles of 80.01 (7) and 76.97 (8)° with the carbamodi­thio­ate moiety [(N—C(=S)—S] of mol­ecules A and B, respectively. The AutoMolFit drawing, Fig. 2[link] (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), illustrates that the main difference in the conformation of the two mol­ecules concerns the orientation of the ethyl groups. They are present in -anti-periplanar (C14A–N1A–C11A–S1A) and -syn-periplanar (C14B–N1B–C11B–S1B) conformations with respect to the carbamodi­thio­ate moiety [(N—C(=S)—S].

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
AutoMolFit drawing of mol­ecule B (red) on mol­ecule A (black) [PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]].

In the crystal, the two mol­ecules are linked by a C—H⋯S hydrogen bond, and these units are linked by further C—H⋯S hydrogen bonds, forming a ladder-like arrangement propagating along the a-axis direction (Fig. 3[link] and Table 1[link]). Within the ladders there are offset π-π inter­actions involving the coumarin rings of the B mol­ecules [inter­centroid distances vary from 3.705 (2) to 3.860 (1) Å]. Neighbouring ladders are linked by offset ππ inter­actions involving the coumarin rings of the A mol­ecules [inter­centroid distances vary from 3.539 (1) to 3.601 (1) Å], leading to the formation of layers parallel to the ac plane (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10A—H10A⋯S2B 0.97 2.87 3.621 (2) 135
C12A—H13C⋯O2Bi 0.97 2.60 3.368 (3) 136
C2B—H2B⋯S2Bii 0.93 2.87 3.693 (3) 148
C10B—H10C⋯S2Aiii 0.97 2.82 3.660 (2) 145
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1[link]; mol­ecule A blue, mol­ecule B red). The H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

4-Bromo­methyl-6,7-dimethyl-chromen-2-one (3.9 g, 0.015 mol) and the potassium salt of morpholine-4-carboxyl­ate 2.5 g (0.015 mol) were dissolved in 35 ml of absolute ethanol and stirred at room temperature for 14 h. After completion of the reaction (monitored by TLC), the ethanol was removed under reduced pressure. The solid obtained was extracted in ethyl acetate, washed with water, and the collected organic extract was dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the obtained solid product was recrystallized from an ethanol:chloro­form mixture (7:3) by slow evaporation, giving colourless block-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16FNO2S2
Mr 325.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.1284 (2), 12.2818 (3), 18.3709 (5)
α, β, γ (°) 75.625 (2), 88.538 (2), 86.553 (2)
V3) 1555.10 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 18765, 4555, 3711
Rint 0.029
θmax (°) 23.5
(sin θ/λ)max−1) 0.560
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.03
No. of reflections 4555
No. of parameters 383
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2016/6 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015) and PLATON (Spek, 2009).

(6-Fluoro-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate top
Crystal data top
C15H16FNO2S2Z = 4
Mr = 325.41F(000) = 680
Triclinic, P1Dx = 1.390 Mg m3
a = 7.1284 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2818 (3) ÅCell parameters from 4557 reflections
c = 18.3709 (5) Åθ = 1.1–23.5°
α = 75.625 (2)°µ = 0.36 mm1
β = 88.538 (2)°T = 293 K
γ = 86.553 (2)°Block, colourless
V = 1555.10 (7) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3711 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.029
Detector resolution: 18.4 pixels mm-1θmax = 23.5°, θmin = 1.7°
φ and ω scansh = 77
18765 measured reflectionsk = 1313
4555 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5771P]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.51933 (9)0.66040 (5)0.25174 (3)0.05364 (19)
S2A0.93545 (9)0.68645 (6)0.22242 (4)0.0602 (2)
F1A0.7749 (3)0.18127 (14)0.52266 (10)0.0948 (6)
O1A0.7712 (2)0.62091 (17)0.53152 (9)0.0640 (5)
O2A0.7301 (3)0.80267 (19)0.48010 (12)0.0914 (7)
N1A0.6629 (3)0.83708 (15)0.16329 (10)0.0512 (5)
C1A0.7756 (4)0.2917 (2)0.52380 (16)0.0655 (7)
C2A0.8280 (4)0.3182 (3)0.58777 (16)0.0738 (9)
H2A0.8648360.2618710.6296890.089*
C3A0.8258 (3)0.4291 (3)0.58945 (14)0.0683 (8)
H3A0.8603170.4490190.6326780.082*
C4A0.7714 (3)0.5115 (2)0.52580 (13)0.0529 (6)
C5A0.7216 (3)0.4849 (2)0.46005 (12)0.0458 (6)
C6A0.7236 (3)0.3709 (2)0.45985 (13)0.0531 (6)
H6A0.6902960.3493030.4170610.064*
C7A0.7241 (4)0.7092 (2)0.47157 (15)0.0609 (7)
C8A0.6733 (3)0.6818 (2)0.40312 (13)0.0518 (6)
H8A0.6399440.7405080.3620110.062*
C9A0.6715 (3)0.57683 (19)0.39565 (12)0.0431 (5)
C10A0.6263 (3)0.54884 (18)0.32320 (12)0.0502 (6)
H10A0.5430090.4870430.3345410.060*
H10B0.7417910.5221310.3026910.060*
C11A0.7138 (3)0.73768 (18)0.20824 (12)0.0449 (5)
C12A0.4672 (4)0.8847 (2)0.15371 (14)0.0628 (7)
H13C0.4668890.9659630.1444640.075*
H13D0.3968790.8567130.1997920.075*
C13A0.3726 (4)0.8549 (3)0.09011 (16)0.0780 (8)
H14A0.4437350.8805480.0446190.117*
H14B0.2482380.8902420.0842490.117*
H14C0.3650890.7746730.1006220.117*
C14A0.8042 (4)0.9084 (2)0.11895 (15)0.0683 (7)
H15A0.7477830.9532650.0728770.082*
H15B0.9062480.8610240.1054370.082*
C15A0.8818 (5)0.9854 (3)0.1617 (2)0.0991 (11)
H16A0.7810201.0321860.1753770.149*
H16B0.9712731.0318830.1306800.149*
H16C0.9423550.9412050.2063030.149*
S1B0.08922 (10)0.33784 (6)0.27010 (4)0.0689 (2)
S2B0.50869 (10)0.28748 (6)0.28251 (4)0.0635 (2)
F1B0.2068 (3)0.76498 (13)0.04352 (10)0.0965 (6)
O1B0.2887 (2)0.31283 (14)0.01045 (9)0.0630 (5)
O2B0.2880 (3)0.13736 (16)0.05644 (11)0.0860 (6)
N1B0.2507 (3)0.15756 (16)0.35756 (11)0.0536 (5)
C1B0.2303 (4)0.6518 (2)0.03385 (16)0.0628 (7)
C2B0.2720 (4)0.6108 (3)0.09550 (15)0.0683 (8)
H2B0.2870500.6594020.1426800.082*
C3B0.2911 (4)0.4965 (2)0.08610 (14)0.0642 (7)
H3B0.3182330.4664250.1271660.077*
C4B0.2698 (3)0.4262 (2)0.01553 (13)0.0498 (6)
C5B0.2303 (3)0.46786 (18)0.04738 (12)0.0444 (5)
C6B0.2095 (3)0.5847 (2)0.03657 (14)0.0554 (6)
H6B0.1817080.6161440.0769860.067*
C7B0.2686 (4)0.2351 (2)0.05671 (15)0.0592 (7)
C8B0.2283 (3)0.2784 (2)0.12185 (13)0.0533 (6)
H8B0.2134050.2271540.1680020.064*
C9B0.2111 (3)0.38798 (19)0.11955 (12)0.0467 (6)
C10B0.1792 (4)0.4326 (2)0.18835 (13)0.0625 (7)
H10C0.0927460.4983000.1754310.075*
H10D0.2977400.4574610.2012710.075*
C11B0.2913 (3)0.25121 (19)0.30801 (12)0.0492 (6)
C12B0.3993 (4)0.0731 (2)0.39041 (14)0.0639 (7)
H13A0.3540270.0265640.4374680.077*
H13B0.5067350.1110390.4013200.077*
C13B0.4604 (4)0.0008 (2)0.33904 (19)0.0854 (9)
H14D0.3556370.0408490.3297300.128*
H14E0.5592070.0535350.3622420.128*
H14F0.5052360.0449520.2923560.128*
C14B0.0577 (4)0.1330 (3)0.38627 (17)0.0811 (9)
H15C0.0620200.1002110.4400210.097*
H15D0.0189250.2029020.3778200.097*
C15B0.0283 (5)0.0566 (3)0.3502 (3)0.1224 (14)
H16D0.0494980.0930840.2982240.184*
H16E0.1460400.0355200.3745730.184*
H16F0.0535830.0094530.3538280.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0565 (4)0.0556 (4)0.0454 (4)0.0069 (3)0.0087 (3)0.0041 (3)
S2A0.0540 (4)0.0632 (4)0.0590 (4)0.0101 (3)0.0035 (3)0.0097 (3)
F1A0.1031 (13)0.0625 (11)0.0965 (13)0.0007 (9)0.0064 (10)0.0206 (9)
O1A0.0563 (11)0.0928 (15)0.0476 (10)0.0056 (10)0.0059 (8)0.0255 (10)
O2A0.1197 (18)0.0826 (15)0.0881 (15)0.0025 (13)0.0183 (13)0.0506 (13)
N1A0.0553 (12)0.0455 (12)0.0472 (11)0.0008 (9)0.0059 (9)0.0015 (9)
C1A0.0523 (16)0.0660 (19)0.0640 (18)0.0004 (13)0.0059 (13)0.0094 (14)
C2A0.0516 (16)0.091 (2)0.0579 (18)0.0019 (15)0.0000 (13)0.0195 (16)
C3A0.0397 (14)0.115 (3)0.0403 (14)0.0060 (15)0.0021 (11)0.0011 (15)
C4A0.0336 (12)0.0764 (19)0.0464 (14)0.0044 (12)0.0021 (10)0.0112 (13)
C5A0.0317 (12)0.0623 (16)0.0395 (13)0.0027 (10)0.0037 (9)0.0057 (11)
C6A0.0464 (14)0.0574 (16)0.0490 (14)0.0022 (11)0.0060 (11)0.0016 (12)
C7A0.0554 (16)0.074 (2)0.0613 (17)0.0032 (13)0.0038 (13)0.0307 (15)
C8A0.0528 (14)0.0580 (16)0.0452 (14)0.0011 (12)0.0044 (11)0.0146 (12)
C9A0.0369 (12)0.0501 (14)0.0425 (13)0.0020 (10)0.0010 (9)0.0118 (11)
C10A0.0648 (15)0.0426 (13)0.0411 (13)0.0041 (11)0.0027 (11)0.0062 (10)
C11A0.0560 (14)0.0460 (14)0.0349 (12)0.0011 (11)0.0044 (10)0.0142 (10)
C12A0.0674 (17)0.0550 (16)0.0600 (16)0.0104 (13)0.0074 (13)0.0053 (13)
C13A0.0691 (18)0.084 (2)0.079 (2)0.0074 (16)0.0180 (15)0.0169 (16)
C14A0.0732 (18)0.0617 (17)0.0591 (16)0.0083 (14)0.0017 (14)0.0069 (13)
C15A0.113 (3)0.070 (2)0.113 (3)0.0313 (19)0.000 (2)0.0137 (19)
S1B0.0736 (5)0.0745 (5)0.0507 (4)0.0198 (4)0.0048 (3)0.0070 (3)
S2B0.0661 (4)0.0624 (4)0.0603 (4)0.0193 (3)0.0007 (3)0.0083 (3)
F1B0.1369 (16)0.0513 (10)0.0896 (12)0.0101 (10)0.0252 (11)0.0084 (9)
O1B0.0764 (12)0.0585 (12)0.0570 (11)0.0061 (9)0.0007 (9)0.0222 (9)
O2B0.1241 (18)0.0530 (12)0.0868 (15)0.0044 (11)0.0041 (12)0.0310 (11)
N1B0.0550 (12)0.0524 (12)0.0496 (12)0.0057 (10)0.0022 (9)0.0049 (10)
C1B0.0637 (17)0.0488 (16)0.0674 (19)0.0073 (12)0.0173 (14)0.0045 (14)
C2B0.0614 (17)0.080 (2)0.0524 (17)0.0100 (15)0.0029 (13)0.0064 (15)
C3B0.0597 (16)0.080 (2)0.0492 (15)0.0024 (14)0.0032 (12)0.0117 (14)
C4B0.0409 (13)0.0590 (16)0.0486 (14)0.0002 (11)0.0027 (10)0.0119 (12)
C5B0.0394 (12)0.0443 (14)0.0486 (14)0.0018 (10)0.0085 (10)0.0093 (11)
C6B0.0592 (15)0.0508 (15)0.0548 (15)0.0022 (12)0.0127 (12)0.0093 (12)
C7B0.0660 (17)0.0523 (17)0.0610 (17)0.0010 (13)0.0027 (13)0.0179 (14)
C8B0.0639 (16)0.0459 (15)0.0489 (14)0.0005 (12)0.0024 (12)0.0102 (11)
C9B0.0485 (13)0.0459 (14)0.0454 (13)0.0021 (11)0.0061 (10)0.0111 (11)
C10B0.093 (2)0.0445 (14)0.0479 (14)0.0116 (13)0.0083 (13)0.0102 (12)
C11B0.0638 (15)0.0485 (14)0.0370 (12)0.0019 (11)0.0012 (11)0.0142 (11)
C12B0.0710 (17)0.0528 (16)0.0603 (16)0.0026 (13)0.0061 (13)0.0008 (13)
C13B0.087 (2)0.0594 (18)0.111 (3)0.0054 (16)0.0021 (19)0.0241 (18)
C14B0.077 (2)0.085 (2)0.075 (2)0.0137 (17)0.0029 (16)0.0034 (17)
C15B0.083 (2)0.120 (3)0.170 (4)0.020 (2)0.015 (3)0.042 (3)
Geometric parameters (Å, º) top
S1A—C11A1.785 (2)S1B—C11B1.787 (2)
S1A—C10A1.793 (2)S1B—C10B1.787 (3)
S2A—C11A1.668 (2)S2B—C11B1.662 (3)
F1A—C1A1.362 (3)F1B—C1B1.357 (3)
O1A—C7A1.373 (3)O1B—C7B1.370 (3)
O1A—C4A1.374 (3)O1B—C4B1.371 (3)
O2A—C7A1.200 (3)O2B—C7B1.202 (3)
N1A—C11A1.329 (3)N1B—C11B1.320 (3)
N1A—C14A1.468 (3)N1B—C12B1.467 (3)
N1A—C12A1.477 (3)N1B—C14B1.481 (3)
C1A—C2A1.362 (4)C1B—C6B1.360 (3)
C1A—C6A1.369 (3)C1B—C2B1.369 (4)
C2A—C3A1.368 (4)C2B—C3B1.371 (4)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.389 (3)C3B—C4B1.378 (3)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.387 (3)C4B—C5B1.391 (3)
C5A—C6A1.400 (3)C5B—C6B1.399 (3)
C5A—C9A1.453 (3)C5B—C9B1.449 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.440 (3)C7B—C8B1.441 (3)
C8A—C9A1.331 (3)C8B—C9B1.334 (3)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.502 (3)C9B—C10B1.504 (3)
C10A—H10A0.9700C10B—H10C0.9700
C10A—H10B0.9700C10B—H10D0.9700
C12A—C13A1.496 (4)C12B—C13B1.503 (4)
C12A—H13C0.9700C12B—H13A0.9700
C12A—H13D0.9700C12B—H13B0.9700
C13A—H14A0.9600C13B—H14D0.9600
C13A—H14B0.9600C13B—H14E0.9600
C13A—H14C0.9600C13B—H14F0.9600
C14A—C15A1.507 (4)C14B—C15B1.448 (4)
C14A—H15A0.9700C14B—H15C0.9700
C14A—H15B0.9700C14B—H15D0.9700
C15A—H16A0.9600C15B—H16D0.9600
C15A—H16B0.9600C15B—H16E0.9600
C15A—H16C0.9600C15B—H16F0.9600
C11A—S1A—C10A103.59 (11)C11B—S1B—C10B103.50 (12)
C7A—O1A—C4A121.12 (19)C7B—O1B—C4B121.61 (19)
C11A—N1A—C14A120.6 (2)C11B—N1B—C12B120.9 (2)
C11A—N1A—C12A124.3 (2)C11B—N1B—C14B123.2 (2)
C14A—N1A—C12A115.09 (19)C12B—N1B—C14B115.9 (2)
C2A—C1A—F1A118.9 (2)F1B—C1B—C6B118.3 (3)
C2A—C1A—C6A123.3 (3)F1B—C1B—C2B118.4 (2)
F1A—C1A—C6A117.8 (3)C6B—C1B—C2B123.2 (3)
C1A—C2A—C3A119.0 (3)C1B—C2B—C3B118.5 (2)
C1A—C2A—H2A120.5C1B—C2B—H2B120.8
C3A—C2A—H2A120.5C3B—C2B—H2B120.8
C2A—C3A—C4A119.2 (3)C2B—C3B—C4B119.7 (3)
C2A—C3A—H3A120.4C2B—C3B—H3B120.2
C4A—C3A—H3A120.4C4B—C3B—H3B120.2
O1A—C4A—C5A121.9 (2)O1B—C4B—C3B116.5 (2)
O1A—C4A—C3A116.2 (2)O1B—C4B—C5B121.6 (2)
C5A—C4A—C3A121.9 (3)C3B—C4B—C5B121.9 (2)
C4A—C5A—C6A117.8 (2)C4B—C5B—C6B117.6 (2)
C4A—C5A—C9A118.1 (2)C4B—C5B—C9B118.3 (2)
C6A—C5A—C9A124.1 (2)C6B—C5B—C9B124.1 (2)
C1A—C6A—C5A118.8 (3)C1B—C6B—C5B119.1 (2)
C1A—C6A—H6A120.6C1B—C6B—H6B120.4
C5A—C6A—H6A120.6C5B—C6B—H6B120.4
O2A—C7A—O1A117.6 (2)O2B—C7B—O1B117.5 (2)
O2A—C7A—C8A125.3 (3)O2B—C7B—C8B125.8 (2)
O1A—C7A—C8A117.1 (2)O1B—C7B—C8B116.7 (2)
C9A—C8A—C7A123.4 (2)C9B—C8B—C7B123.6 (2)
C9A—C8A—H8A118.3C9B—C8B—H8B118.2
C7A—C8A—H8A118.3C7B—C8B—H8B118.2
C8A—C9A—C5A118.4 (2)C8B—C9B—C5B118.2 (2)
C8A—C9A—C10A123.2 (2)C8B—C9B—C10B123.3 (2)
C5A—C9A—C10A118.3 (2)C5B—C9B—C10B118.5 (2)
C9A—C10A—S1A116.64 (16)C9B—C10B—S1B116.79 (18)
C9A—C10A—H10A108.1C9B—C10B—H10C108.1
S1A—C10A—H10A108.1S1B—C10B—H10C108.1
C9A—C10A—H10B108.1C9B—C10B—H10D108.1
S1A—C10A—H10B108.1S1B—C10B—H10D108.1
H10A—C10A—H10B107.3H10C—C10B—H10D107.3
N1A—C11A—S2A124.47 (18)N1B—C11B—S2B124.09 (19)
N1A—C11A—S1A113.32 (17)N1B—C11B—S1B113.70 (18)
S2A—C11A—S1A122.20 (13)S2B—C11B—S1B122.22 (14)
N1A—C12A—C13A112.1 (2)N1B—C12B—C13B112.3 (2)
N1A—C12A—H13C109.2N1B—C12B—H13A109.1
C13A—C12A—H13C109.2C13B—C12B—H13A109.1
N1A—C12A—H13D109.2N1B—C12B—H13B109.1
C13A—C12A—H13D109.2C13B—C12B—H13B109.1
H13C—C12A—H13D107.9H13A—C12B—H13B107.9
C12A—C13A—H14A109.5C12B—C13B—H14D109.5
C12A—C13A—H14B109.5C12B—C13B—H14E109.5
H14A—C13A—H14B109.5H14D—C13B—H14E109.5
C12A—C13A—H14C109.5C12B—C13B—H14F109.5
H14A—C13A—H14C109.5H14D—C13B—H14F109.5
H14B—C13A—H14C109.5H14E—C13B—H14F109.5
N1A—C14A—C15A111.8 (2)C15B—C14B—N1B112.1 (3)
N1A—C14A—H15A109.3C15B—C14B—H15C109.2
C15A—C14A—H15A109.3N1B—C14B—H15C109.2
N1A—C14A—H15B109.3C15B—C14B—H15D109.2
C15A—C14A—H15B109.3N1B—C14B—H15D109.2
H15A—C14A—H15B107.9H15C—C14B—H15D107.9
C14A—C15A—H16A109.5C14B—C15B—H16D109.5
C14A—C15A—H16B109.5C14B—C15B—H16E109.5
H16A—C15A—H16B109.5H16D—C15B—H16E109.5
C14A—C15A—H16C109.5C14B—C15B—H16F109.5
H16A—C15A—H16C109.5H16D—C15B—H16F109.5
H16B—C15A—H16C109.5H16E—C15B—H16F109.5
F1A—C1A—C2A—C3A178.9 (2)F1B—C1B—C2B—C3B178.3 (2)
C6A—C1A—C2A—C3A1.3 (4)C6B—C1B—C2B—C3B1.0 (4)
C1A—C2A—C3A—C4A0.4 (4)C1B—C2B—C3B—C4B0.6 (4)
C7A—O1A—C4A—C5A1.0 (3)C7B—O1B—C4B—C3B179.3 (2)
C7A—O1A—C4A—C3A178.5 (2)C7B—O1B—C4B—C5B0.4 (3)
C2A—C3A—C4A—O1A179.6 (2)C2B—C3B—C4B—O1B179.3 (2)
C2A—C3A—C4A—C5A0.9 (4)C2B—C3B—C4B—C5B0.4 (4)
O1A—C4A—C5A—C6A179.19 (19)O1B—C4B—C5B—C6B178.7 (2)
C3A—C4A—C5A—C6A1.4 (3)C3B—C4B—C5B—C6B1.1 (3)
O1A—C4A—C5A—C9A1.1 (3)O1B—C4B—C5B—C9B0.6 (3)
C3A—C4A—C5A—C9A178.3 (2)C3B—C4B—C5B—C9B179.7 (2)
C2A—C1A—C6A—C5A0.9 (4)F1B—C1B—C6B—C5B179.0 (2)
F1A—C1A—C6A—C5A179.4 (2)C2B—C1B—C6B—C5B0.3 (4)
C4A—C5A—C6A—C1A0.5 (3)C4B—C5B—C6B—C1B0.7 (3)
C9A—C5A—C6A—C1A179.2 (2)C9B—C5B—C6B—C1B179.9 (2)
C4A—O1A—C7A—O2A178.7 (2)C4B—O1B—C7B—O2B179.8 (2)
C4A—O1A—C7A—C8A0.6 (3)C4B—O1B—C7B—C8B0.5 (3)
O2A—C7A—C8A—C9A178.8 (3)O2B—C7B—C8B—C9B178.8 (3)
O1A—C7A—C8A—C9A0.5 (4)O1B—C7B—C8B—C9B0.3 (4)
C7A—C8A—C9A—C5A0.7 (3)C7B—C8B—C9B—C5B1.3 (4)
C7A—C8A—C9A—C10A177.4 (2)C7B—C8B—C9B—C10B176.6 (2)
C4A—C5A—C9A—C8A0.9 (3)C4B—C5B—C9B—C8B1.4 (3)
C6A—C5A—C9A—C8A179.4 (2)C6B—C5B—C9B—C8B177.8 (2)
C4A—C5A—C9A—C10A177.2 (2)C4B—C5B—C9B—C10B176.6 (2)
C6A—C5A—C9A—C10A2.5 (3)C6B—C5B—C9B—C10B4.2 (3)
C8A—C9A—C10A—S1A14.5 (3)C8B—C9B—C10B—S1B19.8 (3)
C5A—C9A—C10A—S1A167.51 (16)C5B—C9B—C10B—S1B162.27 (17)
C11A—S1A—C10A—C9A81.97 (19)C11B—S1B—C10B—C9B79.0 (2)
C14A—N1A—C11A—S2A2.9 (3)C12B—N1B—C11B—S2B4.5 (3)
C12A—N1A—C11A—S2A176.84 (18)C14B—N1B—C11B—S2B172.5 (2)
C14A—N1A—C11A—S1A175.79 (17)C12B—N1B—C11B—S1B175.80 (17)
C12A—N1A—C11A—S1A4.4 (3)C14B—N1B—C11B—S1B7.3 (3)
C10A—S1A—C11A—N1A167.43 (16)C10B—S1B—C11B—N1B163.79 (17)
C10A—S1A—C11A—S2A13.81 (17)C10B—S1B—C11B—S2B16.45 (18)
C11A—N1A—C12A—C13A91.7 (3)C11B—N1B—C12B—C13B80.5 (3)
C14A—N1A—C12A—C13A88.5 (3)C14B—N1B—C12B—C13B102.4 (3)
C11A—N1A—C14A—C15A89.1 (3)C11B—N1B—C14B—C15B101.2 (3)
C12A—N1A—C14A—C15A90.7 (3)C12B—N1B—C14B—C15B81.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10A—H10A···S2B0.972.873.621 (2)135
C12A—H13C···O2Bi0.972.603.368 (3)136
C2B—H2B···S2Bii0.932.873.693 (3)148
C10B—H10C···S2Aiii0.972.823.660 (2)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x1, y, z.
 

Acknowledgements

MM thanks the UGC, New Delhi, Government of India, for the award of project F. No. 41–920/2012(SR) from 25–07–2012.

Funding information

Funding for this research was provided by: University Grants Commission (award No. 41–920/2012(SR));

References

First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Khatatneh, N., Chandra, , Shamala, D., Shivashankar, K. & Mahendra, M. (2016). IUCrData, 1, x161989.  Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds