organic compounds
2-[(5-Amino-1,3,4-thiadiazol-2-yl)sulfanyl]-N-(2,4,5-trichlorophenyl)acetamide
aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Post-Graduate Research In Chemistry, Mangalagangori, Mangalore University, India, cDepartment of Physics, Government College, Mandya 571 401, India, dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and eDepartment of Physics, Faculty of Science, An Najah National University, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu
In the title compound, C10H7Cl3N4OS2, the dihedral angle between the trichlorobenzene and thiadiazole rings is 29.26 (17)°. In the crystal, molecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along [001]. The chains are linked via N—H⋯N hydrogen bonds to form slabs parallel to (100).
Keywords: crystal structure; imidazothiadiazole; hydrogen bonding.
CCDC reference: 1491987
Structure description
As part of our research on the syntheses and
analyses of thiadiazole derivatives, we report herein on the synthesis and of the title compound.The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the trichlorobenzene ring (C5–C10) and the thiadiazol moiety (C1/C2/N1/N2/S1) is 29.26 (17)°.
In the crystal, molecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains are linked via N—H⋯N hydrogen bonds to form slabs parallel to the bc plane (Table 1 and Fig. 2).
Synthesis and crystallization
An equimolar ratio of compound 2-((5-amino-1,3,4-thiadiazol-2-yl)thio)-N-(trichlorophenyl)acetamide (0.005 mol) and ethyl chloroacetate (0.005 mol) in glacial acetic acid (20 ml) was heated under reflux for 17 h. The reaction mixture was poured into ice-cold water. The precipitated solid was filtered, dried and recrystallized from ethanol.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1491987
https://doi.org/10.1107/S2414314616011238/su4061sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616011238/su4061Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616011238/su4061Isup3.cml
Data collection: CrystalClear (Rigaku, 2011); cell
CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H7Cl3N4OS2 | F(000) = 744 |
Mr = 369.67 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 12.4679 (12) Å | Cell parameters from 3200 reflections |
b = 11.9467 (11) Å | θ = 3.1–27.5° |
c = 9.5278 (8) Å | µ = 0.94 mm−1 |
β = 95.701 (7)° | T = 273 K |
V = 1412.1 (2) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.23 × 0.1 mm |
Rigaku Saturn724+ diffractometer | Rint = 0.052 |
profile data from ω–scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (NUMABS; Rigaku, 1999) | h = −16→16 |
Tmin = 0.771, Tmax = 0.910 | k = −15→15 |
9999 measured reflections | l = −9→12 |
3200 independent reflections | 3200 standard reflections |
2292 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.4363P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3200 reflections | Δρmax = 0.46 e Å−3 |
182 parameters | Δρmin = −0.41 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.27431 (8) | 0.33324 (7) | 0.75005 (10) | 0.0522 (3) | |
Cl2 | 0.10023 (8) | 0.19165 (6) | 0.56097 (9) | 0.0479 (3) | |
Cl3 | 0.01952 (7) | 0.54537 (6) | 0.22229 (8) | 0.0393 (2) | |
S1 | 0.38818 (8) | 1.08239 (7) | 0.62462 (9) | 0.0427 (3) | |
S2 | 0.35323 (7) | 0.87823 (7) | 0.43499 (8) | 0.0381 (2) | |
O8 | 0.1844 (2) | 0.73427 (18) | 0.6362 (2) | 0.0415 (6) | |
N1 | 0.4321 (3) | 0.8833 (2) | 0.7082 (3) | 0.0447 (7) | |
N2 | 0.4623 (3) | 0.9512 (2) | 0.8237 (3) | 0.0505 (8) | |
N3 | 0.4728 (3) | 1.1403 (3) | 0.8894 (3) | 0.0576 (9) | |
H3A | 0.4773 | 1.2027 | 0.8453 | 0.069* | |
H3B | 0.4237 | 1.1454 | 0.9466 | 0.069* | |
N4 | 0.1841 (2) | 0.6632 (2) | 0.4152 (3) | 0.0332 (6) | |
H4 | 0.1894 | 0.6797 | 0.3283 | 0.040* | |
C1 | 0.4452 (3) | 1.0570 (3) | 0.7939 (3) | 0.0390 (8) | |
C2 | 0.3929 (3) | 0.9389 (3) | 0.5991 (3) | 0.0333 (7) | |
C3 | 0.2102 (3) | 0.8607 (2) | 0.4479 (3) | 0.0331 (7) | |
H3C | 0.1845 | 0.9190 | 0.5071 | 0.040* | |
H3D | 0.1710 | 0.8665 | 0.3550 | 0.040* | |
C4 | 0.1910 (2) | 0.7478 (2) | 0.5102 (3) | 0.0291 (7) | |
C5 | 0.1687 (2) | 0.5499 (2) | 0.4494 (3) | 0.0285 (7) | |
C6 | 0.2261 (3) | 0.4997 (2) | 0.5656 (3) | 0.0336 (7) | |
H6 | 0.2784 | 0.5405 | 0.6202 | 0.040* | |
C7 | 0.2061 (3) | 0.3899 (3) | 0.6005 (3) | 0.0336 (7) | |
C8 | 0.1297 (3) | 0.3284 (2) | 0.5181 (3) | 0.0316 (7) | |
C9 | 0.0733 (3) | 0.3762 (2) | 0.4015 (3) | 0.0315 (7) | |
H9 | 0.0224 | 0.3346 | 0.3457 | 0.038* | |
C10 | 0.0930 (2) | 0.4854 (2) | 0.3683 (3) | 0.0295 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0694 (7) | 0.0412 (5) | 0.0413 (5) | 0.0011 (4) | −0.0173 (4) | 0.0066 (4) |
Cl2 | 0.0716 (7) | 0.0291 (4) | 0.0417 (5) | −0.0121 (4) | −0.0004 (4) | 0.0057 (3) |
Cl3 | 0.0487 (5) | 0.0355 (4) | 0.0316 (4) | −0.0010 (4) | −0.0065 (4) | 0.0017 (3) |
S1 | 0.0567 (6) | 0.0308 (4) | 0.0373 (5) | 0.0017 (4) | −0.0116 (4) | −0.0020 (4) |
S2 | 0.0461 (5) | 0.0388 (4) | 0.0295 (5) | −0.0096 (4) | 0.0043 (4) | −0.0046 (4) |
O8 | 0.0680 (17) | 0.0346 (12) | 0.0224 (12) | −0.0034 (11) | 0.0067 (11) | −0.0042 (9) |
N1 | 0.065 (2) | 0.0304 (14) | 0.0357 (16) | −0.0071 (14) | −0.0080 (14) | 0.0003 (12) |
N2 | 0.078 (2) | 0.0364 (16) | 0.0329 (16) | −0.0065 (15) | −0.0137 (15) | −0.0010 (13) |
N3 | 0.086 (3) | 0.0422 (17) | 0.0415 (19) | −0.0042 (17) | −0.0088 (17) | −0.0072 (15) |
N4 | 0.0512 (18) | 0.0266 (12) | 0.0218 (13) | −0.0073 (12) | 0.0028 (12) | −0.0026 (10) |
C1 | 0.046 (2) | 0.0341 (16) | 0.0348 (18) | −0.0052 (15) | −0.0067 (15) | −0.0024 (14) |
C2 | 0.0362 (18) | 0.0303 (15) | 0.0324 (17) | −0.0055 (13) | −0.0007 (14) | 0.0014 (13) |
C3 | 0.0391 (19) | 0.0272 (15) | 0.0310 (17) | 0.0001 (14) | −0.0073 (14) | −0.0026 (13) |
C4 | 0.0306 (17) | 0.0295 (15) | 0.0266 (17) | −0.0016 (13) | −0.0012 (13) | −0.0043 (13) |
C5 | 0.0368 (18) | 0.0255 (14) | 0.0236 (15) | −0.0027 (13) | 0.0054 (12) | −0.0039 (12) |
C6 | 0.0387 (19) | 0.0317 (16) | 0.0298 (17) | −0.0047 (14) | 0.0003 (14) | −0.0033 (13) |
C7 | 0.0398 (19) | 0.0328 (16) | 0.0279 (16) | 0.0030 (14) | 0.0011 (14) | 0.0016 (13) |
C8 | 0.045 (2) | 0.0233 (14) | 0.0271 (16) | −0.0053 (13) | 0.0061 (14) | −0.0008 (12) |
C9 | 0.0396 (18) | 0.0297 (15) | 0.0254 (16) | −0.0053 (14) | 0.0032 (13) | −0.0040 (13) |
C10 | 0.0347 (18) | 0.0319 (15) | 0.0216 (15) | 0.0006 (13) | 0.0011 (13) | −0.0039 (12) |
Cl1—C7 | 1.724 (3) | N4—H4 | 0.8600 |
Cl2—C8 | 1.733 (3) | N4—C4 | 1.354 (4) |
Cl3—C10 | 1.742 (3) | N4—C5 | 1.410 (4) |
S1—C1 | 1.723 (3) | C3—H3C | 0.9700 |
S1—C2 | 1.733 (3) | C3—H3D | 0.9700 |
S2—C2 | 1.750 (3) | C3—C4 | 1.503 (4) |
S2—C3 | 1.812 (3) | C5—C6 | 1.393 (4) |
O8—C4 | 1.222 (4) | C5—C10 | 1.392 (4) |
N1—N2 | 1.388 (4) | C6—H6 | 0.9300 |
N1—C2 | 1.287 (4) | C6—C7 | 1.383 (4) |
N2—C1 | 1.308 (4) | C7—C8 | 1.383 (4) |
N3—H3A | 0.8607 | C8—C9 | 1.378 (4) |
N3—H3B | 0.8611 | C9—H9 | 0.9300 |
N3—C1 | 1.369 (4) | C9—C10 | 1.371 (4) |
C1—S1—C2 | 86.57 (15) | O8—C4—N4 | 123.5 (3) |
C2—S2—C3 | 100.39 (15) | O8—C4—C3 | 122.4 (3) |
C2—N1—N2 | 113.0 (3) | N4—C4—C3 | 114.1 (3) |
C1—N2—N1 | 111.5 (3) | C6—C5—N4 | 121.7 (3) |
H3A—N3—H3B | 109.4 | C10—C5—N4 | 120.2 (3) |
C1—N3—H3A | 109.3 | C10—C5—C6 | 118.0 (3) |
C1—N3—H3B | 109.0 | C5—C6—H6 | 119.7 |
C4—N4—H4 | 117.9 | C7—C6—C5 | 120.6 (3) |
C4—N4—C5 | 124.3 (3) | C7—C6—H6 | 119.7 |
C5—N4—H4 | 117.9 | C6—C7—Cl1 | 119.0 (2) |
N2—C1—S1 | 114.6 (2) | C6—C7—C8 | 119.9 (3) |
N2—C1—N3 | 122.2 (3) | C8—C7—Cl1 | 121.1 (2) |
N3—C1—S1 | 123.2 (3) | C7—C8—Cl2 | 121.1 (2) |
S1—C2—S2 | 121.61 (18) | C9—C8—Cl2 | 118.5 (2) |
N1—C2—S1 | 114.4 (2) | C9—C8—C7 | 120.4 (3) |
N1—C2—S2 | 124.0 (3) | C8—C9—H9 | 120.3 |
S2—C3—H3C | 109.9 | C10—C9—C8 | 119.4 (3) |
S2—C3—H3D | 109.9 | C10—C9—H9 | 120.3 |
H3C—C3—H3D | 108.3 | C5—C10—Cl3 | 119.3 (2) |
C4—C3—S2 | 109.1 (2) | C9—C10—Cl3 | 118.9 (2) |
C4—C3—H3C | 109.9 | C9—C10—C5 | 121.8 (3) |
C4—C3—H3D | 109.9 | ||
Cl1—C7—C8—Cl2 | −0.5 (4) | C2—N1—N2—C1 | −1.0 (5) |
Cl1—C7—C8—C9 | 177.8 (2) | C3—S2—C2—S1 | −87.5 (2) |
Cl2—C8—C9—C10 | 177.9 (2) | C3—S2—C2—N1 | 95.8 (3) |
S2—C3—C4—O8 | 95.0 (3) | C4—N4—C5—C6 | −44.6 (5) |
S2—C3—C4—N4 | −83.7 (3) | C4—N4—C5—C10 | 134.0 (3) |
N1—N2—C1—S1 | 1.5 (4) | C5—N4—C4—O8 | −0.2 (5) |
N1—N2—C1—N3 | −177.3 (3) | C5—N4—C4—C3 | 178.6 (3) |
N2—N1—C2—S1 | 0.0 (4) | C5—C6—C7—Cl1 | −176.9 (2) |
N2—N1—C2—S2 | 177.0 (3) | C5—C6—C7—C8 | 1.1 (5) |
N4—C5—C6—C7 | 177.1 (3) | C6—C5—C10—Cl3 | 179.9 (2) |
N4—C5—C10—Cl3 | 1.3 (4) | C6—C5—C10—C9 | 0.9 (5) |
N4—C5—C10—C9 | −177.7 (3) | C6—C7—C8—Cl2 | −178.4 (2) |
C1—S1—C2—S2 | −176.4 (2) | C6—C7—C8—C9 | −0.2 (5) |
C1—S1—C2—N1 | 0.6 (3) | C7—C8—C9—C10 | −0.4 (5) |
C2—S1—C1—N2 | −1.2 (3) | C8—C9—C10—Cl3 | −179.0 (2) |
C2—S1—C1—N3 | 177.5 (3) | C8—C9—C10—C5 | 0.0 (5) |
C2—S2—C3—C4 | −90.1 (2) | C10—C5—C6—C7 | −1.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O8i | 0.86 | 2.09 | 2.927 (3) | 163 |
C3—H3D···O8i | 0.97 | 2.43 | 3.166 (3) | 133 |
N3—H3A···N1ii | 0.86 | 2.51 | 3.304 (4) | 154 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.