organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,5-Bis(3,4-di­meth­­oxy­phen­yl)-1,3,4-oxa­diazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu, Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 December 2015; accepted 27 January 2016; online 3 February 2016)

In the title compound, C18H18N2O5, which was synthesized by reacting N,N′-bis-(3,4-di­meth­oxy­benzo­yl)hydrazine with POCl3, the dihedral angles between the central oxa­diazole ring and pendant 3,4-di­meth­oxy­phenyl rings are 11.37 (7) and 3.09 (7)°. In the crystal, weak C—H⋯O and ππ [shortest centroid–centroid separation = 3.7370 (11) Å] inter­actions are present, giving rise to a layered packing motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3,4-Oxa­diazole and its analog derivatives are important classes of heterocyclic compounds found in many biological and pharmacological active drug mol­ecules. It was established as privileged class of compound due to its properties in medicinal chemistry (Zou et al., 2002[Zou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. J. (2002). J. Agric. Food Chem. 50, 3757-3760.]) such as anti­convulsive, anti­mitotic, anti-emetic, and muscle-relaxant properties. 1,3,4-Oxa­diazo­les are also used for platelet aggregation inhibition (Fray et al., 1995[Fray, M. J., Cooper, K., Parry, M. J., Richardson, K. & Steele, J. (1995). J. Med. Chem. 38, 3514-3523.]). Highly functionalized 1,3,4-oxa­diazole derivatives are found in drug mol­ecules such as Nesapidil, Furamizole and Raltegravir. As part of our studies in this area, we herein report the crystal structure of the title compound, C18H18N2O5 (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular conformation for the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, weak C—H⋯O (Table 1[link]; Fig. 2[link]) and ππ [shortest centroid–centroid separation = 3.7370 (11) Å] inter­actions are present, giving rise to a layered packing motif

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O5i 0.96 2.48 3.4185 (18) 165
C18—H18C⋯O4ii 0.96 2.52 3.4682 (18) 170
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the b axis, with H atoms omitted for clarity.

Synthesis and crystallization

The title compound was synthesized (Fig. 3[link]) as follows. N,N′-bis-(3,4-di­meth­oxy­benzo­yl)-hydrazine (1 mmol) was taken in a round-bottom flask. To this 10 ml of POCl3 was added and the mixture was refluxed 4 h, quenched with ice, allowed to warm to room temperature, and extracted twice with EtOAc. The organic layers were washed once with 50 ml water, twice with 50 ml of brine solution, dried with Na2SO4, and concentrated. Colourless needles of the title compound were obtained by slow evaporation of a benzene solution of crude reaction mixture (m.p. 449–451 K) at room temperature. Analysis: δH 1H NMR (DMSO-d6, 500 MHz) δ 7.72 (2H, dd, J = 8.3, 2.3 Hz, H-6, H-6′), 7.61 (2H, d, J = 2.3 Hz, H-2, H-2′), 7.18 (2H, d, J = 8.3 Hz, H-5, H-5′), 3.90 (6H, s, 2 OCH3), 3.87 (6H, s, 2 OCH3); LCMS: MH+, 342.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H20N2O5
Mr 342.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 22.135 (4), 8.4680 (16), 8.6198 (17)
β (°) 93.287 (2)
V3) 1613.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.50 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII KY CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.883, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 15058, 2852, 2525
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.101, 1.11
No. of reflections 2852
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: APEX2 (Bruker, 2009).

2,5-Bis(3,4-dimethoxyphenyl)-1,3,4-oxadiazole top
Crystal data top
C18H20N2O5F(000) = 720
Mr = 342.34Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.135 (4) ÅCell parameters from 6712 reflections
b = 8.4680 (16) Åθ = 2.6–28.4°
c = 8.6198 (17) ŵ = 0.10 mm1
β = 93.287 (2)°T = 120 K
V = 1613.0 (5) Å3Needle, colorless
Z = 40.50 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII KY CCD
diffractometer
2852 independent reflections
Radiation source: fine focus sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.883, Tmax = 0.979k = 1010
15058 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
2852 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27372 (6)0.16288 (15)0.21202 (14)0.0199 (3)
C20.32161 (6)0.13524 (16)0.10688 (14)0.0201 (3)
C30.33172 (6)0.01921 (16)0.05734 (15)0.0208 (3)
H30.3080.10120.0920.025*
C40.37645 (6)0.05059 (15)0.04213 (15)0.0206 (3)
C50.41349 (6)0.07362 (16)0.09198 (15)0.0214 (3)
C60.40284 (6)0.22591 (16)0.04297 (15)0.0232 (3)
H60.42670.30830.07640.028*
C70.35692 (6)0.25712 (16)0.05578 (15)0.0223 (3)
H70.34990.36010.08760.027*
C80.35611 (7)0.32582 (17)0.04182 (18)0.0304 (3)
H8A0.36320.33250.06890.046*
H8B0.36910.42190.08880.046*
H8C0.31370.31040.06680.046*
C90.50117 (6)0.14775 (18)0.22004 (18)0.0311 (3)
H9A0.48170.23180.27860.047*
H9B0.5320.10130.27950.047*
H9C0.51920.1890.12450.047*
C100.21076 (6)0.29230 (16)0.33921 (14)0.0208 (3)
C110.17893 (6)0.42755 (16)0.39717 (15)0.0214 (3)
C120.13070 (6)0.39841 (16)0.49227 (14)0.0207 (3)
H120.12030.29510.51580.025*
C130.09880 (6)0.52202 (16)0.55061 (15)0.0207 (3)
C140.11468 (6)0.67876 (16)0.51522 (14)0.0207 (3)
C150.16219 (6)0.70723 (16)0.42105 (15)0.0236 (3)
H150.17280.81040.39730.028*
C160.19402 (6)0.58128 (17)0.36215 (15)0.0233 (3)
H160.22580.60070.29860.028*
C170.03218 (6)0.34858 (16)0.67204 (16)0.0260 (3)
H17A0.02160.29690.57510.039*
H17B0.00240.35090.73420.039*
H17C0.06450.29190.72630.039*
C180.09139 (7)0.95081 (16)0.53565 (17)0.0289 (3)
H18A0.13220.97840.56830.043*
H18B0.06381.01920.58550.043*
H18C0.08580.96230.4250.043*
N10.24338 (5)0.05939 (14)0.28535 (13)0.0241 (3)
N20.20193 (5)0.14444 (14)0.36880 (13)0.0248 (3)
O10.25592 (4)0.31369 (11)0.24030 (10)0.0211 (2)
O20.38929 (4)0.19607 (11)0.09947 (11)0.0259 (2)
O30.45738 (4)0.03030 (11)0.18649 (11)0.0280 (2)
O40.05134 (4)0.50644 (11)0.64300 (10)0.0239 (2)
O50.08007 (4)0.79125 (11)0.57747 (11)0.0248 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (6)0.0193 (7)0.0198 (6)0.0012 (5)0.0002 (5)0.0013 (5)
C20.0194 (6)0.0228 (7)0.0181 (6)0.0007 (5)0.0000 (5)0.0007 (5)
C30.0199 (6)0.0211 (7)0.0213 (7)0.0023 (5)0.0014 (5)0.0019 (5)
C40.0212 (6)0.0192 (7)0.0213 (7)0.0012 (5)0.0004 (5)0.0004 (5)
C50.0197 (6)0.0241 (7)0.0206 (7)0.0020 (5)0.0028 (5)0.0017 (5)
C60.0228 (7)0.0217 (7)0.0252 (7)0.0036 (5)0.0035 (5)0.0041 (5)
C70.0255 (7)0.0185 (7)0.0231 (7)0.0020 (5)0.0027 (5)0.0008 (5)
C80.0346 (8)0.0199 (7)0.0377 (8)0.0033 (6)0.0109 (6)0.0030 (6)
C90.0230 (7)0.0332 (8)0.0380 (8)0.0024 (6)0.0110 (6)0.0047 (6)
C100.0180 (6)0.0274 (7)0.0172 (6)0.0010 (5)0.0018 (5)0.0006 (5)
C110.0193 (6)0.0257 (7)0.0190 (6)0.0010 (5)0.0004 (5)0.0011 (5)
C120.0211 (6)0.0203 (7)0.0205 (7)0.0014 (5)0.0002 (5)0.0005 (5)
C130.0189 (6)0.0251 (7)0.0182 (6)0.0005 (5)0.0006 (5)0.0007 (5)
C140.0202 (6)0.0221 (7)0.0198 (6)0.0011 (5)0.0002 (5)0.0021 (5)
C150.0235 (7)0.0217 (7)0.0255 (7)0.0022 (5)0.0017 (5)0.0011 (5)
C160.0199 (6)0.0289 (8)0.0214 (7)0.0019 (6)0.0034 (5)0.0011 (5)
C170.0263 (7)0.0227 (7)0.0300 (7)0.0018 (6)0.0088 (6)0.0010 (6)
C180.0350 (8)0.0194 (7)0.0327 (8)0.0017 (6)0.0071 (6)0.0012 (6)
N10.0238 (6)0.0229 (6)0.0261 (6)0.0015 (5)0.0069 (5)0.0007 (5)
N20.0233 (6)0.0244 (6)0.0275 (6)0.0014 (5)0.0076 (5)0.0018 (5)
O10.0214 (5)0.0209 (5)0.0215 (5)0.0016 (4)0.0052 (4)0.0004 (4)
O20.0291 (5)0.0186 (5)0.0310 (5)0.0006 (4)0.0116 (4)0.0028 (4)
O30.0256 (5)0.0254 (5)0.0344 (6)0.0002 (4)0.0140 (4)0.0010 (4)
O40.0249 (5)0.0213 (5)0.0266 (5)0.0006 (4)0.0099 (4)0.0003 (4)
O50.0274 (5)0.0193 (5)0.0283 (5)0.0010 (4)0.0073 (4)0.0013 (4)
Geometric parameters (Å, º) top
C1—N11.2911 (17)C10—O11.3625 (15)
C1—O11.3625 (16)C10—C111.4485 (19)
C1—C21.4528 (18)C11—C161.382 (2)
C2—C71.3818 (18)C11—C121.4048 (18)
C2—C31.3978 (19)C12—C131.3740 (19)
C3—C41.3723 (18)C12—H120.93
C3—H30.93C13—O41.3606 (16)
C4—O21.3634 (16)C13—C141.4108 (19)
C4—C51.4156 (18)C14—O51.3525 (16)
C5—O31.3538 (16)C14—C151.3861 (19)
C5—C61.3815 (19)C15—C161.3902 (19)
C6—C71.3882 (19)C15—H150.93
C6—H60.93C16—H160.93
C7—H70.93C17—O41.4289 (16)
C8—O21.4266 (17)C17—H17A0.96
C8—H8A0.96C17—H17B0.96
C8—H8B0.96C17—H17C0.96
C8—H8C0.96C18—O51.4243 (16)
C9—O31.4298 (17)C18—H18A0.96
C9—H9A0.96C18—H18B0.96
C9—H9B0.96C18—H18C0.96
C9—H9C0.96N1—N21.3978 (15)
C10—N21.2949 (18)
N1—C1—O1112.63 (11)C16—C11—C10122.77 (12)
N1—C1—C2127.93 (12)C12—C11—C10117.60 (12)
O1—C1—C2119.44 (11)C13—C12—C11120.23 (12)
C7—C2—C3119.88 (12)C13—C12—H12119.9
C7—C2—C1121.65 (12)C11—C12—H12119.9
C3—C2—C1118.47 (12)O4—C13—C12124.79 (12)
C4—C3—C2120.39 (12)O4—C13—C14115.34 (11)
C4—C3—H3119.8C12—C13—C14119.86 (12)
C2—C3—H3119.8O5—C14—C15125.16 (12)
O2—C4—C3125.06 (12)O5—C14—C13115.02 (11)
O2—C4—C5115.15 (11)C15—C14—C13119.81 (12)
C3—C4—C5119.80 (12)C14—C15—C16119.86 (12)
O3—C5—C6125.30 (12)C14—C15—H15120.1
O3—C5—C4115.44 (12)C16—C15—H15120.1
C6—C5—C4119.26 (12)C11—C16—C15120.61 (12)
C5—C6—C7120.60 (12)C11—C16—H16119.7
C5—C6—H6119.7C15—C16—H16119.7
C7—C6—H6119.7O4—C17—H17A109.5
C2—C7—C6120.04 (12)O4—C17—H17B109.5
C2—C7—H7120.0H17A—C17—H17B109.5
C6—C7—H7120.0O4—C17—H17C109.5
O2—C8—H8A109.5H17A—C17—H17C109.5
O2—C8—H8B109.5H17B—C17—H17C109.5
H8A—C8—H8B109.5O5—C18—H18A109.5
O2—C8—H8C109.5O5—C18—H18B109.5
H8A—C8—H8C109.5H18A—C18—H18B109.5
H8B—C8—H8C109.5O5—C18—H18C109.5
O3—C9—H9A109.5H18A—C18—H18C109.5
O3—C9—H9B109.5H18B—C18—H18C109.5
H9A—C9—H9B109.5C1—N1—N2106.10 (11)
O3—C9—H9C109.5C10—N2—N1106.61 (10)
H9A—C9—H9C109.5C1—O1—C10102.56 (10)
H9B—C9—H9C109.5C4—O2—C8116.58 (10)
N2—C10—O1112.10 (11)C5—O3—C9116.83 (11)
N2—C10—C11127.93 (12)C13—O4—C17116.11 (10)
O1—C10—C11119.96 (11)C14—O5—C18117.12 (10)
C16—C11—C12119.63 (12)
N1—C1—C2—C7169.37 (13)C12—C13—C14—O5179.47 (11)
O1—C1—C2—C711.53 (19)O4—C13—C14—C15179.58 (11)
N1—C1—C2—C310.6 (2)C12—C13—C14—C150.35 (19)
O1—C1—C2—C3168.55 (11)O5—C14—C15—C16179.14 (12)
C7—C2—C3—C40.16 (19)C13—C14—C15—C160.11 (19)
C1—C2—C3—C4179.92 (11)C12—C11—C16—C150.5 (2)
C2—C3—C4—O2178.77 (12)C10—C11—C16—C15179.81 (12)
C2—C3—C4—C51.49 (19)C14—C15—C16—C110.3 (2)
O2—C4—C5—O31.52 (17)O1—C1—N1—N20.27 (14)
C3—C4—C5—O3178.25 (11)C2—C1—N1—N2178.88 (12)
O2—C4—C5—C6178.38 (11)O1—C10—N2—N10.03 (14)
C3—C4—C5—C61.85 (19)C11—C10—N2—N1179.64 (12)
O3—C5—C6—C7179.23 (12)C1—N1—N2—C100.14 (14)
C4—C5—C6—C70.9 (2)N1—C1—O1—C100.28 (14)
C3—C2—C7—C60.83 (19)C2—C1—O1—C10178.95 (11)
C1—C2—C7—C6179.10 (12)N2—C10—O1—C10.18 (14)
C5—C6—C7—C20.4 (2)C11—C10—O1—C1179.52 (11)
N2—C10—C11—C16177.36 (13)C3—C4—O2—C84.66 (19)
O1—C10—C11—C163.00 (19)C5—C4—O2—C8175.09 (12)
N2—C10—C11—C122.9 (2)C6—C5—O3—C99.25 (19)
O1—C10—C11—C12176.74 (11)C4—C5—O3—C9170.85 (12)
C16—C11—C12—C130.21 (19)C12—C13—O4—C173.73 (18)
C10—C11—C12—C13179.96 (11)C14—C13—O4—C17176.20 (11)
C11—C12—C13—O4179.74 (11)C15—C14—O5—C183.64 (19)
C11—C12—C13—C140.19 (19)C13—C14—O5—C18175.43 (11)
O4—C13—C14—O50.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O5i0.962.483.4185 (18)165
C18—H18C···O4ii0.962.523.4682 (18)170
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the X-ray analysis.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFray, M. J., Cooper, K., Parry, M. J., Richardson, K. & Steele, J. (1995). J. Med. Chem. 38, 3514–3523.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. J. (2002). J. Agric. Food Chem. 50, 3757–3760.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds