organic compounds
2,5-Bis(3,4-dimethoxyphenyl)-1,3,4-oxadiazole
aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu, Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp
In the title compound, C18H18N2O5, which was synthesized by reacting N,N′-bis-(3,4-dimethoxybenzoyl)hydrazine with POCl3, the dihedral angles between the central oxadiazole ring and pendant 3,4-dimethoxyphenyl rings are 11.37 (7) and 3.09 (7)°. In the crystal, weak C—H⋯O and π–π [shortest centroid–centroid separation = 3.7370 (11) Å] interactions are present, giving rise to a layered packing motif.
CCDC reference: 1450256
Structure description
1,3,4-Oxadiazole and its analog derivatives are important classes of et al., 2002) such as anticonvulsive, antimitotic, anti-emetic, and muscle-relaxant properties. 1,3,4-Oxadiazoles are also used for platelet aggregation inhibition (Fray et al., 1995). Highly functionalized 1,3,4-oxadiazole derivatives are found in drug molecules such as Nesapidil, Furamizole and Raltegravir. As part of our studies in this area, we herein report the of the title compound, C18H18N2O5 (Fig. 1).
found in many biological and pharmacological active drug molecules. It was established as privileged class of compound due to its properties in medicinal chemistry (ZouIn the crystal, weak C—H⋯O (Table 1; Fig. 2) and π–π [shortest centroid–centroid separation = 3.7370 (11) Å] interactions are present, giving rise to a layered packing motif
Synthesis and crystallization
The title compound was synthesized (Fig. 3) as follows. N,N′-bis-(3,4-dimethoxybenzoyl)-hydrazine (1 mmol) was taken in a round-bottom flask. To this 10 ml of POCl3 was added and the mixture was refluxed 4 h, quenched with ice, allowed to warm to room temperature, and extracted twice with EtOAc. The organic layers were washed once with 50 ml water, twice with 50 ml of brine solution, dried with Na2SO4, and concentrated. Colourless needles of the title compound were obtained by slow evaporation of a benzene solution of crude reaction mixture (m.p. 449–451 K) at room temperature. Analysis: δH 1H NMR (DMSO-d6, 500 MHz) δ 7.72 (2H, dd, J = 8.3, 2.3 Hz, H-6, H-6′), 7.61 (2H, d, J = 2.3 Hz, H-2, H-2′), 7.18 (2H, d, J = 8.3 Hz, H-5, H-5′), 3.90 (6H, s, 2 OCH3), 3.87 (6H, s, 2 OCH3); LCMS: MH+, 342.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1450256
https://doi.org/10.1107/S241431461600167X/hb4011sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461600167X/hb4011Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461600167X/hb4011Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: APEX2 (Bruker, 2009).C18H20N2O5 | F(000) = 720 |
Mr = 342.34 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.135 (4) Å | Cell parameters from 6712 reflections |
b = 8.4680 (16) Å | θ = 2.6–28.4° |
c = 8.6198 (17) Å | µ = 0.10 mm−1 |
β = 93.287 (2)° | T = 120 K |
V = 1613.0 (5) Å3 | Needle, colorless |
Z = 4 | 0.50 × 0.20 × 0.20 mm |
Bruker APEXII KY CCD diffractometer | 2852 independent reflections |
Radiation source: fine focus sealed tube | 2525 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −26→26 |
Tmin = 0.883, Tmax = 0.979 | k = −10→10 |
15058 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0579P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3 |
2852 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.27372 (6) | 0.16288 (15) | 0.21202 (14) | 0.0199 (3) | |
C2 | 0.32161 (6) | 0.13524 (16) | 0.10688 (14) | 0.0201 (3) | |
C3 | 0.33172 (6) | −0.01921 (16) | 0.05734 (15) | 0.0208 (3) | |
H3 | 0.308 | −0.1012 | 0.092 | 0.025* | |
C4 | 0.37645 (6) | −0.05059 (15) | −0.04213 (15) | 0.0206 (3) | |
C5 | 0.41349 (6) | 0.07362 (16) | −0.09198 (15) | 0.0214 (3) | |
C6 | 0.40284 (6) | 0.22591 (16) | −0.04297 (15) | 0.0232 (3) | |
H6 | 0.4267 | 0.3083 | −0.0764 | 0.028* | |
C7 | 0.35692 (6) | 0.25712 (16) | 0.05578 (15) | 0.0223 (3) | |
H7 | 0.3499 | 0.3601 | 0.0876 | 0.027* | |
C8 | 0.35611 (7) | −0.32582 (17) | −0.04182 (18) | 0.0304 (3) | |
H8A | 0.3632 | −0.3325 | 0.0689 | 0.046* | |
H8B | 0.3691 | −0.4219 | −0.0888 | 0.046* | |
H8C | 0.3137 | −0.3104 | −0.0668 | 0.046* | |
C9 | 0.50117 (6) | 0.14775 (18) | −0.22004 (18) | 0.0311 (3) | |
H9A | 0.4817 | 0.2318 | −0.2786 | 0.047* | |
H9B | 0.532 | 0.1013 | −0.2795 | 0.047* | |
H9C | 0.5192 | 0.189 | −0.1245 | 0.047* | |
C10 | 0.21076 (6) | 0.29230 (16) | 0.33921 (14) | 0.0208 (3) | |
C11 | 0.17893 (6) | 0.42755 (16) | 0.39717 (15) | 0.0214 (3) | |
C12 | 0.13070 (6) | 0.39841 (16) | 0.49227 (14) | 0.0207 (3) | |
H12 | 0.1203 | 0.2951 | 0.5158 | 0.025* | |
C13 | 0.09880 (6) | 0.52202 (16) | 0.55061 (15) | 0.0207 (3) | |
C14 | 0.11468 (6) | 0.67876 (16) | 0.51522 (14) | 0.0207 (3) | |
C15 | 0.16219 (6) | 0.70723 (16) | 0.42105 (15) | 0.0236 (3) | |
H15 | 0.1728 | 0.8104 | 0.3973 | 0.028* | |
C16 | 0.19402 (6) | 0.58128 (17) | 0.36215 (15) | 0.0233 (3) | |
H16 | 0.2258 | 0.6007 | 0.2986 | 0.028* | |
C17 | 0.03218 (6) | 0.34858 (16) | 0.67204 (16) | 0.0260 (3) | |
H17A | 0.0216 | 0.2969 | 0.5751 | 0.039* | |
H17B | −0.0024 | 0.3509 | 0.7342 | 0.039* | |
H17C | 0.0645 | 0.2919 | 0.7263 | 0.039* | |
C18 | 0.09139 (7) | 0.95081 (16) | 0.53565 (17) | 0.0289 (3) | |
H18A | 0.1322 | 0.9784 | 0.5683 | 0.043* | |
H18B | 0.0638 | 1.0192 | 0.5855 | 0.043* | |
H18C | 0.0858 | 0.9623 | 0.425 | 0.043* | |
N1 | 0.24338 (5) | 0.05939 (14) | 0.28535 (13) | 0.0241 (3) | |
N2 | 0.20193 (5) | 0.14444 (14) | 0.36880 (13) | 0.0248 (3) | |
O1 | 0.25592 (4) | 0.31369 (11) | 0.24030 (10) | 0.0211 (2) | |
O2 | 0.38929 (4) | −0.19607 (11) | −0.09947 (11) | 0.0259 (2) | |
O3 | 0.45738 (4) | 0.03030 (11) | −0.18649 (11) | 0.0280 (2) | |
O4 | 0.05134 (4) | 0.50644 (11) | 0.64300 (10) | 0.0239 (2) | |
O5 | 0.08007 (4) | 0.79125 (11) | 0.57747 (11) | 0.0248 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0205 (6) | 0.0193 (7) | 0.0198 (6) | 0.0012 (5) | −0.0002 (5) | −0.0013 (5) |
C2 | 0.0194 (6) | 0.0228 (7) | 0.0181 (6) | 0.0007 (5) | 0.0000 (5) | 0.0007 (5) |
C3 | 0.0199 (6) | 0.0211 (7) | 0.0213 (7) | −0.0023 (5) | 0.0014 (5) | 0.0019 (5) |
C4 | 0.0212 (6) | 0.0192 (7) | 0.0213 (7) | 0.0012 (5) | 0.0004 (5) | −0.0004 (5) |
C5 | 0.0197 (6) | 0.0241 (7) | 0.0206 (7) | 0.0020 (5) | 0.0028 (5) | 0.0017 (5) |
C6 | 0.0228 (7) | 0.0217 (7) | 0.0252 (7) | −0.0036 (5) | 0.0035 (5) | 0.0041 (5) |
C7 | 0.0255 (7) | 0.0185 (7) | 0.0231 (7) | 0.0020 (5) | 0.0027 (5) | −0.0008 (5) |
C8 | 0.0346 (8) | 0.0199 (7) | 0.0377 (8) | −0.0033 (6) | 0.0109 (6) | −0.0030 (6) |
C9 | 0.0230 (7) | 0.0332 (8) | 0.0380 (8) | −0.0024 (6) | 0.0110 (6) | 0.0047 (6) |
C10 | 0.0180 (6) | 0.0274 (7) | 0.0172 (6) | −0.0010 (5) | 0.0018 (5) | −0.0006 (5) |
C11 | 0.0193 (6) | 0.0257 (7) | 0.0190 (6) | 0.0010 (5) | −0.0004 (5) | −0.0011 (5) |
C12 | 0.0211 (6) | 0.0203 (7) | 0.0205 (7) | −0.0014 (5) | 0.0002 (5) | −0.0005 (5) |
C13 | 0.0189 (6) | 0.0251 (7) | 0.0182 (6) | −0.0005 (5) | 0.0006 (5) | −0.0007 (5) |
C14 | 0.0202 (6) | 0.0221 (7) | 0.0198 (6) | 0.0011 (5) | −0.0002 (5) | −0.0021 (5) |
C15 | 0.0235 (7) | 0.0217 (7) | 0.0255 (7) | −0.0022 (5) | 0.0017 (5) | 0.0011 (5) |
C16 | 0.0199 (6) | 0.0289 (8) | 0.0214 (7) | −0.0019 (6) | 0.0034 (5) | 0.0011 (5) |
C17 | 0.0263 (7) | 0.0227 (7) | 0.0300 (7) | −0.0018 (6) | 0.0088 (6) | 0.0010 (6) |
C18 | 0.0350 (8) | 0.0194 (7) | 0.0327 (8) | 0.0017 (6) | 0.0071 (6) | 0.0012 (6) |
N1 | 0.0238 (6) | 0.0229 (6) | 0.0261 (6) | 0.0015 (5) | 0.0069 (5) | −0.0007 (5) |
N2 | 0.0233 (6) | 0.0244 (6) | 0.0275 (6) | 0.0014 (5) | 0.0076 (5) | −0.0018 (5) |
O1 | 0.0214 (5) | 0.0209 (5) | 0.0215 (5) | 0.0016 (4) | 0.0052 (4) | −0.0004 (4) |
O2 | 0.0291 (5) | 0.0186 (5) | 0.0310 (5) | −0.0006 (4) | 0.0116 (4) | −0.0028 (4) |
O3 | 0.0256 (5) | 0.0254 (5) | 0.0344 (6) | −0.0002 (4) | 0.0140 (4) | 0.0010 (4) |
O4 | 0.0249 (5) | 0.0213 (5) | 0.0266 (5) | −0.0006 (4) | 0.0099 (4) | −0.0003 (4) |
O5 | 0.0274 (5) | 0.0193 (5) | 0.0283 (5) | 0.0010 (4) | 0.0073 (4) | −0.0013 (4) |
C1—N1 | 1.2911 (17) | C10—O1 | 1.3625 (15) |
C1—O1 | 1.3625 (16) | C10—C11 | 1.4485 (19) |
C1—C2 | 1.4528 (18) | C11—C16 | 1.382 (2) |
C2—C7 | 1.3818 (18) | C11—C12 | 1.4048 (18) |
C2—C3 | 1.3978 (19) | C12—C13 | 1.3740 (19) |
C3—C4 | 1.3723 (18) | C12—H12 | 0.93 |
C3—H3 | 0.93 | C13—O4 | 1.3606 (16) |
C4—O2 | 1.3634 (16) | C13—C14 | 1.4108 (19) |
C4—C5 | 1.4156 (18) | C14—O5 | 1.3525 (16) |
C5—O3 | 1.3538 (16) | C14—C15 | 1.3861 (19) |
C5—C6 | 1.3815 (19) | C15—C16 | 1.3902 (19) |
C6—C7 | 1.3882 (19) | C15—H15 | 0.93 |
C6—H6 | 0.93 | C16—H16 | 0.93 |
C7—H7 | 0.93 | C17—O4 | 1.4289 (16) |
C8—O2 | 1.4266 (17) | C17—H17A | 0.96 |
C8—H8A | 0.96 | C17—H17B | 0.96 |
C8—H8B | 0.96 | C17—H17C | 0.96 |
C8—H8C | 0.96 | C18—O5 | 1.4243 (16) |
C9—O3 | 1.4298 (17) | C18—H18A | 0.96 |
C9—H9A | 0.96 | C18—H18B | 0.96 |
C9—H9B | 0.96 | C18—H18C | 0.96 |
C9—H9C | 0.96 | N1—N2 | 1.3978 (15) |
C10—N2 | 1.2949 (18) | ||
N1—C1—O1 | 112.63 (11) | C16—C11—C10 | 122.77 (12) |
N1—C1—C2 | 127.93 (12) | C12—C11—C10 | 117.60 (12) |
O1—C1—C2 | 119.44 (11) | C13—C12—C11 | 120.23 (12) |
C7—C2—C3 | 119.88 (12) | C13—C12—H12 | 119.9 |
C7—C2—C1 | 121.65 (12) | C11—C12—H12 | 119.9 |
C3—C2—C1 | 118.47 (12) | O4—C13—C12 | 124.79 (12) |
C4—C3—C2 | 120.39 (12) | O4—C13—C14 | 115.34 (11) |
C4—C3—H3 | 119.8 | C12—C13—C14 | 119.86 (12) |
C2—C3—H3 | 119.8 | O5—C14—C15 | 125.16 (12) |
O2—C4—C3 | 125.06 (12) | O5—C14—C13 | 115.02 (11) |
O2—C4—C5 | 115.15 (11) | C15—C14—C13 | 119.81 (12) |
C3—C4—C5 | 119.80 (12) | C14—C15—C16 | 119.86 (12) |
O3—C5—C6 | 125.30 (12) | C14—C15—H15 | 120.1 |
O3—C5—C4 | 115.44 (12) | C16—C15—H15 | 120.1 |
C6—C5—C4 | 119.26 (12) | C11—C16—C15 | 120.61 (12) |
C5—C6—C7 | 120.60 (12) | C11—C16—H16 | 119.7 |
C5—C6—H6 | 119.7 | C15—C16—H16 | 119.7 |
C7—C6—H6 | 119.7 | O4—C17—H17A | 109.5 |
C2—C7—C6 | 120.04 (12) | O4—C17—H17B | 109.5 |
C2—C7—H7 | 120.0 | H17A—C17—H17B | 109.5 |
C6—C7—H7 | 120.0 | O4—C17—H17C | 109.5 |
O2—C8—H8A | 109.5 | H17A—C17—H17C | 109.5 |
O2—C8—H8B | 109.5 | H17B—C17—H17C | 109.5 |
H8A—C8—H8B | 109.5 | O5—C18—H18A | 109.5 |
O2—C8—H8C | 109.5 | O5—C18—H18B | 109.5 |
H8A—C8—H8C | 109.5 | H18A—C18—H18B | 109.5 |
H8B—C8—H8C | 109.5 | O5—C18—H18C | 109.5 |
O3—C9—H9A | 109.5 | H18A—C18—H18C | 109.5 |
O3—C9—H9B | 109.5 | H18B—C18—H18C | 109.5 |
H9A—C9—H9B | 109.5 | C1—N1—N2 | 106.10 (11) |
O3—C9—H9C | 109.5 | C10—N2—N1 | 106.61 (10) |
H9A—C9—H9C | 109.5 | C1—O1—C10 | 102.56 (10) |
H9B—C9—H9C | 109.5 | C4—O2—C8 | 116.58 (10) |
N2—C10—O1 | 112.10 (11) | C5—O3—C9 | 116.83 (11) |
N2—C10—C11 | 127.93 (12) | C13—O4—C17 | 116.11 (10) |
O1—C10—C11 | 119.96 (11) | C14—O5—C18 | 117.12 (10) |
C16—C11—C12 | 119.63 (12) | ||
N1—C1—C2—C7 | −169.37 (13) | C12—C13—C14—O5 | 179.47 (11) |
O1—C1—C2—C7 | 11.53 (19) | O4—C13—C14—C15 | −179.58 (11) |
N1—C1—C2—C3 | 10.6 (2) | C12—C13—C14—C15 | 0.35 (19) |
O1—C1—C2—C3 | −168.55 (11) | O5—C14—C15—C16 | −179.14 (12) |
C7—C2—C3—C4 | −0.16 (19) | C13—C14—C15—C16 | −0.11 (19) |
C1—C2—C3—C4 | 179.92 (11) | C12—C11—C16—C15 | 0.5 (2) |
C2—C3—C4—O2 | −178.77 (12) | C10—C11—C16—C15 | −179.81 (12) |
C2—C3—C4—C5 | 1.49 (19) | C14—C15—C16—C11 | −0.3 (2) |
O2—C4—C5—O3 | −1.52 (17) | O1—C1—N1—N2 | 0.27 (14) |
C3—C4—C5—O3 | 178.25 (11) | C2—C1—N1—N2 | −178.88 (12) |
O2—C4—C5—C6 | 178.38 (11) | O1—C10—N2—N1 | −0.03 (14) |
C3—C4—C5—C6 | −1.85 (19) | C11—C10—N2—N1 | 179.64 (12) |
O3—C5—C6—C7 | −179.23 (12) | C1—N1—N2—C10 | −0.14 (14) |
C4—C5—C6—C7 | 0.9 (2) | N1—C1—O1—C10 | −0.28 (14) |
C3—C2—C7—C6 | −0.83 (19) | C2—C1—O1—C10 | 178.95 (11) |
C1—C2—C7—C6 | 179.10 (12) | N2—C10—O1—C1 | 0.18 (14) |
C5—C6—C7—C2 | 0.4 (2) | C11—C10—O1—C1 | −179.52 (11) |
N2—C10—C11—C16 | 177.36 (13) | C3—C4—O2—C8 | −4.66 (19) |
O1—C10—C11—C16 | −3.00 (19) | C5—C4—O2—C8 | 175.09 (12) |
N2—C10—C11—C12 | −2.9 (2) | C6—C5—O3—C9 | 9.25 (19) |
O1—C10—C11—C12 | 176.74 (11) | C4—C5—O3—C9 | −170.85 (12) |
C16—C11—C12—C13 | −0.21 (19) | C12—C13—O4—C17 | −3.73 (18) |
C10—C11—C12—C13 | −179.96 (11) | C14—C13—O4—C17 | 176.20 (11) |
C11—C12—C13—O4 | 179.74 (11) | C15—C14—O5—C18 | 3.64 (19) |
C11—C12—C13—C14 | −0.19 (19) | C13—C14—O5—C18 | −175.43 (11) |
O4—C13—C14—O5 | −0.46 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17B···O5i | 0.96 | 2.48 | 3.4185 (18) | 165 |
C18—H18C···O4ii | 0.96 | 2.52 | 3.4682 (18) | 170 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the X-ray analysis.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fray, M. J., Cooper, K., Parry, M. J., Richardson, K. & Steele, J. (1995). J. Med. Chem. 38, 3514–3523. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. J. (2002). J. Agric. Food Chem. 50, 3757–3760. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.