organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-({[4-(Benzo[d]thia­zol-2-yl)phen­yl]imino}­meth­yl)-N,N-di­ethyl­aniline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, Peoples Republic of China and, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: 329408172@qq.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 September 2016; accepted 12 October 2016; online 28 October 2016)

The title benzo­thia­zole derivative mol­ecule, C24H23N3S, is almost planar with the central benzene ring being inclined to the benzo­thia­zole ring and the di­ethyl­aniline ring by 4.05 (13) and 5.05 (13)°, respectively. The conformation about the N=C bond is E. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­thia­zole derivatives are considered to be important because of their wide range of biological activities (Ali & Siddiqui, 2013[Ali, R. & Siddiqui, N. (2013). J. Chem. Article ID 345198, 12 pp. https://dx.doi.org/10.1155/2013/345198]). At the same time, their high electron affinity and good planarity make them appropriate building blocks for the construction of optical materials (Wang et al., 2010[Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238-248.]). Herein, we report on the synthesis and crystal structure of the title compound, a new benzo­thia­zole derivative.

The mol­ecular structure is illustrated in Fig. 1[link]. The mol­ecule is almost planar with the central benzene ring (C8–C13) being inclined to the benzo­thia­zole ring (C15–C20; r.m.s. deviation = 0.021 Å) and the di­ethyl­aniline ring (C15–C20) by 4.05 (13) and 5.05 (13)°, respectively. The conformation about the N2=C14 bond is E.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯π inter­actions forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cgi 0.93 2.88 3.577 (5) 133
C17—H17⋯Cgii 0.93 2.93 3.646 (4) 135
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The C—H⋯π inter­actions are represented by dashed lines (see Table 1[link]), and only the H atoms (H12 and H17; grey balls) involved in these inter­actions have been included.

Synthesis and crystallization

4-(Di­ethyl­amino)­salicyl­aldehyde (0.52 g, 2.7 mmol) was dissolved in 20 ml ethanol and added drop wise to a 20 ml ethanol solution of 4-(benzo­thia­zol-2-yl)aniline (0.61 g, 2.7 mmol) with stirring. The mixture was stirred at room temperature, and then filtered. The filtrate was allow to evaporate slowly at room temperature and after one week, yellow block-like crystals were obtained (yield 62.0%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H23N3S
Mr 385.51
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 8.895 (5), 7.648 (5), 15.091 (5)
β (°) 98.566 (5)
V3) 1015.2 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.950, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 7218, 3278, 2690
Rint 0.024
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.04
No. of reflections 3278
No. of parameters 256
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.18
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1363 Friedel pairs
Absolute structure parameter 0.27 (10)
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-4-({[4-(Benzo[d]thiazol-2-yl)phenyl]imino}methyl)-N,N-diethylaniline top
Crystal data top
C24H23N3SF(000) = 408
Mr = 385.51Dx = 1.261 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 2407 reflections
a = 8.895 (5) Åθ = 2.5–23.5°
b = 7.648 (5) ŵ = 0.17 mm1
c = 15.091 (5) ÅT = 298 K
β = 98.566 (5)°Block, yellow
V = 1015.2 (9) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area detector
diffractometer
3278 independent reflections
Radiation source: fine-focus sealed tube2690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.950, Tmax = 0.966k = 89
7218 measured reflectionsl = 017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.0425P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3278 reflectionsΔρmax = 0.23 e Å3
256 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1363 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.27 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.41511 (8)0.16492 (14)1.18673 (5)0.0654 (3)
N11.2597 (3)0.3273 (4)1.29530 (16)0.0583 (6)
N20.7097 (3)0.2212 (3)0.96102 (15)0.0578 (7)
N30.0747 (3)0.2513 (4)0.69361 (15)0.0600 (6)
C11.4589 (4)0.3630 (6)1.4264 (2)0.0781 (11)
H11.39440.42401.45860.094*
C21.6035 (5)0.3290 (7)1.4630 (2)0.0928 (13)
H21.63830.36811.52070.111*
C31.7014 (4)0.2380 (6)1.4172 (3)0.0945 (14)
H31.79990.21511.44510.113*
C41.6555 (3)0.1801 (6)1.3303 (2)0.0773 (10)
H41.72140.11991.29880.093*
C51.5068 (3)0.2160 (4)1.2925 (2)0.0602 (8)
C61.4073 (3)0.3051 (4)1.33936 (19)0.0588 (8)
C71.2487 (3)0.2597 (4)1.21464 (17)0.0483 (6)
C81.1075 (3)0.2557 (4)1.15066 (17)0.0462 (6)
C90.9747 (3)0.3337 (4)1.17029 (18)0.0536 (7)
H90.97530.39041.22490.064*
C100.8426 (3)0.3278 (4)1.10960 (18)0.0560 (7)
H100.75560.38241.12330.067*
C110.8375 (3)0.2414 (4)1.02829 (17)0.0490 (6)
C120.9689 (3)0.1634 (5)1.00924 (17)0.0541 (7)
H120.96770.10550.95500.065*
C131.1012 (3)0.1698 (5)1.06886 (17)0.0562 (7)
H131.18810.11591.05440.067*
C140.5823 (3)0.2863 (4)0.96753 (18)0.0551 (7)
H140.57180.34931.01900.066*
C150.4502 (3)0.2683 (4)0.89868 (17)0.0470 (6)
C160.3150 (3)0.3497 (4)0.90676 (19)0.0567 (7)
H160.30710.41130.95900.068*
C170.1925 (3)0.3434 (4)0.84128 (18)0.0530 (7)
H170.10320.39980.85000.064*
C180.1979 (3)0.2539 (4)0.76100 (17)0.0482 (6)
C190.3333 (3)0.1671 (5)0.75167 (17)0.0532 (6)
H190.34050.10530.69940.064*
C200.4569 (3)0.1725 (5)0.81967 (18)0.0548 (7)
H200.54520.11200.81300.066*
C210.0560 (3)0.3699 (5)0.6928 (2)0.0655 (9)
H21A0.08990.40770.63180.079*
H21B0.02340.47290.72810.079*
C220.1861 (4)0.2892 (6)0.7288 (2)0.0884 (12)
H22A0.21910.18700.69440.133*
H22B0.26820.37160.72510.133*
H22C0.15500.25680.79030.133*
C230.0718 (3)0.1430 (5)0.61427 (18)0.0647 (9)
H23A0.03270.11190.59210.078*
H23B0.12690.03560.63090.078*
C240.1398 (4)0.2295 (6)0.5403 (2)0.0914 (13)
H24A0.08350.33370.52170.137*
H24B0.13550.15080.49050.137*
H24C0.24370.25950.56140.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0536 (4)0.0666 (5)0.0750 (5)0.0054 (4)0.0065 (3)0.0112 (5)
N10.0498 (14)0.0609 (16)0.0624 (14)0.0015 (12)0.0022 (11)0.0012 (12)
N20.0528 (14)0.0632 (19)0.0567 (14)0.0001 (12)0.0060 (10)0.0011 (12)
N30.0488 (13)0.0723 (17)0.0558 (13)0.0090 (13)0.0018 (10)0.0137 (13)
C10.074 (2)0.099 (3)0.0584 (19)0.017 (2)0.0003 (16)0.0030 (18)
C20.097 (3)0.109 (3)0.064 (2)0.024 (3)0.016 (2)0.011 (2)
C30.062 (2)0.095 (3)0.114 (3)0.016 (2)0.027 (2)0.038 (3)
C40.0561 (18)0.071 (2)0.103 (3)0.000 (2)0.0046 (17)0.008 (2)
C50.0527 (16)0.052 (2)0.0737 (19)0.0072 (14)0.0014 (14)0.0095 (14)
C60.0565 (17)0.060 (2)0.0586 (16)0.0093 (15)0.0049 (13)0.0057 (15)
C70.0511 (15)0.0399 (15)0.0534 (15)0.0045 (13)0.0058 (12)0.0006 (13)
C80.0434 (14)0.0407 (15)0.0537 (14)0.0021 (13)0.0047 (11)0.0032 (13)
C90.0520 (16)0.0570 (18)0.0510 (15)0.0000 (14)0.0046 (12)0.0054 (14)
C100.0467 (15)0.062 (2)0.0584 (16)0.0064 (14)0.0067 (13)0.0047 (15)
C110.0504 (15)0.0471 (16)0.0485 (14)0.0050 (13)0.0035 (11)0.0045 (13)
C120.0539 (15)0.0604 (17)0.0473 (13)0.0001 (17)0.0048 (11)0.0094 (15)
C130.0511 (14)0.0612 (17)0.0563 (15)0.0068 (17)0.0082 (11)0.0067 (17)
C140.0623 (19)0.0495 (19)0.0526 (15)0.0010 (15)0.0057 (13)0.0013 (14)
C150.0484 (15)0.0424 (16)0.0499 (14)0.0065 (13)0.0060 (11)0.0007 (13)
C160.0598 (18)0.0551 (19)0.0555 (16)0.0039 (15)0.0098 (13)0.0068 (14)
C170.0475 (15)0.0539 (18)0.0572 (16)0.0046 (14)0.0061 (13)0.0097 (15)
C180.0488 (15)0.0451 (15)0.0508 (15)0.0004 (13)0.0074 (11)0.0000 (14)
C190.0498 (14)0.0565 (16)0.0532 (14)0.0034 (17)0.0076 (11)0.0069 (16)
C200.0428 (13)0.0542 (16)0.0693 (17)0.0049 (15)0.0146 (12)0.0076 (17)
C210.0592 (19)0.069 (2)0.0660 (19)0.0069 (17)0.0019 (15)0.0037 (16)
C220.072 (2)0.100 (3)0.097 (3)0.003 (2)0.0224 (19)0.009 (2)
C230.0601 (17)0.074 (2)0.0579 (16)0.0041 (18)0.0008 (13)0.0168 (18)
C240.100 (3)0.113 (4)0.064 (2)0.003 (3)0.0193 (19)0.004 (2)
Geometric parameters (Å, º) top
S1—C51.725 (3)C12—C131.372 (3)
S1—C71.755 (3)C12—H120.9300
N1—C71.313 (4)C13—H130.9300
N1—C61.390 (4)C14—C151.454 (4)
N2—C141.255 (4)C14—H140.9300
N2—C111.415 (3)C15—C161.376 (4)
N3—C181.379 (3)C15—C201.408 (4)
N3—C231.453 (4)C16—C171.358 (4)
N3—C211.474 (4)C16—H160.9300
C1—C21.348 (5)C17—C181.398 (4)
C1—C61.397 (4)C17—H170.9300
C1—H10.9300C18—C191.401 (4)
C2—C31.377 (6)C19—C201.388 (3)
C2—H20.9300C19—H190.9300
C3—C41.387 (5)C20—H200.9300
C3—H30.9300C21—C221.483 (5)
C4—C51.388 (4)C21—H21A0.9700
C4—H40.9300C21—H21B0.9700
C5—C61.391 (4)C22—H22A0.9600
C7—C81.466 (4)C22—H22B0.9600
C8—C131.392 (4)C22—H22C0.9600
C8—C91.394 (4)C23—C241.500 (5)
C9—C101.379 (4)C23—H23A0.9700
C9—H90.9300C23—H23B0.9700
C10—C111.388 (4)C24—H24A0.9600
C10—H100.9300C24—H24B0.9600
C11—C121.380 (4)C24—H24C0.9600
C5—S1—C789.09 (14)N2—C14—C15123.3 (3)
C7—N1—C6109.3 (2)N2—C14—H14118.3
C14—N2—C11122.6 (2)C15—C14—H14118.3
C18—N3—C23122.0 (2)C16—C15—C20117.3 (2)
C18—N3—C21122.4 (2)C16—C15—C14121.2 (3)
C23—N3—C21115.3 (2)C20—C15—C14121.5 (2)
C2—C1—C6118.9 (4)C17—C16—C15122.5 (3)
C2—C1—H1120.5C17—C16—H16118.8
C6—C1—H1120.5C15—C16—H16118.8
C1—C2—C3121.9 (4)C16—C17—C18121.3 (3)
C1—C2—H2119.1C16—C17—H17119.3
C3—C2—H2119.1C18—C17—H17119.3
C2—C3—C4121.1 (3)N3—C18—C17121.3 (2)
C2—C3—H3119.5N3—C18—C19121.3 (2)
C4—C3—H3119.5C17—C18—C19117.4 (2)
C3—C4—C5117.0 (4)C20—C19—C18120.7 (3)
C3—C4—H4121.5C20—C19—H19119.7
C5—C4—H4121.5C18—C19—H19119.7
C4—C5—C6121.8 (3)C19—C20—C15120.8 (3)
C4—C5—S1128.8 (3)C19—C20—H20119.6
C6—C5—S1109.4 (2)C15—C20—H20119.6
N1—C6—C5116.3 (3)N3—C21—C22113.5 (3)
N1—C6—C1124.4 (3)N3—C21—H21A108.9
C5—C6—C1119.2 (3)C22—C21—H21A108.9
N1—C7—C8123.9 (2)N3—C21—H21B108.9
N1—C7—S1115.9 (2)C22—C21—H21B108.9
C8—C7—S1120.3 (2)H21A—C21—H21B107.7
C13—C8—C9117.9 (2)C21—C22—H22A109.5
C13—C8—C7120.7 (2)C21—C22—H22B109.5
C9—C8—C7121.4 (2)H22A—C22—H22B109.5
C10—C9—C8120.7 (3)C21—C22—H22C109.5
C10—C9—H9119.7H22A—C22—H22C109.5
C8—C9—H9119.7H22B—C22—H22C109.5
C9—C10—C11121.0 (3)N3—C23—C24113.7 (3)
C9—C10—H10119.5N3—C23—H23A108.8
C11—C10—H10119.5C24—C23—H23A108.8
C12—C11—C10118.2 (2)N3—C23—H23B108.8
C12—C11—N2114.7 (2)C24—C23—H23B108.8
C10—C11—N2127.1 (3)H23A—C23—H23B107.7
C13—C12—C11121.2 (3)C23—C24—H24A109.5
C13—C12—H12119.4C23—C24—H24B109.5
C11—C12—H12119.4H24A—C24—H24B109.5
C12—C13—C8121.0 (3)C23—C24—H24C109.5
C12—C13—H13119.5H24A—C24—H24C109.5
C8—C13—H13119.5H24B—C24—H24C109.5
C6—C1—C2—C30.4 (6)C14—N2—C11—C12179.0 (3)
C1—C2—C3—C41.2 (7)C14—N2—C11—C101.9 (5)
C2—C3—C4—C50.8 (6)C10—C11—C12—C130.3 (5)
C3—C4—C5—C60.4 (5)N2—C11—C12—C13178.9 (3)
C3—C4—C5—S1179.3 (3)C11—C12—C13—C80.1 (6)
C7—S1—C5—C4178.3 (3)C9—C8—C13—C120.5 (5)
C7—S1—C5—C62.0 (2)C7—C8—C13—C12179.1 (3)
C7—N1—C6—C51.7 (4)C11—N2—C14—C15179.4 (3)
C7—N1—C6—C1179.5 (3)N2—C14—C15—C16176.6 (3)
C4—C5—C6—N1177.7 (3)N2—C14—C15—C201.0 (5)
S1—C5—C6—N12.6 (3)C20—C15—C16—C171.6 (5)
C4—C5—C6—C11.2 (5)C14—C15—C16—C17176.1 (3)
S1—C5—C6—C1178.6 (3)C15—C16—C17—C180.5 (5)
C2—C1—C6—N1178.0 (4)C23—N3—C18—C17172.8 (3)
C2—C1—C6—C50.8 (5)C21—N3—C18—C1713.3 (5)
C6—N1—C7—C8178.2 (3)C23—N3—C18—C197.3 (5)
C6—N1—C7—S10.1 (3)C21—N3—C18—C19166.7 (3)
C5—S1—C7—N11.2 (3)C16—C17—C18—N3178.3 (3)
C5—S1—C7—C8177.0 (2)C16—C17—C18—C191.6 (5)
N1—C7—C8—C13175.0 (3)N3—C18—C19—C20179.3 (3)
S1—C7—C8—C133.1 (4)C17—C18—C19—C200.7 (5)
N1—C7—C8—C93.5 (4)C18—C19—C20—C151.4 (5)
S1—C7—C8—C9178.4 (2)C16—C15—C20—C192.5 (5)
C13—C8—C9—C101.0 (4)C14—C15—C20—C19175.2 (3)
C7—C8—C9—C10179.6 (3)C18—N3—C21—C2297.4 (4)
C8—C9—C10—C111.2 (5)C23—N3—C21—C2288.3 (3)
C9—C10—C11—C120.8 (5)C18—N3—C23—C2487.5 (4)
C9—C10—C11—N2178.3 (3)C21—N3—C23—C2486.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cgi0.932.883.577 (5)133
C17—H17···Cgii0.932.933.646 (4)135
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Graduate Students Innovative Program of Anhui University (grant Nos. J18515024, J18515019 and 201310357155).

References

First citationAli, R. & Siddiqui, N. (2013). J. Chem. Article ID 345198, 12 pp. https://dx.doi.org/10.1155/2013/345198  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds