organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(2-meth­­oxy­phen­yl)phosphine selenide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, GA, 31419, USA
*Correspondence e-mail: will.lynch@armstrong.edu

Edited by S. Parkin, University of Kentucky, USA (Received 30 December 2016; accepted 3 January 2017; online 10 January 2017)

The title compound C21H21O3PSe, is comprised of a P atom in a distorted tetra­hedral environment, attached to the selenium atom and three carbons from the phenyl rings. The phospho­rus–selenium bond length is 2.1194 (11) Å. All three meth­oxy groups are nearly co-planar with their respective phenyl rings, with the angles between the phenyl ring and the C—O bond of the meth­oxy groups being 6.2 (2), 3.1 (2), and 5.7 (2)°. The torsion angles of the phenyl rings relative to the P=Se bond are 55.84 (19), 176.18 (16), and 63.9 (2)°. No strong inter­actions were observed, but in addition to van der Waals forces, there are close contacts between C—H⋯π and C—H⋯Se.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is composed of a distorted tetra­hedral phospho­rus atom attached to the selenium atom and three carbons from three different phenyl rings. The P=Se bond distance is 2.1194 (11) Å. This distance is similar to those reported previously for the phenyl (Codding & Kerr, 1979[Codding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261-1263.]), p-fluoro­phenyl (Muller & Meijboom, 2007[Muller, A. & Meijboom, R. (2007). Acta Cryst. E63, o4055.]), p-tolyl (Muller, 2011[Muller, A. (2011). Acta Cryst. E67, o45.]), and o-tolyl (Cameron & Dahlèn, 1975[Cameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737-1751.]) derivatives (all 2.10–2.12 Å). The average P—C bond distance is 1.820 (3) Å with an average C—P—C bond angle of 106.29 (11)°. The average Se—P—C bond angle is determined to be 112.48 (9)°. The torsion angles of the phenyl rings relative to the P=Se bond are 55.84 (19)° for Se1—P1—C1—C2, 176.18 (16)° for Se1—P1—C8—C9, and 63.9 (2)° for Se1—P1—C15—C16. The compound presents extremely weak C—H⋯Se and C—H⋯π inter­molecular inter­actions and displays an intra­molecular C13—H13⋯Se1 close contact (Table 1[link]). The crystal packing is illustrated in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Se1 0.95 2.77 3.356 (3) 120
C19—H19⋯Se1i 0.95 2.94 3.761 (3) 145
C7—H7BCg1ii 0.98 2.76 3.602 (4) 144
C10—H10⋯Cg1iii 0.95 2.83 3.658 (3) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y, z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the a axis. All H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by dissolving 0.25 g (0.71 mmol) of tris-2-meth­oxy­phenyl­phosphine in 20 mL of methanol and this solution was brought to a boil. To this solution was added an equimolar amount of selenium (0.056 g, 0.71 mmol) in one portion. The solution was heated at reflux for 15 minutes. The solution was filtered hot to remove any unreacted selenium metal. Colorless crystals were then grown by slow evaporation of the solvent at room temperature. Yields were between 70–75% based on the phosphine starting material. This is an adaptation of a literature preparation by Dakternieks et al. (1994[Dakternieks, D., Dyson, G. A., O'Connell, J. L. & Schiesser, C. H. (1994). J. Chem. Educ. 71, 168-169.]) and is similar to that described by Raymundo, et al. (2016[Raymundo, M., Padgett, C. W. & Lynch, W. E. (2016). IUCrData, 1, x161271.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H21O3PSe
Mr 431.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.351 (4), 27.156 (14), 8.545 (4)
β (°) 99.414 (7)
V3) 1911.7 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.07
Crystal size (mm) 0.4 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku XtaLAB mini diffractometer
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.556, 0.734
No. of measured, independent and observed [I > 2σ(I)] reflections 4389, 4389, 3819
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.09
No. of reflections 4389
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.36
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(2-methoxyphenyl)phosphine selenide top
Crystal data top
C21H21O3PSeF(000) = 880
Mr = 431.31Dx = 1.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 8.351 (4) ÅCell parameters from 5181 reflections
b = 27.156 (14) Åθ = 2.4–27.5°
c = 8.545 (4) ŵ = 2.07 mm1
β = 99.414 (7)°T = 173 K
V = 1911.7 (16) Å3Prism, colorless
Z = 40.4 × 0.2 × 0.15 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3819 reflections with I > 2σ(I)
Detector resolution: 6.827 pixels mm-1Rint = 0.043
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.556, Tmax = 0.734k = 3535
4389 measured reflectionsl = 1111
4389 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0251P)2 + 1.2505P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4389 reflectionsΔρmax = 0.39 e Å3
238 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.46784 (3)0.63422 (2)0.05815 (3)0.02628 (8)
P10.24136 (7)0.63436 (2)0.02326 (7)0.01802 (12)
O10.2527 (2)0.52932 (6)0.0484 (2)0.0295 (4)
O20.0163 (2)0.62419 (7)0.2283 (2)0.0313 (4)
O30.1419 (2)0.70152 (6)0.2456 (2)0.0328 (4)
C10.0819 (3)0.59807 (8)0.0936 (2)0.0202 (4)
C20.1084 (3)0.54796 (8)0.1201 (3)0.0226 (5)
C30.0102 (3)0.52009 (9)0.2140 (3)0.0302 (5)
H30.00890.48640.23390.036*
C40.1558 (3)0.54181 (10)0.2780 (3)0.0337 (6)
H40.23650.52280.34240.040*
C50.1860 (3)0.59059 (10)0.2498 (3)0.0297 (5)
H50.28720.60500.29330.036*
C60.0674 (3)0.61862 (9)0.1575 (3)0.0247 (5)
H60.08830.65220.13770.030*
C70.2889 (3)0.47934 (9)0.0828 (4)0.0385 (6)
H7A0.29450.47610.19600.058*
H7B0.20360.45770.05570.058*
H7C0.39350.47000.02030.058*
C80.2598 (3)0.60968 (8)0.2241 (3)0.0208 (4)
C90.1291 (3)0.60840 (8)0.3091 (3)0.0230 (5)
C100.1516 (3)0.59136 (9)0.4641 (3)0.0308 (5)
H100.06400.59180.52250.037*
C110.3022 (3)0.57369 (9)0.5338 (3)0.0334 (6)
H110.31790.56240.64040.040*
C120.4297 (3)0.57243 (9)0.4491 (3)0.0300 (5)
H120.53130.55890.49550.036*
C130.4087 (3)0.59105 (8)0.2959 (3)0.0252 (5)
H130.49760.59110.23930.030*
C140.1478 (3)0.63054 (12)0.3142 (4)0.0419 (7)
H14A0.24490.64080.24120.063*
H14B0.11930.65580.39600.063*
H14C0.16940.59930.36450.063*
C150.1653 (3)0.69686 (8)0.0308 (3)0.0226 (5)
C160.1256 (3)0.72478 (8)0.1088 (3)0.0252 (5)
C170.0718 (3)0.77322 (9)0.1014 (3)0.0318 (6)
H170.04340.79190.19590.038*
C180.0603 (4)0.79385 (10)0.0433 (3)0.0404 (7)
H180.02070.82650.04770.048*
C190.1054 (4)0.76776 (10)0.1826 (3)0.0409 (7)
H190.10080.78280.28220.049*
C200.1571 (3)0.71963 (9)0.1754 (3)0.0297 (5)
H200.18780.70170.27100.036*
C210.1161 (5)0.72893 (11)0.3881 (3)0.0523 (8)
H21A0.13260.70760.47670.078*
H21B0.19300.75640.37980.078*
H21C0.00490.74170.40670.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02445 (14)0.02560 (14)0.03081 (14)0.00104 (9)0.01052 (10)0.00186 (9)
P10.0201 (3)0.0154 (3)0.0187 (3)0.0008 (2)0.0037 (2)0.0000 (2)
O10.0259 (9)0.0186 (8)0.0417 (10)0.0034 (7)0.0018 (7)0.0005 (7)
O20.0210 (9)0.0437 (10)0.0299 (9)0.0038 (7)0.0067 (7)0.0032 (8)
O30.0511 (11)0.0251 (9)0.0225 (8)0.0054 (8)0.0063 (8)0.0028 (7)
C10.0236 (11)0.0189 (10)0.0188 (10)0.0005 (8)0.0050 (8)0.0000 (8)
C20.0227 (11)0.0215 (11)0.0241 (11)0.0003 (9)0.0051 (9)0.0003 (9)
C30.0335 (13)0.0221 (12)0.0341 (13)0.0045 (10)0.0032 (10)0.0043 (10)
C40.0298 (13)0.0352 (14)0.0338 (14)0.0098 (11)0.0020 (10)0.0037 (11)
C50.0226 (12)0.0361 (14)0.0281 (12)0.0016 (10)0.0026 (9)0.0013 (10)
C60.0229 (11)0.0250 (12)0.0258 (12)0.0017 (9)0.0031 (9)0.0004 (9)
C70.0373 (15)0.0199 (12)0.0580 (18)0.0070 (11)0.0075 (13)0.0003 (12)
C80.0221 (11)0.0183 (10)0.0217 (11)0.0005 (8)0.0028 (8)0.0009 (8)
C90.0247 (11)0.0205 (11)0.0239 (11)0.0007 (9)0.0040 (9)0.0006 (9)
C100.0385 (14)0.0320 (13)0.0233 (12)0.0049 (11)0.0094 (10)0.0004 (10)
C110.0447 (16)0.0321 (13)0.0211 (12)0.0071 (11)0.0016 (11)0.0033 (10)
C120.0292 (13)0.0292 (13)0.0281 (12)0.0003 (10)0.0058 (10)0.0005 (10)
C130.0240 (12)0.0232 (11)0.0279 (12)0.0001 (9)0.0028 (9)0.0005 (9)
C140.0235 (13)0.061 (2)0.0434 (16)0.0027 (12)0.0127 (11)0.0108 (14)
C150.0261 (12)0.0172 (10)0.0245 (11)0.0018 (9)0.0044 (9)0.0018 (9)
C160.0288 (12)0.0202 (11)0.0265 (12)0.0008 (9)0.0041 (9)0.0012 (9)
C170.0350 (14)0.0210 (12)0.0379 (14)0.0029 (10)0.0011 (11)0.0032 (10)
C180.0530 (18)0.0187 (12)0.0492 (17)0.0071 (11)0.0078 (14)0.0043 (11)
C190.0614 (19)0.0271 (13)0.0352 (15)0.0051 (13)0.0110 (13)0.0116 (11)
C200.0409 (14)0.0230 (12)0.0246 (12)0.0056 (10)0.0041 (10)0.0022 (9)
C210.092 (3)0.0396 (16)0.0259 (14)0.0070 (17)0.0108 (15)0.0078 (12)
Geometric parameters (Å, º) top
Se1—P12.1194 (11)C9—C101.387 (3)
P1—C11.818 (2)C10—H100.9500
P1—C81.825 (2)C10—C111.386 (4)
P1—C151.817 (2)C11—H110.9500
O1—C21.358 (3)C11—C121.382 (4)
O1—C71.432 (3)C12—H120.9500
O2—C91.364 (3)C12—C131.387 (3)
O2—C141.428 (3)C13—H130.9500
O3—C161.354 (3)C14—H14A0.9800
O3—C211.414 (3)C14—H14B0.9800
C1—C21.403 (3)C14—H14C0.9800
C1—C61.393 (3)C15—C161.407 (3)
C2—C31.391 (3)C15—C201.393 (3)
C3—H30.9500C16—C171.394 (3)
C3—C41.382 (4)C17—H170.9500
C4—H40.9500C17—C181.376 (4)
C4—C51.377 (4)C18—H180.9500
C5—H50.9500C18—C191.384 (4)
C5—C61.388 (3)C19—H190.9500
C6—H60.9500C19—C201.381 (3)
C7—H7A0.9800C20—H200.9500
C7—H7B0.9800C21—H21A0.9800
C7—H7C0.9800C21—H21B0.9800
C8—C91.407 (3)C21—H21C0.9800
C8—C131.389 (3)
C1—P1—Se1115.57 (8)C11—C10—H10120.1
C1—P1—C8105.00 (10)C10—C11—H11119.8
C8—P1—Se1111.43 (8)C12—C11—C10120.4 (2)
C15—P1—Se1110.44 (8)C12—C11—H11119.8
C15—P1—C1107.27 (11)C11—C12—H12120.1
C15—P1—C8106.60 (10)C11—C12—C13119.7 (2)
C2—O1—C7117.57 (19)C13—C12—H12120.1
C9—O2—C14118.3 (2)C8—C13—H13119.5
C16—O3—C21118.4 (2)C12—C13—C8121.0 (2)
C2—C1—P1119.58 (17)C12—C13—H13119.5
C6—C1—P1121.75 (17)O2—C14—H14A109.5
C6—C1—C2118.7 (2)O2—C14—H14B109.5
O1—C2—C1116.14 (19)O2—C14—H14C109.5
O1—C2—C3123.6 (2)H14A—C14—H14B109.5
C3—C2—C1120.3 (2)H14A—C14—H14C109.5
C2—C3—H3120.2H14B—C14—H14C109.5
C4—C3—C2119.6 (2)C16—C15—P1120.56 (17)
C4—C3—H3120.2C20—C15—P1120.96 (18)
C3—C4—H4119.5C20—C15—C16118.3 (2)
C5—C4—C3121.0 (2)O3—C16—C15115.9 (2)
C5—C4—H4119.5O3—C16—C17123.9 (2)
C4—C5—H5120.2C17—C16—C15120.2 (2)
C4—C5—C6119.5 (2)C16—C17—H17120.2
C6—C5—H5120.2C18—C17—C16119.7 (2)
C1—C6—H6119.6C18—C17—H17120.2
C5—C6—C1120.8 (2)C17—C18—H18119.5
C5—C6—H6119.6C17—C18—C19121.1 (2)
O1—C7—H7A109.5C19—C18—H18119.5
O1—C7—H7B109.5C18—C19—H19120.4
O1—C7—H7C109.5C20—C19—C18119.3 (2)
H7A—C7—H7B109.5C20—C19—H19120.4
H7A—C7—H7C109.5C15—C20—H20119.3
H7B—C7—H7C109.5C19—C20—C15121.4 (2)
C9—C8—P1122.77 (17)C19—C20—H20119.3
C13—C8—P1118.76 (17)O3—C21—H21A109.5
C13—C8—C9118.5 (2)O3—C21—H21B109.5
O2—C9—C8115.6 (2)O3—C21—H21C109.5
O2—C9—C10124.0 (2)H21A—C21—H21B109.5
C10—C9—C8120.4 (2)H21A—C21—H21C109.5
C9—C10—H10120.1H21B—C21—H21C109.5
C11—C10—C9119.8 (2)
Se1—P1—C1—C255.84 (19)C7—O1—C2—C1175.3 (2)
Se1—P1—C1—C6124.48 (17)C7—O1—C2—C35.3 (3)
Se1—P1—C8—C9176.18 (16)C8—P1—C1—C267.4 (2)
Se1—P1—C8—C134.3 (2)C8—P1—C1—C6112.3 (2)
Se1—P1—C15—C1663.9 (2)C8—P1—C15—C16174.95 (18)
Se1—P1—C15—C20111.01 (19)C8—P1—C15—C2010.2 (2)
P1—C1—C2—O12.9 (3)C8—C9—C10—C112.5 (4)
P1—C1—C2—C3177.69 (18)C9—C8—C13—C121.2 (3)
P1—C1—C6—C5178.31 (18)C9—C10—C11—C120.7 (4)
P1—C8—C9—O23.7 (3)C10—C11—C12—C133.0 (4)
P1—C8—C9—C10176.97 (18)C11—C12—C13—C82.0 (4)
P1—C8—C13—C12179.20 (18)C13—C8—C9—O2175.8 (2)
P1—C15—C16—O32.4 (3)C13—C8—C9—C103.5 (3)
P1—C15—C16—C17178.10 (19)C14—O2—C9—C8171.1 (2)
P1—C15—C20—C19177.5 (2)C14—O2—C9—C109.6 (3)
O1—C2—C3—C4177.9 (2)C15—P1—C1—C2179.50 (17)
O2—C9—C10—C11176.7 (2)C15—P1—C1—C60.8 (2)
O3—C16—C17—C18179.5 (2)C15—P1—C8—C955.6 (2)
C1—P1—C8—C958.0 (2)C15—P1—C8—C13124.83 (19)
C1—P1—C8—C13121.56 (19)C15—C16—C17—C181.0 (4)
C1—P1—C15—C1662.9 (2)C16—C15—C20—C192.5 (4)
C1—P1—C15—C20122.2 (2)C16—C17—C18—C191.8 (4)
C1—C2—C3—C41.5 (4)C17—C18—C19—C202.4 (5)
C2—C1—C6—C52.0 (3)C18—C19—C20—C150.2 (4)
C2—C3—C4—C50.3 (4)C20—C15—C16—O3177.4 (2)
C3—C4—C5—C60.9 (4)C20—C15—C16—C173.1 (4)
C4—C5—C6—C10.3 (4)C21—O3—C16—C15175.0 (2)
C6—C1—C2—O1176.8 (2)C21—O3—C16—C175.5 (4)
C6—C1—C2—C32.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Se10.952.773.356 (3)120
C19—H19···Se1i0.952.943.761 (3)145
C7—H7B···Cg1ii0.982.763.602 (4)144
C10—H10···Cg1iii0.952.833.658 (3)146
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to thank Armstrong State University for support of this work.

References

First citationCameron, T. S. & Dahlèn, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737–1751.  CSD CrossRef Web of Science Google Scholar
First citationCodding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261–1263.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDakternieks, D., Dyson, G. A., O'Connell, J. L. & Schiesser, C. H. (1994). J. Chem. Educ. 71, 168–169.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A. (2011). Acta Cryst. E67, o45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A. & Meijboom, R. (2007). Acta Cryst. E63, o4055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaymundo, M., Padgett, C. W. & Lynch, W. E. (2016). IUCrData, 1, x161271.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds