metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[di­chlorido­mercury(II)]-μ-3,5-bis­­[2-(pyridin-4-yl)ethyn­yl]pyridine-κ2N:N′]

CROSSMARK_Color_square_no_text.svg

aBeijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: wangbin_01@yeah.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 November 2016; accepted 6 December 2016; online 9 December 2016)

In the title coordination polymer, [HgCl2(C19H11N3)]n, the HgII atom is coordinated by two N atoms of symmetry-related 3,5-bis­(pyridin-4-ylethyn­yl)pyridine ligands (L) and by two chloride ions in a distorted tetra­hedral geometry. The dihedral angles between the coordinated pyridine rings and the central pyridine ring are 44.6 (3) and 14.2 (3)°, respectively, while the dihedral angle between the two coordinating pyridine rings is 56.1 (3)°. The ligand bridges the HgII atoms, forming a zigzag chain running parallel to the b axis. There are no other significant inter­molecular inter­actions present in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coordination polymers (CPs) have attracted much attention because of their fascinating architectures and intriguing topologies as well as their potential applications in catalysis, adsorption, separation, and luminescence. Pyridine-based ligands are widely used in the construction of CPs, most of which are constructed from linear ligands. However, CPs assembled from angular pyridyl-based ligands are relatively rare.

In this work, an angular pyridyl-based ligand, 3,5-bis­(pyridin-4-ylethyn­yl)pyridine (L), was employed to react with HgCl2 to afford the title coordination polymer, illustrated in Fig. 1[link]. The HgII atom, Hg1, is coordinated by two N atoms, N1 and N3, of two symmetry-related L ligands and two chloride ions in a distorted tetra­hedral geometry (Table 1[link] and Fig. 1[link]). The τ4 descriptor for fourfold coordination = 0.33 (extreme forms: 0.00 for square-planar and 1.00 for tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.])

Table 1
Selected geometric parameters (Å, °)

Hg1—Cl2 2.3508 (16) Hg1—N3i 2.420 (5)
Hg1—Cl1 2.3623 (16) Hg1—N1 2.441 (5)
       
Cl2—Hg1—Cl1 156.83 (6) Cl2—Hg1—N1 97.54 (13)
Cl2—Hg1—N3i 99.51 (12) Cl1—Hg1—N1 96.90 (13)
Cl1—Hg1—N3i 97.04 (13) N3i—Hg1—N1 95.45 (16)
Symmetry code: (i) [-x-2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The coordination mode of the title complex, with the atom labelling [symmetry codes: (#1) −x − 2, y + [{1\over 2}], −z + [{3\over 2}]; (#2) −x − 2, y − [{1\over 2}], −z + [{3\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

The dihedral angles between the coordinated pyridine rings (N1/C1–C5 and N3/C15–C19) and the central pyridine ring (N2/C8–C12) are 44.6 (3) and 14.2 (3)°, respectively, and the dihedral angle between the two coordinating pyridine rings is 56.1 (3)°. The ligands bridge the mercury atoms, forming a zigzag chain running parallel to the b axis (Fig. 2[link]). There are no other significant inter­molecular inter­actions present in the crystal.

[Figure 2]
Figure 2
A view along the b axis of the zigzag chain structure of the title coordination polymer. Displacement ellipsoids are drawn at the 50% probability level, and H atoms have been omitted for clarity.

The linear pyridyl-based ligand, 1,4-bis­(pyridin-4-ylethyn­yl)benzene, has also been used to form a similar zigzag coordination polymer with HgCl2 (Wang et al., 2014[Wang, B., Li, M. & Xie, Y. (2014). Acta Cryst. E70, m208.]).

Synthesis and crystallization

The organic ligand 3,5-bis­(pyridin-4-ylethyn­yl)pyridine (L) was synthesized from the reaction between 3,5-di­bromo­pyridine and 4-ethynyl­pyridine hydro­chloride following the reported procedure (Yamamoto et al., 2003[Yamamoto, T., Arif, A. M. & Stang, P. J. (2003). J. Am. Chem. Soc. 125, 12309-12317.]). To synthesise the title coordination polymer, a 3 ml methanol solution of HgCl2 (0.1 mmol, 27 mg) was layered onto a 3 ml chloro­form solution of L (0.2 mmol, 56 mg). After three days, colourless crystals of the title coordination polymer were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum and minimum residual electron density peaks of 1.81 and −1.42 e Å−3, respectively, are located at ca 1.00 Å from the Hg atom.

Table 2
Experimental details

Crystal data
Chemical formula [HgCl2(C19H11Cl2N3)]
Mr 552.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 5.0941 (10), 22.946 (5), 15.831 (3)
β (°) 96.229 (4)
V3) 1839.5 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.66
Crystal size (mm) 0.18 × 0.16 × 0.16
 
Data collection
Diffractometer Bruker SMART 1000 CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.305, 0.338
No. of measured, independent and observed [I > 2σ(I)] reflections 9673, 3224, 2631
Rint 0.044
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 0.97
No. of reflections 3224
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.81, −1.43
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[dichloridomercury(II)]-µ-3,5-bis[2-(pyridin-4-yl)ethynyl]pyridine-κ2N:N'] top
Crystal data top
[HgCl2(C19H11N3)]F(000) = 1040
Mr = 552.80Dx = 1.996 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2134 reflections
a = 5.0941 (10) Åθ = 3.6–25.0°
b = 22.946 (5) ŵ = 8.66 mm1
c = 15.831 (3) ÅT = 173 K
β = 96.229 (4)°Block, colourless
V = 1839.5 (6) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3224 independent reflections
Radiation source: fine-focus sealed tube2631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and phi scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 56
Tmin = 0.305, Tmax = 0.338k = 2727
9673 measured reflectionsl = 1811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
3224 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 1.81 e Å3
0 restraintsΔρmin = 1.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.44656 (4)0.513510 (10)0.762796 (15)0.02213 (10)
Cl20.5910 (3)0.44510 (7)0.86826 (10)0.0285 (4)
Cl10.4855 (3)0.58105 (7)0.65222 (10)0.0289 (4)
N10.0952 (9)0.4547 (2)0.6882 (3)0.0253 (12)
C50.0249 (12)0.4028 (3)0.7178 (4)0.0283 (15)
H50.11590.38860.76770.034*
C141.5891 (11)0.1642 (3)0.5383 (4)0.0232 (14)
C161.9249 (11)0.0862 (3)0.5394 (4)0.0227 (13)
H161.89600.07520.48470.027*
C80.8904 (11)0.2939 (2)0.4708 (4)0.0203 (13)
N32.1573 (9)0.0714 (2)0.6592 (3)0.0202 (11)
C131.4324 (11)0.1912 (3)0.5042 (4)0.0236 (14)
C121.0721 (10)0.2621 (2)0.5116 (4)0.0210 (13)
H121.07970.26610.56970.025*
C10.0400 (11)0.4744 (3)0.6168 (4)0.0252 (14)
H10.00400.51060.59590.030*
C90.8887 (12)0.2864 (3)0.3838 (4)0.0283 (15)
H90.76680.30770.35670.034*
N21.0527 (10)0.2503 (2)0.3359 (3)0.0338 (14)
C70.6965 (11)0.3303 (3)0.5187 (4)0.0262 (14)
C172.1085 (11)0.0572 (3)0.5815 (4)0.0234 (14)
H172.20170.02650.55420.028*
C40.1776 (12)0.3696 (3)0.6770 (4)0.0294 (15)
H40.21990.33370.69910.035*
C111.2422 (11)0.2241 (3)0.4638 (4)0.0215 (13)
C101.2246 (12)0.2200 (3)0.3777 (4)0.0324 (16)
H101.33910.19450.34630.039*
C191.8426 (12)0.1472 (3)0.6601 (4)0.0302 (15)
H191.75710.17840.68870.036*
C182.0270 (12)0.1161 (3)0.6974 (4)0.0283 (15)
H182.06300.12660.75180.034*
C151.7825 (11)0.1325 (3)0.5794 (4)0.0211 (13)
C20.2419 (12)0.4432 (3)0.5727 (4)0.0290 (15)
H20.32730.45820.52240.035*
C30.3178 (11)0.3903 (3)0.6024 (4)0.0240 (14)
C60.5281 (11)0.3577 (3)0.5586 (4)0.0253 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02305 (14)0.02195 (16)0.02119 (16)0.00100 (10)0.00146 (9)0.00379 (10)
Cl20.0322 (8)0.0272 (8)0.0249 (9)0.0067 (6)0.0021 (6)0.0016 (7)
Cl10.0368 (8)0.0263 (8)0.0238 (9)0.0080 (7)0.0041 (6)0.0005 (7)
N10.022 (3)0.029 (3)0.027 (3)0.002 (2)0.008 (2)0.004 (2)
C50.034 (4)0.029 (4)0.021 (4)0.002 (3)0.001 (3)0.002 (3)
C140.020 (3)0.020 (3)0.029 (4)0.003 (3)0.002 (3)0.003 (3)
C160.026 (3)0.020 (3)0.024 (4)0.000 (3)0.009 (3)0.001 (3)
C80.018 (3)0.017 (3)0.026 (4)0.002 (2)0.000 (2)0.003 (3)
N30.023 (3)0.017 (3)0.019 (3)0.002 (2)0.001 (2)0.006 (2)
C130.022 (3)0.025 (3)0.023 (4)0.004 (3)0.001 (3)0.000 (3)
C120.022 (3)0.018 (3)0.023 (4)0.007 (3)0.003 (2)0.002 (3)
C10.020 (3)0.022 (3)0.033 (4)0.001 (2)0.003 (3)0.006 (3)
C90.026 (3)0.029 (4)0.030 (4)0.004 (3)0.001 (3)0.004 (3)
N20.039 (3)0.035 (3)0.027 (4)0.015 (3)0.001 (2)0.004 (3)
C70.022 (3)0.023 (3)0.034 (4)0.004 (3)0.006 (3)0.003 (3)
C170.025 (3)0.019 (3)0.026 (4)0.000 (2)0.001 (3)0.001 (3)
C40.033 (4)0.029 (4)0.028 (4)0.011 (3)0.009 (3)0.003 (3)
C110.019 (3)0.020 (3)0.025 (4)0.005 (2)0.001 (2)0.002 (3)
C100.033 (4)0.030 (4)0.031 (4)0.012 (3)0.006 (3)0.001 (3)
C190.035 (4)0.032 (4)0.023 (4)0.010 (3)0.003 (3)0.001 (3)
C180.035 (4)0.030 (4)0.019 (4)0.004 (3)0.000 (3)0.000 (3)
C150.017 (3)0.025 (3)0.021 (4)0.004 (2)0.001 (2)0.009 (3)
C20.027 (3)0.030 (4)0.028 (4)0.002 (3)0.006 (3)0.001 (3)
C30.021 (3)0.023 (3)0.029 (4)0.004 (3)0.010 (2)0.009 (3)
C60.023 (3)0.025 (4)0.029 (4)0.004 (3)0.009 (3)0.009 (3)
Geometric parameters (Å, º) top
Hg1—Cl22.3508 (16)N3—C181.332 (8)
Hg1—Cl12.3623 (16)N3—Hg1ii2.420 (5)
Hg1—N3i2.420 (5)C13—C111.433 (8)
Hg1—N12.441 (5)C12—C111.392 (8)
N1—C11.338 (8)C1—C21.379 (8)
N1—C51.343 (8)C9—N21.350 (8)
C5—C41.385 (8)N2—C101.346 (8)
C14—C131.185 (9)C7—C61.188 (8)
C14—C151.437 (9)C4—C31.395 (9)
C16—C171.377 (8)C11—C101.380 (9)
C16—C151.397 (8)C19—C181.364 (9)
C8—C91.389 (9)C19—C151.387 (9)
C8—C121.391 (9)C2—C31.373 (9)
C8—C71.445 (8)C3—C61.424 (8)
N3—C171.323 (8)
Cl2—Hg1—Cl1156.83 (6)N1—C1—C2122.7 (6)
Cl2—Hg1—N3i99.51 (12)N2—C9—C8124.2 (6)
Cl1—Hg1—N3i97.04 (13)C10—N2—C9116.0 (6)
Cl2—Hg1—N197.54 (13)C6—C7—C8176.4 (6)
Cl1—Hg1—N196.90 (13)N3—C17—C16122.4 (6)
N3i—Hg1—N195.45 (16)C5—C4—C3119.6 (6)
C1—N1—C5117.5 (5)C10—C11—C12118.4 (6)
C1—N1—Hg1120.4 (4)C10—C11—C13121.6 (5)
C5—N1—Hg1122.1 (4)C12—C11—C13120.0 (6)
N1—C5—C4122.6 (6)N2—C10—C11124.4 (6)
C13—C14—C15178.9 (7)C18—C19—C15120.2 (6)
C17—C16—C15119.7 (6)N3—C18—C19122.6 (7)
C9—C8—C12118.1 (5)C19—C15—C16116.6 (6)
C9—C8—C7121.0 (6)C19—C15—C14121.6 (6)
C12—C8—C7120.7 (6)C16—C15—C14121.8 (6)
C17—N3—C18118.6 (6)C3—C2—C1120.5 (6)
C17—N3—Hg1ii121.7 (4)C2—C3—C4117.0 (5)
C18—N3—Hg1ii119.5 (4)C2—C3—C6121.5 (6)
C14—C13—C11179.3 (7)C4—C3—C6121.5 (6)
C8—C12—C11118.8 (6)C7—C6—C3176.8 (7)
Cl2—Hg1—N1—C1175.5 (5)C8—C12—C11—C13179.6 (5)
Cl1—Hg1—N1—C113.7 (5)C14—C13—C11—C10171 (100)
N3i—Hg1—N1—C184.1 (5)C14—C13—C11—C128 (66)
Cl2—Hg1—N1—C56.4 (5)C9—N2—C10—C110.5 (10)
Cl1—Hg1—N1—C5168.2 (5)C12—C11—C10—N20.0 (10)
N3i—Hg1—N1—C594.0 (5)C13—C11—C10—N2179.2 (6)
C1—N1—C5—C40.5 (10)C17—N3—C18—C191.0 (9)
Hg1—N1—C5—C4178.7 (5)Hg1ii—N3—C18—C19173.8 (5)
C15—C14—C13—C1177 (79)C15—C19—C18—N30.6 (10)
C9—C8—C12—C110.4 (8)C18—C19—C15—C161.9 (9)
C7—C8—C12—C11175.2 (5)C18—C19—C15—C14179.9 (6)
C5—N1—C1—C21.1 (10)C17—C16—C15—C191.7 (8)
Hg1—N1—C1—C2179.4 (5)C17—C16—C15—C14179.9 (5)
C12—C8—C9—N20.1 (9)C13—C14—C15—C1971 (37)
C7—C8—C9—N2175.6 (6)C13—C14—C15—C16107 (37)
C8—C9—N2—C100.5 (9)N1—C1—C2—C31.7 (11)
C9—C8—C7—C686 (12)C1—C2—C3—C41.6 (10)
C12—C8—C7—C689 (12)C1—C2—C3—C6179.1 (6)
C18—N3—C17—C161.2 (9)C5—C4—C3—C21.0 (9)
Hg1ii—N3—C17—C16173.5 (4)C5—C4—C3—C6179.7 (6)
C15—C16—C17—N30.2 (9)C8—C7—C6—C370 (19)
N1—C5—C4—C30.4 (10)C2—C3—C6—C762 (12)
C8—C12—C11—C100.4 (8)C4—C3—C6—C7117 (12)
Symmetry codes: (i) x2, y+1/2, z+3/2; (ii) x2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Beijing University of Technology for supporting this work.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B., Li, M. & Xie, Y. (2014). Acta Cryst. E70, m208.  CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, T., Arif, A. M. & Stang, P. J. (2003). J. Am. Chem. Soc. 125, 12309–12317.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds