organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5,7-Di­methyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 January 2016; accepted 27 January 2016; online 3 February 2016)

In the title compound, C17H19NO3S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.080 (2) Å, and the morpholine ring adopts a chair conformation. The bond-angle sum at the N atom is 358°. The coumarin unit makes dihedral angle of 86.34 (9)° with the morpholine ring. A short intra­molecular C—H⋯S contact generates an S(7) ring. In the crystal, inversion dimers linked by pairs of weak C—H⋯O hydrogen bonds generate R22(16) loops. Aromatic ππ inter­actions inter­actions [shortest centroid–centroid distance = 3.8599 (13) Å] also occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, di­thio­carbamic acid esters, a common class of organic mol­ecules, have also attracted attention due to their anti-cancer action (Scozzafava et al., 2000[Scozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887-1891.]) in derivatives such as thalidomide di­thio­carbamates (Zahran et al., 2008[Zahran, M. A. H., Salem, T. A.-R., Samaka, R. M., Agwa, H. S. & Awad, A. R. (2008). Bioorg. Med. Chem. 16, 9708-9718.]) and chromone di­thio­carbamates (Huang et al., 2009[Huang, W., Ding, Y., Miao, Y., Liu, M. Z., Li, Y. & Yang, G. F. (2009). Eur. J. Med. Chem. 44, 3687-3696.]). As part of our studies in this area, we now describe the structure of the title compound (Kant et al., 2012[Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.]).

The asymmetric unit is shown in Fig. 1[link]. The 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.0804 (22) Å for the atom C7 and the morpholine ring adopts a chair conformation. The coumarin unit makes dihedral angle of 86.34 (9)° with morpholine ring. In the crystal, C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) and ππ inter­actions between fused benzene rings of chromene [shortest centroid–centroid distance = 3.8599 (13) Å] are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16C⋯S1 0.96 2.62 3.358 (2) 134
C17—H17A⋯O4i 0.96 2.58 3.505 (2) 162
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
Perspective diagram of the title mol­ecule drawn with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Packing diagram of the mol­ecule viewed parallel to the b axis.

Synthesis and crystallization

This compound was prepared according to the reported method (Kant et al., 2012[Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.]). Colourless needles of the title compound were grown from a mixed solution of EtOH/CHCl3 (v/v = 1/1) by slow evaporation at room temperature. Yield = 81%, m.p. 445 K. IR (KBr): 645 cm−1(C—S), 1231 cm−1 (C=S), 1039 cm−1(C—O), 850 cm−1 (C—N),1118 cm−1(C—O—C), 1711 cm−1(C=O). GCMS: m/e: 349. 1H NMR (400 MHz, CDCl3, δ, p.p.m.) 2.21 (t, 3H, –CH3), 2.61 (t, 3H, –CH3), 3.61 (s, 4H, morpholine-CH2), 3.80 (s, 2H, morpholine-CH2), 4.15(s, 2H, morpholine-CH2), 4.65 (t, 2H, Methyl­ene-CH2), 6.33 (s, 1H, Ar—H), 6.77 (s, 1H, Ar—H), 6.84 (s, 1H, Ar—H). Elemental analysis for C17H19NO3S2: C, 58.37; H, 5.42; N, 3.91.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO3S2
Mr 349.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.9573 (2), 7.9838 (2), 15.6037 (4)
α, β, γ (°) 75.485 (2), 87.122 (1), 75.763 (1)
V3) 813.22 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12588, 2857, 2551
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.08
No. of reflections 2857
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: SMART (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(5,7-Dimethyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate top
Crystal data top
C17H19NO3S2F(000) = 368
Mr = 349.45Dx = 1.427 Mg m3
Triclinic, P1Melting point: 445 K
a = 6.9573 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9838 (2) ÅCell parameters from 2857 reflections
c = 15.6037 (4) Åθ = 1.4–25.0°
α = 75.485 (2)°µ = 0.34 mm1
β = 87.122 (1)°T = 296 K
γ = 75.763 (1)°Plate, colourless
V = 813.22 (4) Å30.24 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2857 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.770, Tmax = 1.000k = 99
12588 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.046P)2 + 0.1658P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.20 e Å3
2857 reflectionsΔρmin = 0.20 e Å3
211 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.041 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69951 (6)0.57313 (5)0.12898 (2)0.03649 (15)
S21.06731 (6)0.70892 (6)0.06881 (3)0.04197 (15)
O50.54406 (19)0.92765 (17)0.19357 (8)0.0492 (3)
O30.65176 (17)0.93171 (14)0.37562 (7)0.0371 (3)
O40.8819 (2)1.05956 (16)0.30663 (9)0.0512 (3)
N60.74909 (19)0.75809 (17)0.03019 (8)0.0328 (3)
C70.8041 (3)0.9362 (2)0.31725 (10)0.0367 (4)
C80.8592 (2)0.7900 (2)0.27620 (10)0.0352 (4)
H80.97360.78050.24250.042*
C90.7553 (2)0.66529 (19)0.28349 (9)0.0307 (3)
C100.5788 (2)0.67346 (19)0.33885 (9)0.0303 (3)
C110.5375 (2)0.80899 (19)0.38456 (9)0.0320 (3)
C120.3827 (3)0.8326 (2)0.44271 (10)0.0379 (4)
H120.36370.92410.47160.045*
C130.2570 (3)0.7202 (2)0.45765 (10)0.0385 (4)
C170.0869 (3)0.7390 (3)0.52080 (12)0.0503 (5)
H17A0.10410.81490.55730.076*
H17B0.08330.62370.55750.076*
H17C0.03530.79040.48790.076*
C140.2918 (3)0.5867 (2)0.41183 (11)0.0393 (4)
H140.20600.51120.42100.047*
C150.4458 (2)0.5596 (2)0.35363 (10)0.0354 (4)
C160.4565 (3)0.4090 (2)0.30953 (13)0.0523 (5)
H16A0.34690.35580.32820.078*
H16B0.57870.32080.32600.078*
H16C0.45070.45490.24640.078*
C180.8329 (2)0.5257 (2)0.23235 (10)0.0347 (4)
H18A0.82190.41040.26840.042*
H18B0.97230.51940.22010.042*
C190.8421 (2)0.69039 (19)0.04831 (10)0.0306 (3)
C200.5643 (2)0.7179 (2)0.05154 (11)0.0390 (4)
H20A0.49050.68890.00230.047*
H20B0.59610.61480.07650.047*
C210.4390 (3)0.8729 (2)0.11608 (11)0.0432 (4)
H21A0.32260.84000.13180.052*
H21B0.39450.97170.08840.052*
C220.7086 (3)0.9846 (2)0.17124 (12)0.0459 (4)
H22A0.66131.08350.14390.055*
H22B0.77751.02670.22490.055*
C230.8509 (3)0.8381 (2)0.10910 (11)0.0403 (4)
H23A0.91380.74680.13940.048*
H23B0.95370.88550.09110.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0415 (3)0.0421 (2)0.0314 (2)0.0195 (2)0.00148 (17)0.00998 (16)
S20.0293 (2)0.0542 (3)0.0440 (3)0.0129 (2)0.00102 (18)0.01193 (19)
O50.0426 (7)0.0605 (8)0.0402 (6)0.0188 (6)0.0063 (5)0.0033 (5)
O30.0413 (7)0.0378 (6)0.0383 (6)0.0148 (5)0.0040 (5)0.0160 (5)
O40.0559 (8)0.0475 (7)0.0639 (8)0.0285 (7)0.0133 (6)0.0251 (6)
N60.0277 (7)0.0347 (7)0.0355 (7)0.0102 (6)0.0002 (5)0.0055 (5)
C70.0368 (9)0.0392 (9)0.0369 (8)0.0124 (8)0.0012 (7)0.0110 (7)
C80.0344 (9)0.0395 (9)0.0342 (8)0.0105 (7)0.0020 (7)0.0123 (6)
C90.0335 (8)0.0290 (7)0.0267 (7)0.0031 (7)0.0051 (6)0.0050 (6)
C100.0327 (8)0.0293 (7)0.0271 (7)0.0064 (7)0.0046 (6)0.0034 (6)
C110.0341 (9)0.0305 (8)0.0315 (8)0.0089 (7)0.0040 (6)0.0060 (6)
C120.0408 (10)0.0385 (9)0.0349 (8)0.0074 (8)0.0010 (7)0.0120 (7)
C130.0348 (9)0.0421 (9)0.0340 (8)0.0062 (8)0.0001 (7)0.0037 (7)
C170.0442 (11)0.0601 (11)0.0456 (10)0.0145 (9)0.0088 (8)0.0109 (8)
C140.0377 (9)0.0397 (9)0.0410 (9)0.0157 (8)0.0009 (7)0.0041 (7)
C150.0395 (9)0.0317 (8)0.0342 (8)0.0092 (7)0.0039 (7)0.0052 (6)
C160.0590 (13)0.0466 (10)0.0644 (12)0.0286 (10)0.0127 (10)0.0243 (9)
C180.0379 (9)0.0315 (8)0.0336 (8)0.0053 (7)0.0017 (7)0.0087 (6)
C190.0305 (8)0.0266 (7)0.0356 (8)0.0046 (6)0.0019 (6)0.0116 (6)
C200.0355 (9)0.0408 (9)0.0418 (9)0.0164 (8)0.0035 (7)0.0042 (7)
C210.0319 (9)0.0474 (10)0.0468 (9)0.0107 (8)0.0033 (7)0.0035 (8)
C220.0417 (10)0.0463 (10)0.0464 (10)0.0170 (8)0.0005 (8)0.0010 (8)
C230.0327 (9)0.0468 (9)0.0384 (9)0.0114 (8)0.0042 (7)0.0039 (7)
Geometric parameters (Å, º) top
S1—C191.7850 (15)C13—C171.505 (2)
S1—C181.8104 (16)C17—H17A0.9600
S2—C191.6634 (16)C17—H17B0.9600
O5—C211.411 (2)C17—H17C0.9600
O5—C221.419 (2)C14—C151.381 (2)
O3—C71.3636 (19)C14—H140.9300
O3—C111.3837 (18)C15—C161.513 (2)
O4—C71.2088 (19)C16—H16A0.9600
N6—C191.337 (2)C16—H16B0.9600
N6—C231.472 (2)C16—H16C0.9600
N6—C201.472 (2)C18—H18A0.9700
C7—C81.432 (2)C18—H18B0.9700
C8—C91.347 (2)C20—C211.497 (2)
C8—H80.9300C20—H20A0.9700
C9—C101.463 (2)C20—H20B0.9700
C9—C181.509 (2)C21—H21A0.9700
C10—C111.406 (2)C21—H21B0.9700
C10—C151.422 (2)C22—C231.499 (2)
C11—C121.381 (2)C22—H22A0.9700
C12—C131.373 (2)C22—H22B0.9700
C12—H120.9300C23—H23A0.9700
C13—C141.394 (2)C23—H23B0.9700
C19—S1—C18104.75 (7)C15—C16—H16A109.5
C21—O5—C22109.33 (13)C15—C16—H16B109.5
C7—O3—C11121.95 (12)H16A—C16—H16B109.5
C19—N6—C23121.25 (13)C15—C16—H16C109.5
C19—N6—C20123.64 (13)H16A—C16—H16C109.5
C23—N6—C20113.10 (13)H16B—C16—H16C109.5
O4—C7—O3117.53 (14)C9—C18—S1112.31 (10)
O4—C7—C8126.46 (16)C9—C18—H18A109.1
O3—C7—C8115.98 (14)S1—C18—H18A109.1
C9—C8—C7123.98 (15)C9—C18—H18B109.1
C9—C8—H8118.0S1—C18—H18B109.1
C7—C8—H8118.0H18A—C18—H18B107.9
C8—C9—C10119.08 (14)N6—C19—S2124.20 (12)
C8—C9—C18116.07 (14)N6—C19—S1112.43 (11)
C10—C9—C18124.85 (13)S2—C19—S1123.36 (9)
C11—C10—C15115.86 (14)N6—C20—C21111.12 (13)
C11—C10—C9115.87 (13)N6—C20—H20A109.4
C15—C10—C9128.26 (14)C21—C20—H20A109.4
C12—C11—O3113.45 (13)N6—C20—H20B109.4
C12—C11—C10124.13 (14)C21—C20—H20B109.4
O3—C11—C10122.42 (14)H20A—C20—H20B108.0
C13—C12—C11119.55 (15)O5—C21—C20111.68 (14)
C13—C12—H12120.2O5—C21—H21A109.3
C11—C12—H12120.2C20—C21—H21A109.3
C12—C13—C14117.62 (15)O5—C21—H21B109.3
C12—C13—C17121.79 (16)C20—C21—H21B109.3
C14—C13—C17120.59 (16)H21A—C21—H21B107.9
C13—C17—H17A109.5O5—C22—C23112.16 (14)
C13—C17—H17B109.5O5—C22—H22A109.2
H17A—C17—H17B109.5C23—C22—H22A109.2
C13—C17—H17C109.5O5—C22—H22B109.2
H17A—C17—H17C109.5C23—C22—H22B109.2
H17B—C17—H17C109.5H22A—C22—H22B107.9
C15—C14—C13124.03 (15)N6—C23—C22111.21 (14)
C15—C14—H14118.0N6—C23—H23A109.4
C13—C14—H14118.0C22—C23—H23A109.4
C14—C15—C10118.78 (15)N6—C23—H23B109.4
C14—C15—C16115.96 (15)C22—C23—H23B109.4
C10—C15—C16125.25 (15)H23A—C23—H23B108.0
C11—O3—C7—O4172.02 (14)C13—C14—C15—C16179.20 (16)
C11—O3—C7—C89.6 (2)C11—C10—C15—C141.4 (2)
O4—C7—C8—C9173.11 (16)C9—C10—C15—C14177.29 (14)
O3—C7—C8—C98.7 (2)C11—C10—C15—C16177.88 (15)
C7—C8—C9—C102.2 (2)C9—C10—C15—C163.5 (3)
C7—C8—C9—C18177.64 (14)C8—C9—C18—S199.37 (15)
C8—C9—C10—C113.3 (2)C10—C9—C18—S180.51 (16)
C18—C9—C10—C11176.86 (13)C19—S1—C18—C994.28 (12)
C8—C9—C10—C15178.07 (14)C23—N6—C19—S27.4 (2)
C18—C9—C10—C151.8 (2)C20—N6—C19—S2170.20 (12)
C7—O3—C11—C12176.06 (13)C23—N6—C19—S1171.43 (11)
C7—O3—C11—C104.5 (2)C20—N6—C19—S18.65 (19)
C15—C10—C11—C121.7 (2)C18—S1—C19—N6171.04 (11)
C9—C10—C11—C12177.11 (14)C18—S1—C19—S210.10 (12)
C15—C10—C11—O3178.87 (13)C19—N6—C20—C21148.50 (15)
C9—C10—C11—O32.3 (2)C23—N6—C20—C2147.48 (19)
O3—C11—C12—C13179.83 (14)C22—O5—C21—C2061.97 (19)
C10—C11—C12—C130.7 (2)N6—C20—C21—O555.36 (19)
C11—C12—C13—C140.6 (2)C21—O5—C22—C2361.16 (19)
C11—C12—C13—C17179.55 (15)C19—N6—C23—C22148.99 (15)
C12—C13—C14—C150.9 (3)C20—N6—C23—C2246.56 (19)
C17—C13—C14—C15179.25 (15)O5—C22—C23—N653.5 (2)
C13—C14—C15—C100.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···S10.962.623.358 (2)134
C17—H17A···O4i0.962.583.505 (2)162
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W., Ding, Y., Miao, Y., Liu, M. Z., Li, Y. & Yang, G. F. (2009). Eur. J. Med. Chem. 44, 3687–3696.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104–o1105.  CSD CrossRef IUCr Journals Google Scholar
First citationScozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887–1891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZahran, M. A. H., Salem, T. A.-R., Samaka, R. M., Agwa, H. S. & Awad, A. R. (2008). Bioorg. Med. Chem. 16, 9708–9718.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds