organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N-Di­butyl­anilinium hydrogen squarate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, St Paul, Minnesota 55105, USA, and bDepartment of Chemistry, Hamline University, 1536 Hewitt Avenue, Saint Paul, MN 55104, USA
*Correspondence e-mail: dejanzen@stkate.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 December 2016; accepted 29 December 2016; online 6 January 2017)

The title mol­ecular salt, C14H24N+·C4HO4 [systematic name: N,N-di­butyl­benzenaminium 2-hy­droxy-3,4-dioxo­cyclo­but-1-en-1-olate], is composed of a protonated N,N-di­butyl­aniline cation with a hydrogen squarate monoanion (common names). The disparate bond lengths within the squarate anion suggest delocalization of the negative charge over only part of the squarate moiety. In the crystal, the squarate anions are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked to the cations on either side by N—H⋯O hydrogen bonds, and weak C—H⋯O hydrogen bonds. These cation–anion–anion–cation units are linked by further C—H⋯O hydrogen bonds, forming layers parallel to (102).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Squaraine dyes have been studied extensively as materials for use in organic photovoltaic devices (Chen et al., 2014[Chen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. & Kido, J. (2014). Chem. Mater. 26, 1356-1364.], 2016[Chen, Y., Zhu, Y., Yang, D., Zhao, S., Zhang, L., Yang, L., Wu, J., Huang, Y., Xu, Z. & Lu, Z. (2016). Chem. Eur. J. 22, 14527-14530.]; Feron et al., 2016[Feron, K., Cave, J., Thameel, M., O'Sullivan, C., Kroon, R., Andersson, M., Zhou, X., Fell, C., Belcher, W., Walker, A. & Dastoor, P. (2016). Appl. Mater. Interfaces, 8, 20928-20937.]; Saccone et al., 2016[Saccone, D., Galliano, S., Barbero, N., Quagliotto, P., Viscardi, G. & Barolo, C. (2016). Eur. J. Org. Chem. 2016, 2244-2259.]) as well as optical sensors (Sun et al., 2016[Sun, W., Guo, S., Hu, C., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768-7817.]). The solid-state optical activity of these materials is highly dependent on inter­molecular packing features. In the case of squaraine dyes, both van der Waals forces and possible hydrogen bonding play pivotal roles in the aggregation patterns of these materials (Kaczmarek-Kedziera & Kedziera, 2016[Kaczmarek-Kedziera, A. & Kedziera, D. (2016). Theor. Chem. Acc. 135, Article 214.]). During the course of our studies of squaraine dyes, we synthesized a salt precursor to an asymmetrical squaraine. Herein, we report on the crystal structure of the title mol­ecular salt, N,N-di­butyl­anilinium hydrogen squarate.

The structure of the title mol­ecular salt is illustrated in Fig. 1[link]. The asymmetric unit consists of an N,N-dibutyl anilinium cation with a hydrogen squarate anion. Positional disorder was modeled in one butyl group (C15–C18) over two positions with an appropriate mix of constraints and restraints. The pattern of observed C—C and C—O bond lengths in the squarate ring are consistent with the negative charge resonance-stabilized at atoms O1 and O3 (Fig. 2[link]). The C4—O4 bond distance of 1.216 (2) Å, is inter­preted as a double bond, while the C3—O3 [1.255 (2) Å] and C1—O1 [1.249 (2) Å] bond lengths are indicative of bond orders between 1–2. Likewise, the C1—C2 [1.425 (2) Å] and C2—C3 [1.417 (2) Å] bond distances are shorter than bonds C1—C4 [1.490 (2) Å] and C3—C4 [1.492 (2) Å], consistent with the proposed dominant resonance structures (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt, showing the atom labeling. Displacement ellipsoid are drawn at the 50% probability level. Minor disorder component atoms have been omitted for clarity.
[Figure 2]
Figure 2
Intra­molecular details (Å) of the hydrogen squarate anion and relevant resonance structures in the title compound.

In the crystal, two unique inter­molecular hydrogen bonds are present (Fig. 3[link], Table 1[link]). The alcohol moiety (O2—H2) acts as a donor with an inversion-related hydrogen squarate O3 atom at (−x, −y + 1, −z + 2) as the acceptor. The inversion-related hydrogen squarate anions form an inversion dimer with an R22(10) ring motif. The protonated amine moiety (N1—H1) acts as a donor in a hydrogen bond with the acceptor O1 of the hydrogen squarate anion. Hence, the dimers are linked to the cations on either side by N—H⋯O hydrogen bonds (Fig. 3[link]), and weak C15—H15A⋯O4 hydrogen bonds (Table 1[link]). These cation–anion–anion–cation units are linked by C9—H9⋯O1ii hydrogen bonds, forming layers parallel to plane (102); see Table 1[link] and Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.91 (2) 1.68 (2) 2.543 (2) 157 (2)
N1—H1⋯O1 0.95 (2) 1.74 (2) 2.688 (2) 172 (2)
C15—H15A⋯O4 0.99 2.60 3.469 (5) 147
C9—H9⋯O1ii 0.95 2.53 3.222 (2) 130
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Inter­molecular hydrogen-bonding (dashed lines; see Table 1[link]). Minor disorder component atoms (C15′–C18′ and attached H atoms) have been omitted for clarity [symmetry code: (i) −x, −y + 1, −z + 2].
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title salt. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in hydrogen bonding have been included, and the minor disorder component atoms (C15′–C18′ and attached H atoms) have been omitted.

While numerous other protonated amine salts of hydrogen squarate have been reported, only a few involve a cation with no other hydrogen-bond donors or acceptors, only the hydrogen squarate anion and no solvent. Examples include 4-phenyl­pyridinium hydrogen squarate (Kolev et al., 2004[Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W. S. & Heller, M. (2004). Acta Cryst. E60, o956-o957.]) and 2-methyl­pyridinium hydrogen squarate (Korkmaz & Bulut, 2014[Korkmaz, U. & Bulut, A. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 376-385.]), which have a similar hydrogen-bonding pattern with the R22(10) motif and capping N—H donors/squarate oxygen acceptor [D11(2)] motifs. Others, such as pyridinium hydrogen squarate (Modec, 2015[Modec, B. (2015). J. Mol. Struct. 1099, 54-57.]) pack with a C11(5) chain motif of hydrogen squarate anions with dimer D11(2) motifs on the periphery of the hydrogen-bonded chains of hydrogen squarate anions. A more complex R44(2) tetra­mer hydrogen-bonded ring motif is found in the structure of 1,2,3,4-tetra­hydro­isoquinolinium hydrogen squarate (Kolev et al., 2007[Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353-o3354.]).

Synthesis and crystallization

Under an argon atmosphere, squaric acid (1.5 g, 13.5 mmol) and N,N-di­butyl­analine (6 ml, 26 mmol) were dissolved in a mixture of toluene (20 ml) and 1-butanol (20 ml). The reaction mixture was heated at 353 K with constant stirring for 8 h. During this time period, the solution turned a golden brown color. About 35 ml of azeotropic distillate was collected using a short path distillation setup with multiple flask take-off. The solution was purged with Ar and left to cool to rt (15 h). The solution was then reheated using an oil bath at 388 K for 6 h then allowed to cool to rt and stirred for 48 h under Ar. No additional color change was observed. Crystals grown from the reaction mixture were removed from the mother liquor three days after heating. The crystals were washed with 15 ml of hexa­nes, collected by vacuum filtration and stored in a vial at rt (yield 2.92 g, 9.2 mmol, 70%). 1H NMR (600 MHz, CD3OD): 8.03 (s, 1H), 7.23 (br s, 2H), 6.85 (br s, 2H), 6.70 (br s, 1H), 2.92 (t, 2H), 2.74 (t, 2H), 1.53 (p, 4H), 1.34 (m, 4H), 0.92 (t, 6H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Positional disorder was modeled in one of the butyl groups over two conformations (C15–C18: C15′–C18′), which have a refined occupancy ratio of 0.825 (3): 0.175 (3). The 1,2 and 1,3 bond distances of the disordered components were restrained to be the same within standard uncertainties of 0.02 and 0.04 Å, respectively. The displacement parameters of the pairwise carbon atoms of the disordered components were constrained to be equal.

Table 2
Experimental details

Crystal data
Chemical formula C14H24N+·C4HO4
Mr 319.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.3476 (16), 10.7877 (17), 16.922 (3)
β (°) 106.214 (8)
V3) 1813.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.33 × 0.23 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.826, 0.988
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 14670, 3196, 2316
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.108, 1.03
No. of reflections 3196
No. of parameters 232
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.16
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

(I) top
Crystal data top
C14H24N+·C4HO4F(000) = 688.00
Mr = 319.40Dx = 1.170 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 10.3476 (16) ÅCell parameters from 11464 reflections
b = 10.7877 (17) Åθ = 3.1–25.2°
c = 16.922 (3) ŵ = 0.08 mm1
β = 106.214 (8)°T = 173 K
V = 1813.9 (5) Å3Prism, colorless
Z = 40.33 × 0.23 × 0.15 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2316 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.042
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1212
Tmin = 0.826, Tmax = 0.988k = 1212
14670 measured reflectionsl = 2020
3196 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2934P]
where P = (Fo2 + 2Fc2)/3
3196 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.12 e Å3
5 restraintsΔρmin = 0.16 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C150.1766 (5)0.1587 (3)0.6843 (2)0.0419 (8)0.825 (3)
H15A0.09630.18200.70190.050*0.825 (3)
H15B0.14800.09750.63910.050*0.825 (3)
C160.2311 (3)0.2736 (2)0.65204 (15)0.0488 (7)0.825 (3)
H16A0.28020.32520.69930.059*0.825 (3)
H16B0.29590.24770.62190.059*0.825 (3)
C170.1218 (2)0.3504 (2)0.59581 (15)0.0573 (7)0.825 (3)
H17A0.07000.39300.62890.069*0.825 (3)
H17B0.05940.29500.55630.069*0.825 (3)
C180.1776 (4)0.4460 (3)0.5486 (2)0.0762 (10)0.825 (3)
H18D0.22660.40410.51440.091*0.825 (3)
H18E0.23900.50150.58750.091*0.825 (3)
H18F0.10340.49440.51350.091*0.825 (3)
C15'0.153 (3)0.1345 (16)0.6716 (15)0.0419 (8)0.175 (3)
H15C0.15990.08260.62480.050*0.175 (3)
H15D0.06520.11640.68220.050*0.175 (3)
C16'0.1585 (14)0.2707 (11)0.6498 (8)0.0488 (7)0.175 (3)
H16C0.07100.29460.61140.059*0.175 (3)
H16D0.17120.32060.70050.059*0.175 (3)
C17'0.2693 (12)0.3028 (11)0.6109 (8)0.0573 (7)0.175 (3)
H17C0.28080.23320.57530.069*0.175 (3)
H17D0.35480.31270.65480.069*0.175 (3)
C18'0.2419 (19)0.4208 (15)0.5596 (12)0.0762 (10)0.175 (3)
H18A0.20330.48360.58820.091*0.175 (3)
H18B0.17830.40290.50600.091*0.175 (3)
H18C0.32630.45190.55160.091*0.175 (3)
H10.2875 (17)0.1574 (17)0.7987 (11)0.051 (5)*
H20.148 (2)0.525 (2)1.0022 (14)0.074 (7)*
O10.28289 (11)0.26494 (11)0.87454 (7)0.0467 (3)
O20.20270 (13)0.47939 (13)0.97961 (9)0.0567 (4)
O30.10897 (11)0.37798 (11)0.93017 (8)0.0465 (3)
O40.02637 (13)0.16806 (14)0.81630 (9)0.0669 (4)
N10.27710 (14)0.10014 (13)0.75448 (9)0.0394 (4)
C10.17434 (16)0.29656 (15)0.88734 (10)0.0375 (4)
C20.13305 (16)0.39029 (15)0.93441 (10)0.0372 (4)
C30.00209 (16)0.34850 (15)0.91360 (10)0.0370 (4)
C40.03317 (17)0.25007 (16)0.86125 (11)0.0429 (4)
C50.40968 (17)0.08575 (15)0.73863 (11)0.0389 (4)
C60.51639 (18)0.15324 (16)0.78593 (12)0.0464 (4)
H60.50470.20710.82780.056*
C70.64118 (19)0.14138 (18)0.77141 (13)0.0545 (5)
H70.71610.18660.80380.065*
C80.6563 (2)0.06392 (18)0.71004 (14)0.0568 (5)
H80.74200.05570.70040.068*
C90.54816 (19)0.00196 (17)0.66235 (13)0.0528 (5)
H90.55940.05430.61960.063*
C100.42343 (18)0.00821 (16)0.67682 (11)0.0440 (4)
H100.34860.03750.64470.053*
C110.22876 (17)0.01779 (15)0.78457 (11)0.0424 (4)
H11A0.21350.08130.74070.051*
H11B0.14180.00200.79650.051*
C120.32913 (18)0.06664 (17)0.86129 (11)0.0467 (5)
H12A0.35940.00240.90060.056*
H12B0.40880.09910.84650.056*
C130.2707 (2)0.16874 (18)0.90269 (12)0.0531 (5)
H13A0.19490.13480.92100.064*
H13B0.23470.23530.86230.064*
C140.3739 (3)0.2230 (2)0.97576 (14)0.0786 (7)
H14A0.33130.28611.00180.094*
H14B0.41090.15711.01550.094*
H14C0.44660.26100.95740.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.037 (2)0.0443 (18)0.0425 (18)0.0049 (13)0.0073 (15)0.0079 (14)
C160.0466 (17)0.0463 (12)0.0529 (14)0.0004 (13)0.0130 (15)0.0023 (10)
C170.0616 (15)0.0567 (15)0.0521 (15)0.0122 (12)0.0136 (12)0.0023 (12)
C180.094 (3)0.0636 (19)0.0656 (19)0.0076 (19)0.013 (2)0.0120 (14)
C15'0.037 (2)0.0443 (18)0.0425 (18)0.0049 (13)0.0073 (15)0.0079 (14)
C16'0.0466 (17)0.0463 (12)0.0529 (14)0.0004 (13)0.0130 (15)0.0023 (10)
C17'0.0616 (15)0.0567 (15)0.0521 (15)0.0122 (12)0.0136 (12)0.0023 (12)
C18'0.094 (3)0.0636 (19)0.0656 (19)0.0076 (19)0.013 (2)0.0120 (14)
O10.0361 (7)0.0524 (8)0.0574 (8)0.0073 (6)0.0225 (6)0.0147 (6)
O20.0412 (8)0.0627 (9)0.0724 (10)0.0127 (7)0.0261 (7)0.0309 (7)
O30.0341 (7)0.0515 (8)0.0558 (8)0.0015 (5)0.0159 (6)0.0114 (6)
O40.0427 (8)0.0726 (10)0.0898 (11)0.0151 (7)0.0260 (7)0.0417 (8)
N10.0397 (8)0.0376 (8)0.0434 (9)0.0006 (6)0.0158 (7)0.0051 (7)
C10.0357 (9)0.0398 (9)0.0400 (10)0.0018 (7)0.0156 (8)0.0004 (7)
C20.0367 (9)0.0398 (9)0.0365 (9)0.0029 (7)0.0125 (7)0.0026 (7)
C30.0351 (9)0.0396 (9)0.0376 (9)0.0033 (7)0.0122 (7)0.0019 (7)
C40.0365 (10)0.0444 (10)0.0495 (11)0.0026 (8)0.0148 (8)0.0079 (9)
C50.0383 (10)0.0370 (9)0.0439 (10)0.0016 (8)0.0155 (8)0.0034 (8)
C60.0472 (11)0.0425 (10)0.0502 (11)0.0039 (8)0.0150 (9)0.0019 (8)
C70.0425 (11)0.0502 (12)0.0696 (14)0.0068 (9)0.0136 (10)0.0116 (10)
C80.0438 (12)0.0527 (12)0.0816 (15)0.0084 (9)0.0304 (11)0.0201 (11)
C90.0539 (12)0.0485 (11)0.0639 (13)0.0134 (9)0.0296 (10)0.0074 (9)
C100.0427 (10)0.0431 (10)0.0483 (11)0.0046 (8)0.0163 (8)0.0006 (8)
C110.0378 (10)0.0411 (10)0.0512 (11)0.0049 (8)0.0173 (8)0.0051 (8)
C120.0468 (11)0.0461 (11)0.0493 (11)0.0068 (8)0.0167 (9)0.0018 (8)
C130.0624 (13)0.0469 (11)0.0546 (12)0.0112 (9)0.0240 (10)0.0042 (9)
C140.0995 (19)0.0695 (15)0.0639 (15)0.0205 (13)0.0182 (13)0.0144 (12)
Geometric parameters (Å, º) top
C15—N11.484 (4)N1—C51.478 (2)
C15—C161.525 (4)N1—C111.507 (2)
C15—H15A0.9900N1—H10.953 (19)
C15—H15B0.9900C1—C21.425 (2)
C16—C171.506 (3)C1—C41.490 (2)
C16—H16A0.9900C2—C31.417 (2)
C16—H16B0.9900C3—C41.492 (2)
C17—C181.514 (4)C5—C61.377 (2)
C17—H17A0.9900C5—C101.377 (2)
C17—H17B0.9900C6—C71.386 (3)
C18—H18D0.9800C6—H60.9500
C18—H18E0.9800C7—C81.375 (3)
C18—H18F0.9800C7—H70.9500
C15'—C16'1.520 (16)C8—C91.380 (3)
C15'—N11.66 (2)C8—H80.9500
C15'—H15C0.9900C9—C101.384 (2)
C15'—H15D0.9900C9—H90.9500
C16'—C17'1.513 (13)C10—H100.9500
C16'—H16C0.9900C11—C121.513 (2)
C16'—H16D0.9900C11—H11A0.9900
C17'—C18'1.521 (14)C11—H11B0.9900
C17'—H17C0.9900C12—C131.519 (2)
C17'—H17D0.9900C12—H12A0.9900
C18'—H18A0.9800C12—H12B0.9900
C18'—H18B0.9800C13—C141.508 (3)
C18'—H18C0.9800C13—H13A0.9900
O1—C11.2492 (19)C13—H13B0.9900
O2—C21.312 (2)C14—H14A0.9800
O2—H20.91 (2)C14—H14B0.9800
O3—C31.2555 (18)C14—H14C0.9800
O4—C41.216 (2)
N1—C15—C16112.7 (3)C11—N1—H1104.9 (11)
N1—C15—H15A109.0C15'—N1—H1114.1 (14)
C16—C15—H15A109.0O1—C1—C2135.67 (16)
N1—C15—H15B109.0O1—C1—C4135.33 (15)
C16—C15—H15B109.0C2—C1—C488.99 (13)
H15A—C15—H15B107.8O2—C2—C3136.17 (15)
C17—C16—C15112.7 (3)O2—C2—C1130.13 (15)
C17—C16—H16A109.0C3—C2—C193.70 (13)
C15—C16—H16A109.0O3—C3—C2137.20 (16)
C17—C16—H16B109.0O3—C3—C4133.60 (15)
C15—C16—H16B109.0C2—C3—C489.19 (13)
H16A—C16—H16B107.8O4—C4—C1135.54 (16)
C16—C17—C18112.2 (2)O4—C4—C3136.38 (16)
C16—C17—H17A109.2C1—C4—C388.08 (13)
C18—C17—H17A109.2C10—C5—C6121.77 (16)
C16—C17—H17B109.2C10—C5—N1119.98 (15)
C18—C17—H17B109.2C6—C5—N1118.24 (15)
H17A—C17—H17B107.9C5—C6—C7118.91 (18)
C17—C18—H18D109.5C5—C6—H6120.5
C17—C18—H18E109.5C7—C6—H6120.5
H18D—C18—H18E109.5C8—C7—C6119.85 (19)
C17—C18—H18F109.5C8—C7—H7120.1
H18D—C18—H18F109.5C6—C7—H7120.1
H18E—C18—H18F109.5C7—C8—C9120.68 (18)
C16'—C15'—N1110.3 (13)C7—C8—H8119.7
C16'—C15'—H15C109.6C9—C8—H8119.7
N1—C15'—H15C109.6C8—C9—C10119.98 (18)
C16'—C15'—H15D109.6C8—C9—H9120.0
N1—C15'—H15D109.6C10—C9—H9120.0
H15C—C15'—H15D108.1C5—C10—C9118.81 (18)
C17'—C16'—C15'114.4 (15)C5—C10—H10120.6
C17'—C16'—H16C108.7C9—C10—H10120.6
C15'—C16'—H16C108.7N1—C11—C12111.78 (14)
C17'—C16'—H16D108.7N1—C11—H11A109.3
C15'—C16'—H16D108.7C12—C11—H11A109.3
H16C—C16'—H16D107.6N1—C11—H11B109.3
C16'—C17'—C18'113.3 (11)C12—C11—H11B109.3
C16'—C17'—H17C108.9H11A—C11—H11B107.9
C18'—C17'—H17C108.9C11—C12—C13112.46 (15)
C16'—C17'—H17D108.9C11—C12—H12A109.1
C18'—C17'—H17D108.9C13—C12—H12A109.1
H17C—C17'—H17D107.7C11—C12—H12B109.1
C17'—C18'—H18A109.5C13—C12—H12B109.1
C17'—C18'—H18B109.5H12A—C12—H12B107.8
H18A—C18'—H18B109.5C14—C13—C12112.17 (16)
C17'—C18'—H18C109.5C14—C13—H13A109.2
H18A—C18'—H18C109.5C12—C13—H13A109.2
H18B—C18'—H18C109.5C14—C13—H13B109.2
C2—O2—H2109.6 (14)C12—C13—H13B109.2
C5—N1—C15112.2 (2)H13A—C13—H13B107.9
C5—N1—C11112.66 (13)C13—C14—H14A109.5
C15—N1—C11113.90 (17)C13—C14—H14B109.5
C5—N1—C15'114.2 (11)H14A—C14—H14B109.5
C11—N1—C15'102.8 (6)C13—C14—H14C109.5
C5—N1—H1107.7 (11)H14A—C14—H14C109.5
C15—N1—H1104.6 (11)H14B—C14—H14C109.5
N1—C15—C16—C17165.9 (3)C2—C3—C4—O4178.1 (2)
C15—C16—C17—C18166.5 (3)O3—C3—C4—C1178.62 (19)
N1—C15'—C16'—C17'75 (2)C2—C3—C4—C11.40 (13)
C15'—C16'—C17'—C18'156.9 (15)C15—N1—C5—C6113.9 (2)
C16—C15—N1—C547.2 (4)C11—N1—C5—C6115.94 (17)
C16—C15—N1—C11176.7 (3)C15'—N1—C5—C6127.2 (7)
C16—C15—N1—C15'149 (6)C15—N1—C5—C1064.9 (2)
C16'—C15'—N1—C577.4 (19)C11—N1—C5—C1065.3 (2)
C16'—C15'—N1—C156 (4)C15'—N1—C5—C1051.6 (7)
C16'—C15'—N1—C11160.2 (15)C10—C5—C6—C70.8 (3)
O1—C1—C2—O22.3 (3)N1—C5—C6—C7179.56 (15)
C4—C1—C2—O2178.97 (19)C5—C6—C7—C80.6 (3)
O1—C1—C2—C3177.3 (2)C6—C7—C8—C90.3 (3)
C4—C1—C2—C31.47 (14)C7—C8—C9—C100.9 (3)
O2—C2—C3—O31.0 (4)C6—C5—C10—C90.2 (3)
C1—C2—C3—O3178.6 (2)N1—C5—C10—C9178.92 (15)
O2—C2—C3—C4179.0 (2)C8—C9—C10—C50.7 (3)
C1—C2—C3—C41.47 (14)C5—N1—C11—C1256.46 (19)
O1—C1—C4—O43.1 (4)C15—N1—C11—C12174.3 (3)
C2—C1—C4—O4178.1 (2)C15'—N1—C11—C12179.9 (11)
O1—C1—C4—C3177.4 (2)N1—C11—C12—C13167.88 (15)
C2—C1—C4—C31.39 (13)C11—C12—C13—C14176.11 (17)
O3—C3—C4—O41.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.91 (2)1.68 (2)2.543 (2)157 (2)
N1—H1···O10.95 (2)1.74 (2)2.688 (2)172 (2)
C15—H15A···O40.992.603.469 (5)147
C9—H9···O1ii0.952.533.222 (2)130
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge St. Catherine University, the NSF–MRI award No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility' and the 3M/Ronald A. Mitsch Endowed Fund in Chemistry at Hamline University.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. 1125975).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. & Kido, J. (2014). Chem. Mater. 26, 1356–1364.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y., Zhu, Y., Yang, D., Zhao, S., Zhang, L., Yang, L., Wu, J., Huang, Y., Xu, Z. & Lu, Z. (2016). Chem. Eur. J. 22, 14527–14530.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeron, K., Cave, J., Thameel, M., O'Sullivan, C., Kroon, R., Andersson, M., Zhou, X., Fell, C., Belcher, W., Walker, A. & Dastoor, P. (2016). Appl. Mater. Interfaces, 8, 20928–20937.  Web of Science CrossRef CAS Google Scholar
First citationKaczmarek-Kedziera, A. & Kedziera, D. (2016). Theor. Chem. Acc. 135, Article 214.  Google Scholar
First citationKolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolev, T., Wortmann, R., Spiteller, M., Sheldrick, W. S. & Heller, M. (2004). Acta Cryst. E60, o956–o957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorkmaz, U. & Bulut, A. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 376–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationModec, B. (2015). J. Mol. Struct. 1099, 54–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaccone, D., Galliano, S., Barbero, N., Quagliotto, P., Viscardi, G. & Barolo, C. (2016). Eur. J. Org. Chem. 2016, 2244–2259.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W., Guo, S., Hu, C., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768–7817.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds