organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Benz­yl­oxy-1,1′-biphen­yl

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia, bDepartment of P.G. Studies in Analytical Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India
*Correspondence e-mail: farook@usm.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 February 2016; accepted 9 March 2016; online 15 March 2016)

In the title compound, C19H16O, the dihedral angle between the benzene rings of the biphenyl unit is 1.54 (13)° and the C—O—C—C torsion angle is 174.4 (2)°. In the crystal, very weak C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many diaryl ethers exhibit various pharmacological properties including anti-bacterial, anti-inflammatory, anti­fungal and herbicidal activities (Ley & Thomas, 2003[Ley, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400-5449.]; Frlan & Kikelj, 2006[Frlan, R. & Kikelj, D. (2006). Synthesis, pp. 2271-2285.]). The crystal structures of some aryl ethers viz., 2,4-di­chloro-1-[1-(2,4 di­chloro­benz­yloxy)eth­yl]benzene (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o165-o166.]) and 2,6-bis­[2-(4-benzyl­oxyphen­yl)eth­yl]biphenyl (Moratti et al., 2007[Moratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, o3954.]) have been reported. As part of our studies in this area, the synthesis and structure of the title compound are reported.

The title mol­ecule (Fig. 1[link]) consists of three benzene rings, C1–C6 (A), C7–C12 (B) and C14–C19 (C). The dihedral angles A/B, A/C and B/C are 1.54 (13), 61.50 (14) and 62.80 (14)°, respectively. Five weak C—H⋯π inter­actions are observed in the crystal structure (Table 1[link]). The crystal packing is illustrated in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C14–C19 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.93 2.99 3.700 (3) 134
C4—H4ACg1ii 0.93 2.97 3.700 (3) 134
C8—H8ACg2ii 0.93 2.96 3.687 (3) 137
C11—H11ACg2i 0.93 2.93 3.650 (3) 135
C19—H19ACg3iii 0.93 2.90 3.591 (3) 133
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The crystal packing, viewed along the b axis.

Synthesis and crystallization

A mixture of (1,1′-biphen­yl)-4-ol (1.70 g, 0.01 mol) and benzyl chloride (5 ml) was refluxed for 30 min. The reaction mixture was cooled and poured into 25 ml hexane. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from 1,4-dioxane solution by the slow evaporation method; m.p. 421–425 K, yield 85%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H16O
Mr 260.32
Crystal system, space group Monoclinic, Cc
Temperature (K) 296
a, b, c (Å) 31.270 (2), 5.6720 (4), 7.8812 (5)
β (°) 99.271 (3)
V3) 1379.58 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.39 × 0.31 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.891, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 18200, 2435, 2218
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.104, 0.87
No. of reflections 2435
No. of parameters 181
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.12
Computer programs: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

Amixtureof[1,1'-bi­phenyl]-4-ol(1.70 g,0.01 mol) andbenzyl­chloride(5 ml) was refluxed for30minutes·Thereactionmixturewascooledandpouredinto25mlhexane·Theprecipitatewascollectedbyfiltrationandpurifiedbyrecrystallizationfro­methanol·Singlecrystalsweregrownfrom1,4-dioxanebyslowevaporationmethod;m.p.421–425 K·Yield:85%.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C) A rotating group model was applied to methyl groups.

Experimental top

A mixture of (1,1'-biphenyl)-4-ol (1.70 g, 0.01 mol) and benzyl chloride (5 ml) was refluxed for 30 min. The reaction mixture was cooled and poured into 25 ml hexane. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from 1,4-dioxane by the slow evaporation method; m.p. 421–425 K, yield 85%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Many diaryl ethers exhibit various pharmacological properties including anti-bacterial, anti-inflammatory, antifungal and herbicidal activities (Ley & Thomas, 2003; Frlan & Kikelj, 2006). The crystal structures of some aryl ethers viz., 2,4-dichloro-1-[1-(2,4 dichlorobenzyloxy)ethyl]benzene (Jasinski et al., 2010) and 2,6-bis[2-(4-benzyloxyphenyl)ethyl]biphenyl (Moratti et al., 2007) have been reported. As part of our studies in this area, the synthesis and structure of the title compound are reported.

The title molecule consists of three benzene rings, C1–C6 (A), C7–C12 (B) and C14–C19 (C). The dihedral angles A/B, A/C and B/C are 1.54 (13), 61.50 (14) and 62.80 (14)°, respectively. Five weak C—H···π interactions are observed in the crystal structure (Table 2).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing, viewed along the b axis.
4-Benzyloxy-1,1'-biphenyl top
Crystal data top
C19H16OF(000) = 552
Mr = 260.32Dx = 1.253 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 31.270 (2) ÅCell parameters from 7054 reflections
b = 5.6720 (4) Åθ = 2.6–31.7°
c = 7.8812 (5) ŵ = 0.08 mm1
β = 99.271 (3)°T = 296 K
V = 1379.58 (16) Å3Plate, colourless
Z = 40.39 × 0.31 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2218 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 25.0°, θmin = 2.6°
Tmin = 0.891, Tmax = 0.969h = 3636
18200 measured reflectionsk = 66
2435 independent reflectionsl = 99
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.3664P]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2435 reflectionsΔρmax = 0.12 e Å3
181 parametersΔρmin = 0.12 e Å3
Crystal data top
C19H16OV = 1379.58 (16) Å3
Mr = 260.32Z = 4
Monoclinic, CcMo Kα radiation
a = 31.270 (2) ŵ = 0.08 mm1
b = 5.6720 (4) ÅT = 296 K
c = 7.8812 (5) Å0.39 × 0.31 × 0.09 mm
β = 99.271 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2435 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2218 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.969Rint = 0.027
18200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.87Δρmax = 0.12 e Å3
2435 reflectionsΔρmin = 0.12 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44220 (6)0.2333 (3)1.0798 (2)0.0538 (5)
C10.23730 (9)0.4280 (5)0.7983 (4)0.0517 (7)
H1A0.24750.55210.87090.062*
C20.19447 (9)0.4248 (5)0.7236 (4)0.0579 (8)
H2A0.17610.54580.74630.069*
C30.17851 (9)0.2446 (5)0.6158 (4)0.0538 (7)
H3A0.14950.24160.56590.065*
C40.20609 (9)0.0691 (5)0.5831 (4)0.0588 (8)
H4A0.19580.05290.50880.071*
C50.24892 (9)0.0712 (5)0.6590 (4)0.0515 (7)
H5A0.26700.05120.63620.062*
C60.26585 (8)0.2510 (4)0.7683 (3)0.0377 (6)
C70.31216 (8)0.2517 (4)0.8516 (3)0.0366 (6)
C80.34084 (9)0.0771 (5)0.8203 (4)0.0523 (8)
H8A0.33090.04350.74420.063*
C90.38322 (9)0.0756 (5)0.8973 (4)0.0553 (8)
H9A0.40130.04610.87380.066*
C100.39943 (8)0.2524 (4)1.0094 (3)0.0408 (6)
C110.37210 (8)0.4295 (5)1.0437 (3)0.0491 (7)
H11A0.38230.55021.11940.059*
C120.32920 (8)0.4267 (5)0.9646 (3)0.0476 (7)
H12A0.31110.54790.98860.057*
C130.45998 (9)0.4022 (5)1.2055 (4)0.0512 (7)
H13A0.44290.40801.29770.061*
H13B0.45980.55751.15390.061*
C140.50538 (8)0.3302 (5)1.2746 (3)0.0434 (6)
C150.51377 (9)0.1223 (5)1.3677 (4)0.0527 (7)
H15A0.49090.02501.38520.063*
C160.55562 (10)0.0597 (5)1.4339 (4)0.0595 (8)
H16A0.56110.07921.49630.071*
C170.58958 (10)0.2035 (6)1.4075 (4)0.0612 (8)
H17A0.61790.16101.45160.073*
C180.58158 (9)0.4071 (6)1.3169 (4)0.0587 (7)
H18A0.60450.50451.30040.070*
C190.53974 (9)0.4697 (5)1.2493 (4)0.0503 (7)
H19A0.53470.60791.18580.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (10)0.0632 (12)0.0561 (11)0.0062 (8)0.0001 (8)0.0172 (9)
C10.0494 (17)0.0478 (16)0.0544 (17)0.0041 (11)0.0016 (13)0.0105 (12)
C20.0472 (16)0.0626 (18)0.0615 (19)0.0129 (13)0.0016 (14)0.0039 (14)
C30.0393 (14)0.0658 (19)0.0537 (16)0.0012 (12)0.0006 (12)0.0044 (13)
C40.0514 (18)0.0628 (18)0.0591 (19)0.0092 (14)0.0009 (14)0.0135 (14)
C50.0452 (16)0.0525 (16)0.0556 (17)0.0035 (12)0.0049 (13)0.0130 (12)
C60.0388 (14)0.0411 (13)0.0338 (13)0.0009 (9)0.0077 (10)0.0044 (9)
C70.0416 (14)0.0372 (13)0.0317 (12)0.0009 (9)0.0081 (10)0.0024 (9)
C80.0480 (17)0.0464 (15)0.0590 (18)0.0032 (11)0.0024 (14)0.0199 (12)
C90.0491 (17)0.0514 (16)0.0630 (19)0.0128 (12)0.0019 (14)0.0180 (13)
C100.0373 (14)0.0476 (14)0.0369 (14)0.0018 (10)0.0043 (11)0.0021 (10)
C110.0476 (18)0.0465 (16)0.0510 (17)0.0005 (11)0.0015 (13)0.0140 (12)
C120.0429 (16)0.0441 (14)0.0547 (17)0.0073 (11)0.0041 (13)0.0124 (12)
C130.0446 (15)0.0550 (16)0.0513 (16)0.0010 (12)0.0000 (12)0.0087 (12)
C140.0415 (14)0.0481 (13)0.0384 (13)0.0008 (11)0.0002 (11)0.0059 (11)
C150.0520 (16)0.0490 (14)0.0557 (17)0.0058 (12)0.0045 (13)0.0000 (13)
C160.067 (2)0.0510 (16)0.0568 (17)0.0114 (14)0.0022 (15)0.0046 (13)
C170.0471 (16)0.071 (2)0.0611 (18)0.0112 (14)0.0058 (13)0.0100 (16)
C180.0443 (16)0.0687 (19)0.0619 (17)0.0106 (14)0.0052 (13)0.0074 (15)
C190.0522 (17)0.0509 (14)0.0464 (14)0.0053 (12)0.0041 (12)0.0033 (12)
Geometric parameters (Å, º) top
O1—C101.367 (3)C9—H9A0.9300
O1—C131.425 (3)C10—C111.374 (4)
C1—C21.374 (4)C11—C121.386 (4)
C1—C61.389 (4)C11—H11A0.9300
C1—H1A0.9300C12—H12A0.9300
C2—C31.370 (4)C13—C141.493 (4)
C2—H2A0.9300C13—H13A0.9700
C3—C41.369 (4)C13—H13B0.9700
C3—H3A0.9300C14—C191.374 (4)
C4—C51.376 (4)C14—C151.391 (4)
C4—H4A0.9300C15—C161.375 (4)
C5—C61.384 (4)C15—H15A0.9300
C5—H5A0.9300C16—C171.381 (5)
C6—C71.491 (3)C16—H16A0.9300
C7—C121.382 (4)C17—C181.359 (4)
C7—C81.384 (4)C17—H17A0.9300
C8—C91.366 (4)C18—C191.378 (4)
C8—H8A0.9300C18—H18A0.9300
C9—C101.378 (4)C19—H19A0.9300
C10—O1—C13118.39 (19)C10—C11—C12119.4 (2)
C2—C1—C6121.7 (3)C10—C11—H11A120.3
C2—C1—H1A119.1C12—C11—H11A120.3
C6—C1—H1A119.1C7—C12—C11122.9 (2)
C3—C2—C1120.6 (3)C7—C12—H12A118.6
C3—C2—H2A119.7C11—C12—H12A118.6
C1—C2—H2A119.7O1—C13—C14108.1 (2)
C4—C3—C2118.8 (3)O1—C13—H13A110.1
C4—C3—H3A120.6C14—C13—H13A110.1
C2—C3—H3A120.6O1—C13—H13B110.1
C3—C4—C5120.7 (3)C14—C13—H13B110.1
C3—C4—H4A119.7H13A—C13—H13B108.4
C5—C4—H4A119.7C19—C14—C15118.6 (2)
C4—C5—C6121.7 (2)C19—C14—C13120.6 (2)
C4—C5—H5A119.2C15—C14—C13120.8 (2)
C6—C5—H5A119.2C16—C15—C14120.4 (3)
C5—C6—C1116.5 (2)C16—C15—H15A119.8
C5—C6—C7121.5 (2)C14—C15—H15A119.8
C1—C6—C7121.9 (2)C15—C16—C17119.9 (3)
C12—C7—C8115.8 (2)C15—C16—H16A120.1
C12—C7—C6122.1 (2)C17—C16—H16A120.1
C8—C7—C6122.1 (2)C18—C17—C16120.0 (3)
C9—C8—C7122.4 (2)C18—C17—H17A120.0
C9—C8—H8A118.8C16—C17—H17A120.0
C7—C8—H8A118.8C17—C18—C19120.3 (3)
C8—C9—C10120.7 (2)C17—C18—H18A119.8
C8—C9—H9A119.7C19—C18—H18A119.8
C10—C9—H9A119.7C14—C19—C18120.8 (3)
O1—C10—C11125.2 (2)C14—C19—H19A119.6
O1—C10—C9115.9 (2)C18—C19—H19A119.6
C11—C10—C9118.8 (2)
C6—C1—C2—C30.1 (5)C8—C9—C10—C110.6 (4)
C1—C2—C3—C40.5 (5)O1—C10—C11—C12179.4 (2)
C2—C3—C4—C51.0 (5)C9—C10—C11—C120.3 (4)
C3—C4—C5—C61.0 (5)C8—C7—C12—C110.4 (4)
C4—C5—C6—C10.4 (4)C6—C7—C12—C11179.7 (2)
C4—C5—C6—C7179.4 (2)C10—C11—C12—C70.2 (4)
C2—C1—C6—C50.1 (4)C10—O1—C13—C14174.4 (2)
C2—C1—C6—C7178.9 (2)O1—C13—C14—C19115.6 (3)
C5—C6—C7—C12178.2 (3)O1—C13—C14—C1565.1 (3)
C1—C6—C7—C120.7 (3)C19—C14—C15—C160.6 (4)
C5—C6—C7—C81.9 (3)C13—C14—C15—C16178.7 (2)
C1—C6—C7—C8179.2 (3)C14—C15—C16—C170.2 (4)
C12—C7—C8—C90.7 (4)C15—C16—C17—C180.3 (4)
C6—C7—C8—C9179.4 (3)C16—C17—C18—C190.8 (5)
C7—C8—C9—C100.8 (5)C15—C14—C19—C181.0 (4)
C13—O1—C10—C113.3 (4)C13—C14—C19—C18178.2 (3)
C13—O1—C10—C9175.8 (3)C17—C18—C19—C141.1 (4)
C8—C9—C10—O1179.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C14–C19 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.932.993.700 (3)134
C4—H4A···Cg1ii0.932.973.700 (3)134
C8—H8A···Cg2ii0.932.963.687 (3)137
C11—H11A···Cg2i0.932.933.650 (3)135
C19—H19A···Cg3iii0.932.903.591 (3)133
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C14–C19 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.932.993.700 (3)134
C4—H4A···Cg1ii0.932.973.700 (3)134
C8—H8A···Cg2ii0.932.963.687 (3)137
C11—H11A···Cg2i0.932.933.650 (3)135
C19—H19A···Cg3iii0.932.903.591 (3)133
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16O
Mr260.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)31.270 (2), 5.6720 (4), 7.8812 (5)
β (°) 99.271 (3)
V3)1379.58 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.31 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.891, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
18200, 2435, 2218
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.104, 0.87
No. of reflections2435
No. of parameters181
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick 2008).

 

Acknowledgements

SS and SDK thank Alva's Education Foundation, Moodbidri, for providing research facilities. FA is grateful for USM research grants 1001/PKIMIA/846017 and 1001/PKIMIA/811269, which partially supported this research.

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrlan, R. & Kikelj, D. (2006). Synthesis, pp. 2271–2285.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o165–o166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLey, S. V. & Thomas, A. W. (2003). Angew. Chem. Int. Ed. 42, 5400–5449.  Web of Science CrossRef CAS Google Scholar
First citationMoratti, S. C., Simpson, J. & Tierney, S. M. (2007). Acta Cryst. E63, o3954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds