organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(5-Amino-1,3,4-thia­diazol-2-yl)sulfan­yl]-N-(2,4,5-tri­chloro­phen­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, bDepartment of Post-Graduate Research In Chemistry, Mangalagangori, Mangalore University, India, cDepartment of Physics, Government College, Mandya 571 401, India, dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India, and eDepartment of Physics, Faculty of Science, An Najah National University, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 July 2016; accepted 11 July 2016; online 19 July 2016)

In the title compound, C10H7Cl3N4OS2, the dihedral angle between the tri­chloro­benzene and thia­diazole rings is 29.26 (17)°. In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along [001]. The chains are linked via N—H⋯N hydrogen bonds to form slabs parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our research on the syntheses and crystal structure analyses of thia­diazole derivatives, we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the tri­chloro­benzene ring (C5–C10) and the thia­diazol moiety (C1/C2/N1/N2/S1) is 29.26 (17)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked via N—H⋯N hydrogen bonds to form slabs parallel to the bc plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O8i 0.86 2.09 2.927 (3) 163
C3—H3D⋯O8i 0.97 2.43 3.166 (3) 133
N3—H3A⋯N1ii 0.86 2.51 3.304 (4) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A viewed along the b axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines (see Table 1[link]).

Synthesis and crystallization

An equimolar ratio of compound 2-((5-amino-1,3,4-thia­diazol-2-yl)thio)-N-(tri­chloro­phen­yl)acetamide (0.005 mol) and ethyl chloro­acetate (0.005 mol) in glacial acetic acid (20 ml) was heated under reflux for 17 h. The reaction mixture was poured into ice-cold water. The precipitated solid was filtered, dried and recrystallized from ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H7Cl3N4OS2
Mr 369.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 12.4679 (12), 11.9467 (11), 9.5278 (8)
β (°) 95.701 (7)
V3) 1412.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.32 × 0.23 × 0.1
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.771, 0.910
No. of measured, independent and observed [I > 2σ(I)] reflections 9999, 3200, 2292
Rint 0.052
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.09
No. of reflections 3200
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.41
Computer programs: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[(5-Amino-1,3,4-thiadiazol-2-yl)sulfanyl]-N-(2,4,5-trichlorophenyl)acetamide top
Crystal data top
C10H7Cl3N4OS2F(000) = 744
Mr = 369.67Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.4679 (12) ÅCell parameters from 3200 reflections
b = 11.9467 (11) Åθ = 3.1–27.5°
c = 9.5278 (8) ŵ = 0.94 mm1
β = 95.701 (7)°T = 273 K
V = 1412.1 (2) Å3Block, colourless
Z = 40.32 × 0.23 × 0.1 mm
Data collection top
Rigaku Saturn724+
diffractometer
Rint = 0.052
profile data from ω–scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
h = 1616
Tmin = 0.771, Tmax = 0.910k = 1515
9999 measured reflectionsl = 912
3200 independent reflections3200 standard reflections
2292 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.4363P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3200 reflectionsΔρmax = 0.46 e Å3
182 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27431 (8)0.33324 (7)0.75005 (10)0.0522 (3)
Cl20.10023 (8)0.19165 (6)0.56097 (9)0.0479 (3)
Cl30.01952 (7)0.54537 (6)0.22229 (8)0.0393 (2)
S10.38818 (8)1.08239 (7)0.62462 (9)0.0427 (3)
S20.35323 (7)0.87823 (7)0.43499 (8)0.0381 (2)
O80.1844 (2)0.73427 (18)0.6362 (2)0.0415 (6)
N10.4321 (3)0.8833 (2)0.7082 (3)0.0447 (7)
N20.4623 (3)0.9512 (2)0.8237 (3)0.0505 (8)
N30.4728 (3)1.1403 (3)0.8894 (3)0.0576 (9)
H3A0.47731.20270.84530.069*
H3B0.42371.14540.94660.069*
N40.1841 (2)0.6632 (2)0.4152 (3)0.0332 (6)
H40.18940.67970.32830.040*
C10.4452 (3)1.0570 (3)0.7939 (3)0.0390 (8)
C20.3929 (3)0.9389 (3)0.5991 (3)0.0333 (7)
C30.2102 (3)0.8607 (2)0.4479 (3)0.0331 (7)
H3C0.18450.91900.50710.040*
H3D0.17100.86650.35500.040*
C40.1910 (2)0.7478 (2)0.5102 (3)0.0291 (7)
C50.1687 (2)0.5499 (2)0.4494 (3)0.0285 (7)
C60.2261 (3)0.4997 (2)0.5656 (3)0.0336 (7)
H60.27840.54050.62020.040*
C70.2061 (3)0.3899 (3)0.6005 (3)0.0336 (7)
C80.1297 (3)0.3284 (2)0.5181 (3)0.0316 (7)
C90.0733 (3)0.3762 (2)0.4015 (3)0.0315 (7)
H90.02240.33460.34570.038*
C100.0930 (2)0.4854 (2)0.3683 (3)0.0295 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0694 (7)0.0412 (5)0.0413 (5)0.0011 (4)0.0173 (4)0.0066 (4)
Cl20.0716 (7)0.0291 (4)0.0417 (5)0.0121 (4)0.0004 (4)0.0057 (3)
Cl30.0487 (5)0.0355 (4)0.0316 (4)0.0010 (4)0.0065 (4)0.0017 (3)
S10.0567 (6)0.0308 (4)0.0373 (5)0.0017 (4)0.0116 (4)0.0020 (4)
S20.0461 (5)0.0388 (4)0.0295 (5)0.0096 (4)0.0043 (4)0.0046 (4)
O80.0680 (17)0.0346 (12)0.0224 (12)0.0034 (11)0.0067 (11)0.0042 (9)
N10.065 (2)0.0304 (14)0.0357 (16)0.0071 (14)0.0080 (14)0.0003 (12)
N20.078 (2)0.0364 (16)0.0329 (16)0.0065 (15)0.0137 (15)0.0010 (13)
N30.086 (3)0.0422 (17)0.0415 (19)0.0042 (17)0.0088 (17)0.0072 (15)
N40.0512 (18)0.0266 (12)0.0218 (13)0.0073 (12)0.0028 (12)0.0026 (10)
C10.046 (2)0.0341 (16)0.0348 (18)0.0052 (15)0.0067 (15)0.0024 (14)
C20.0362 (18)0.0303 (15)0.0324 (17)0.0055 (13)0.0007 (14)0.0014 (13)
C30.0391 (19)0.0272 (15)0.0310 (17)0.0001 (14)0.0073 (14)0.0026 (13)
C40.0306 (17)0.0295 (15)0.0266 (17)0.0016 (13)0.0012 (13)0.0043 (13)
C50.0368 (18)0.0255 (14)0.0236 (15)0.0027 (13)0.0054 (12)0.0039 (12)
C60.0387 (19)0.0317 (16)0.0298 (17)0.0047 (14)0.0003 (14)0.0033 (13)
C70.0398 (19)0.0328 (16)0.0279 (16)0.0030 (14)0.0011 (14)0.0016 (13)
C80.045 (2)0.0233 (14)0.0271 (16)0.0053 (13)0.0061 (14)0.0008 (12)
C90.0396 (18)0.0297 (15)0.0254 (16)0.0053 (14)0.0032 (13)0.0040 (13)
C100.0347 (18)0.0319 (15)0.0216 (15)0.0006 (13)0.0011 (13)0.0039 (12)
Geometric parameters (Å, º) top
Cl1—C71.724 (3)N4—H40.8600
Cl2—C81.733 (3)N4—C41.354 (4)
Cl3—C101.742 (3)N4—C51.410 (4)
S1—C11.723 (3)C3—H3C0.9700
S1—C21.733 (3)C3—H3D0.9700
S2—C21.750 (3)C3—C41.503 (4)
S2—C31.812 (3)C5—C61.393 (4)
O8—C41.222 (4)C5—C101.392 (4)
N1—N21.388 (4)C6—H60.9300
N1—C21.287 (4)C6—C71.383 (4)
N2—C11.308 (4)C7—C81.383 (4)
N3—H3A0.8607C8—C91.378 (4)
N3—H3B0.8611C9—H90.9300
N3—C11.369 (4)C9—C101.371 (4)
C1—S1—C286.57 (15)O8—C4—N4123.5 (3)
C2—S2—C3100.39 (15)O8—C4—C3122.4 (3)
C2—N1—N2113.0 (3)N4—C4—C3114.1 (3)
C1—N2—N1111.5 (3)C6—C5—N4121.7 (3)
H3A—N3—H3B109.4C10—C5—N4120.2 (3)
C1—N3—H3A109.3C10—C5—C6118.0 (3)
C1—N3—H3B109.0C5—C6—H6119.7
C4—N4—H4117.9C7—C6—C5120.6 (3)
C4—N4—C5124.3 (3)C7—C6—H6119.7
C5—N4—H4117.9C6—C7—Cl1119.0 (2)
N2—C1—S1114.6 (2)C6—C7—C8119.9 (3)
N2—C1—N3122.2 (3)C8—C7—Cl1121.1 (2)
N3—C1—S1123.2 (3)C7—C8—Cl2121.1 (2)
S1—C2—S2121.61 (18)C9—C8—Cl2118.5 (2)
N1—C2—S1114.4 (2)C9—C8—C7120.4 (3)
N1—C2—S2124.0 (3)C8—C9—H9120.3
S2—C3—H3C109.9C10—C9—C8119.4 (3)
S2—C3—H3D109.9C10—C9—H9120.3
H3C—C3—H3D108.3C5—C10—Cl3119.3 (2)
C4—C3—S2109.1 (2)C9—C10—Cl3118.9 (2)
C4—C3—H3C109.9C9—C10—C5121.8 (3)
C4—C3—H3D109.9
Cl1—C7—C8—Cl20.5 (4)C2—N1—N2—C11.0 (5)
Cl1—C7—C8—C9177.8 (2)C3—S2—C2—S187.5 (2)
Cl2—C8—C9—C10177.9 (2)C3—S2—C2—N195.8 (3)
S2—C3—C4—O895.0 (3)C4—N4—C5—C644.6 (5)
S2—C3—C4—N483.7 (3)C4—N4—C5—C10134.0 (3)
N1—N2—C1—S11.5 (4)C5—N4—C4—O80.2 (5)
N1—N2—C1—N3177.3 (3)C5—N4—C4—C3178.6 (3)
N2—N1—C2—S10.0 (4)C5—C6—C7—Cl1176.9 (2)
N2—N1—C2—S2177.0 (3)C5—C6—C7—C81.1 (5)
N4—C5—C6—C7177.1 (3)C6—C5—C10—Cl3179.9 (2)
N4—C5—C10—Cl31.3 (4)C6—C5—C10—C90.9 (5)
N4—C5—C10—C9177.7 (3)C6—C7—C8—Cl2178.4 (2)
C1—S1—C2—S2176.4 (2)C6—C7—C8—C90.2 (5)
C1—S1—C2—N10.6 (3)C7—C8—C9—C100.4 (5)
C2—S1—C1—N21.2 (3)C8—C9—C10—Cl3179.0 (2)
C2—S1—C1—N3177.5 (3)C8—C9—C10—C50.0 (5)
C2—S2—C3—C490.1 (2)C10—C5—C6—C71.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O8i0.862.092.927 (3)163
C3—H3D···O8i0.972.433.166 (3)133
N3—H3A···N1ii0.862.513.304 (4)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds