organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-(5-Bromo-2-hy­dr­oxy­phen­yl)-10-(2-hy­dr­oxy­eth­yl)-3,4,6,7-tetra­hydro­acridine-1,8(2H,5H,9H,10H)-dione

aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 16 November 2015; accepted 30 November 2015; online 16 January 2016)

In the title compound, C21H22BrNO4, the tetra­hydro­acridine-1,8-dione unit has a bromo­hydroxy­phenyl-substituent on the central carbon atom of the di­hydro­pyridine ring and a 2-hy­droxy­ethyl substituent on the nitro­gen atom. An intra­molecular O—H⋯O hydrogen bond forms between the hydroxyl substituent on the benzene ring and a carbonyl oxygen from the acridinedione, forming an S(8) ring. The hydroxyl group of the 2-hy­droxy­ethyl residue is disordered over two sites with an occupancy ratio of 0.572 (6):0.428 (6). In the crystal structure O—H⋯O and C—H⋯O hydrogen bonds together with Br⋯O halogen bonds stack the mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acridine/acridone analogs are known anti­cancer drugs and cytotoxic agents. They represent an inter­esting class of compounds, displaying various forms of bioactivity (Antonini, 2002[Antonini, I. (2002). Curr. Med. Chem. 9, 1701-1716.]; Sebestík et al., 2007[Sebestík, J., Hlavácek, J. & Stibor, I. (2007). Curr. Protein Pept. Sci. 8, 471-483.]). The title compound, C21H22BrNO4, Fig. 1[link], comprises a central tetra­hydro­acridine-1,8-dione core with a bromo­hydroxy­phenyl-substituent on the central C9 carbon atom of the di­hydro­pyridine ring and a 2-hy­droxy­ethyl substituent at N10. Both substituents point away from the same face of the acridine unit. The two cyclo­hexen-2-one rings of the acridinedione ring system each adopt envelope conformations with C3 and C6 respectively at the flaps while the di­hydro­pyridine ring is a flattened boat. An intra­molecular O2′—H2′⋯O8 hydrogen bond forms between the hydroxyl substituent on the benzene ring and a carbonyl oxygen from the acridinedione, forming an S(8) ring. The hydroxyl group of the 2-hy­droxy­ethyl residue is disordered over two sites with an occupancy ratio of 0.572 (6):0.428 (6). In the crystal structure, O16A-–H16C⋯O8 hydrogen bonds together with Br⋯O halogen bonds (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]) [Br5′⋯O2′ = 3.1657 (19) Å] form chains of mol­ecules along a. Additional C—H⋯O hydrogen bonds, Table 1[link], further stabilize the structure, linking these chains and forming stacks along the b-axis direction, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2′—H2′⋯O8 0.76 (4) 1.89 (5) 2.639 (3) 167 (5)
O16A—H16C⋯O8i 0.84 2.29 3.119 (5) 170
C5—H5A⋯O2′ii 0.99 2.55 3.514 (3) 165
C15—H15A⋯O1iii 0.99 2.56 3.206 (4) 123
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The O—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]). Only one conformation shown for O16.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound with hydrogen bonds (see Table 1[link]) and Br⋯O halogen bonds shown as dashed lines.

The Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals only six discrete structures of acridinediones with phenyl substituents at the 9-position (see for example, Feng et al., 2005[Feng, Y.-J., Jia, R.-H., Tu, S.-J., Zhang, X.-J., Jiang, B., Zhang, Y. & Zhang, J.-Y. (2005). Chin. J. Struct. Chem. 24, 1457-1461.]; Hua et al., 2005[Hua, G.-P., Zhang, X.-J., Tu, S.-J., Zhu, S.-L., Li, T.-J., Zhu, X.-T. & Zhang, J.-P. (2005). Chin. J. Struct. Chem. 23, 399-402.]; Tu et al., 2005[Tu, S.-J., Zhang, Y. & Zhang, X.-J. (2005). Acta Cryst. E61, o1885-o1887.]; Sivaraman et al., 1996[Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E., Seetharaman, J. & Shanmugasundaram, P. S. (1996). J. Mol. Struct. 385, 129-135.]). Of these only 9-(3-bromo-5-chloro-2-hy­droxyphen­yl)-10-(2-hy­droxy­eth­yl)-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (Mohamed et al., 2013[Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85-o86.]) has a 2-hy­droxy­ethyl substituent on the nitro­gen atom.

Synthesis and crystallization

A mixture of 1 mmol (201 mg) of 5-bromo-2-hy­droxy­benzaldehyde, 1 mmol (112 mg) of cyclo­hexane-1,3-dione and 1 mmol (61 mg) of 2-amino­ethanol in 20 mL ethanol was refluxed for 4 h. The excess solvent was evaporated under vacuum and the residual solid product was collected, washed with cold ethanol and dried under vacuum. The crude product was crystallized from ethanol to afford good quality crystals suitable for x-ray diffraction. M.p. 523 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl oxygen atom of the 2-hy­droxy­ethyl substituent was disordered over two sites and refined as O16A and O16B with occupancies that sum to unity. Their hydrogen atoms were placed in calculated positions with d(O—H) = 0.84 Å and Uiso = 1.5Ueq(O). This disorder model converged with an occupancy ratio 0.572 (6):0.428 (6). One reflection with Fo >>> Fc was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C21H22BrNO4
Mr 432.30
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 16.0067 (4), 8.9455 (1), 16.1617 (4)
β (°) 128.853 (4)
V3) 1802.17 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.35
Crystal size (mm) 0.36 × 0.26 × 0.23
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.719, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7428, 2804, 2800
Rint 0.018
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.06
No. of reflections 2804
No. of parameters 259
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.33
Absolute structure Flack x determined using 907 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.001 (10)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Synthesis and crystallization top

A mixture of 1 mmol (201 mg) of 5-bromo-2-hy­droxy­benzaldehyde, 1 mmol (112 mg) of cyclo­hexane-1,3-dione and 1 mmol (61 mg) of 2-amino­ethanol in 20 ml e thanol was refluxed for 4 h. The excess solvent was evaporated under vacuum and the residual solid product was collected, washed with cold ethanol and dried under vacuum. The crude product was crystallized from ethanol to afford good quality crystals suitable for X-ray diffraction. M.p. 523 K.

Refinement top

The hydroxyl oxygen atom of the 2-hy­droxy­ethyl substituent was disordered over two sites and refined as O16A and O16B with occupancies that sum to unity. Their hydrogen atoms were placed in calculated positions with d(O—H) = 0.84 Å and Uiso = 1.5Ueq (O). This disorder model converged with an occupancy ratio 0.572 (6):0.428 (6). One reflection with Fo >>> Fc was omitted from the final refinement cycles.

Comment top

Acridine/acridone analogs are known anticancer drugs and cytotoxic agents. They represent an interesting class of compounds, displaying various forms of bioactivity (Antonini, 2002; Sebestik et al., 2007). The title compound, C21H22BrNO4, Fig. 1, comprises a central tetrahydroacridine-1,8-dione core with a bromohydroxyphenyl-substituent on the central C9 carbon atom of the dihydropyridine ring and a 2-hydroxyethyl substituent at N10. Both substituents point away from the same face of the acridine unit. The two cyclohexen-2-one rings of the acridinedione ring system each adopt envelope conformations with C3 and C6 respectively at the flaps while the dihydropyridine ring is a flattened boat. An intramolecular O2'–H2'···O8 hydrogen bond forms between the hydroxyl substituent on the benzene ring and a carbonyl oxygen from the acridinedione forming an S(8) ring. The hydroxyl group of the 2-hydroxyethyl residue is disordered over two sites with an occupancy ratio of 0.572 (6):0.428 (6). In the crystal structure, O16A–H16C···O8 hydrogen bonds together with Br···O halogen bonds (Desiraju et al., 2013) [Br5'···O2' = 3.1657 (19) Å] form chains of molecules along a. Additional C–H···O hydrogen bonds, Table 2, further stabilize the structure, linking these chains and forming stacks along the b axis direction, Fig. 2.

The Cambridge Structural Database (Groom & Allen, 2014) reveals only six discrete structures of acridinediones with phenyl substituents at the 9-position, see for example (Feng et al., 2005; Hua et al., 2005; Tu et al., (2005); Sivaraman et al., 1996).). Of these only 9-(3-bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,4,6,7,9,10- hexahydroacridine-1,8(2H,5H)-dione (Mohamed et al., 2013) has a 2-hydroxyethyl substituent on the nitrogen atom.

Experimental top

A mixture of 1 mmol (201 mg) of 5-bromo-2-hydroxybenzaldehyde, 1 mmol (112 mg) of cyclohexane-1,3-dione and 1 mmol (61 mg) of 2-aminoethanol in 20 ml e thanol was refluxed for 4 h. The excess solvent was evaporated under vacuum and the residual solid product was collected, washed with cold ethanol and dried under vacuum. The crude product was crystallized from ethanol to afford good quality crystals suitable for X-ray diffraction. M.p. 523 K.

Refinement top

The hydroxyl oxygen atom of the 2-hydroxyethyl substituent was disordered over two sites and refined as O16A and O16B with occupancies that sum to unity. Their hydrogen atoms were placed in calculated positions with d(O—H) = 0.84 Å and Uiso = 1.5Ueq(O). This disorder model converged with an occupancy ratio 0.572 (6):0.428 (6). One reflection with Fo >>> Fc was omitted from the final refinement cycles.

Structure description top

Acridine/acridone analogs are known anticancer drugs and cytotoxic agents. They represent an interesting class of compounds, displaying various forms of bioactivity (Antonini, 2002; Sebestík et al., 2007). The title compound, C21H22BrNO4, Fig. 1, comprises a central tetrahydroacridine-1,8-dione core with a bromohydroxyphenyl-substituent on the central C9 carbon atom of the dihydropyridine ring and a 2-hydroxyethyl substituent at N10. Both substituents point away from the same face of the acridine unit. The two cyclohexen-2-one rings of the acridinedione ring system each adopt envelope conformations with C3 and C6 respectively at the flaps while the dihydropyridine ring is a flattened boat. An intramolecular O2'—H2'···O8 hydrogen bond forms between the hydroxyl substituent on the benzene ring and a carbonyl oxygen from the acridinedione, forming an S(8) ring. The hydroxyl group of the 2-hydroxyethyl residue is disordered over two sites with an occupancy ratio of 0.572 (6):0.428 (6). In the crystal structure, O16A-–H16C···O8 hydrogen bonds together with Br···O halogen bonds (Desiraju et al., 2013) [Br5'···O2' = 3.1657 (19) Å] form chains of molecules along a. Additional C—H···O hydrogen bonds, Table 1, further stabilize the structure, linking these chains and forming stacks along the b-axis direction, Fig. 2.

The Cambridge Structural Database (Groom & Allen, 2014) reveals only six discrete structures of acridinediones with phenyl substituents at the 9-position (see for example, Feng et al., 2005; Hua et al., 2005; Tu et al., 2005; Sivaraman et al., 1996). Of these only 9-(3-bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,4,6,7,9,10- hexahydroacridine-1,8(2H,5H)-dione (Mohamed et al., 2013) has a 2-hydroxyethyl substituent on the nitrogen atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The O—H···O hydrogen bond is shown as a dashed line (see Table 1). Only one conformation shown for O16.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound with hydrogen bonds (see Table 1) and Br···O halogen bonds shown as dashed lines.
9-(5-Bromo-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione top
Crystal data top
C21H22BrNO4F(000) = 888
Mr = 432.30Dx = 1.593 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 16.0067 (4) ÅCell parameters from 7090 reflections
b = 8.9455 (1) Åθ = 3.6–76.5°
c = 16.1617 (4) ŵ = 3.35 mm1
β = 128.853 (4)°T = 100 K
V = 1802.17 (10) Å3Irregular block, yellow
Z = 40.36 × 0.26 × 0.23 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2804 independent reflections
Mirror monochromator2800 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.018
ω scansθmax = 76.7°, θmin = 5.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1919
Tmin = 0.719, Tmax = 1.000k = 1011
7428 measured reflectionsl = 2019
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.182P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.39 e Å3
2804 reflectionsΔρmin = 0.33 e Å3
259 parametersAbsolute structure: Flack x determined using 907 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.001 (10)
Crystal data top
C21H22BrNO4V = 1802.17 (10) Å3
Mr = 432.30Z = 4
Monoclinic, CcCu Kα radiation
a = 16.0067 (4) ŵ = 3.35 mm1
b = 8.9455 (1) ÅT = 100 K
c = 16.1617 (4) Å0.36 × 0.26 × 0.23 mm
β = 128.853 (4)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2804 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2800 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 1.000Rint = 0.018
7428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047Δρmax = 0.39 e Å3
S = 1.06Δρmin = 0.33 e Å3
2804 reflectionsAbsolute structure: Flack x determined using 907 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
259 parametersAbsolute structure parameter: 0.001 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7420 (2)0.0715 (2)0.6087 (2)0.0378 (6)
C10.7063 (2)0.1074 (3)0.6546 (3)0.0231 (6)
C20.7476 (2)0.0391 (3)0.7592 (3)0.0289 (6)
H2A0.80670.10140.81800.035*
H2B0.77670.06160.76550.035*
C30.6597 (2)0.0267 (3)0.7692 (2)0.0248 (6)
H3A0.69090.01060.84100.030*
H3B0.60550.04670.71670.030*
C40.6053 (2)0.1766 (3)0.7510 (2)0.0239 (6)
H4A0.53880.16000.74190.029*
H4B0.65350.24040.81440.029*
C50.4704 (2)0.6415 (3)0.5530 (2)0.0193 (5)
H5A0.48300.66100.62040.023*
H5B0.39220.64670.49420.023*
C60.5275 (2)0.7609 (3)0.5368 (2)0.0222 (6)
H6A0.49260.85890.52470.027*
H6B0.60310.76890.60200.027*
C70.5246 (2)0.7251 (3)0.4435 (2)0.0224 (6)
H7A0.44990.73320.37670.027*
H7B0.56870.79890.44050.027*
C80.5665 (2)0.5695 (3)0.4525 (2)0.0205 (6)
O80.6077 (2)0.5422 (3)0.4105 (2)0.0315 (5)
C90.5888 (2)0.2967 (3)0.5088 (2)0.0161 (5)
H90.65300.30340.51170.019*
N100.50788 (18)0.3786 (2)0.61618 (17)0.0159 (4)
C110.6232 (2)0.2210 (3)0.6090 (2)0.0167 (5)
C120.5778 (2)0.2568 (3)0.6548 (2)0.0163 (5)
C130.5111 (2)0.4871 (3)0.5565 (2)0.0156 (5)
C140.5538 (2)0.4555 (3)0.5078 (2)0.0165 (5)
C150.4331 (2)0.3910 (3)0.6399 (2)0.0211 (6)
H15A0.41020.49640.63200.025*
H15B0.47010.36060.71440.025*
C160.3354 (3)0.2935 (4)0.5665 (4)0.0439 (10)
H16A0.29340.29700.59230.053*
H16B0.29110.34210.49580.053*
O16A0.3443 (3)0.1546 (4)0.5516 (3)0.0277 (11)0.572 (6)
H16C0.28320.11540.51180.042*0.572 (6)
O16B0.2844 (4)0.2789 (5)0.6132 (5)0.0271 (14)0.428 (6)
H16D0.33100.26550.67890.041*0.428 (6)
C1'0.5024 (2)0.2082 (3)0.4092 (2)0.0154 (5)
C2'0.4972 (2)0.2052 (3)0.3189 (2)0.0185 (5)
O2'0.56623 (18)0.2837 (2)0.31285 (18)0.0242 (4)
H2'0.586 (4)0.352 (5)0.349 (3)0.036*
C3'0.4210 (2)0.1174 (4)0.2317 (2)0.0208 (5)
H3'0.41910.11560.17180.025*
C4'0.3475 (2)0.0325 (3)0.2304 (2)0.0201 (5)
H4'0.29610.02810.17090.024*
C5'0.3516 (2)0.0389 (3)0.3183 (2)0.0161 (5)
Br5'0.25219 (2)0.07675 (2)0.31963 (2)0.01879 (8)
C6'0.4270 (2)0.1244 (3)0.4064 (2)0.0150 (5)
H6'0.42750.12620.46550.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (15)0.0213 (11)0.0662 (18)0.0117 (9)0.0440 (15)0.0075 (10)
C10.0216 (14)0.0108 (11)0.0358 (17)0.0004 (10)0.0174 (13)0.0004 (12)
C20.0208 (15)0.0168 (13)0.0359 (17)0.0035 (11)0.0113 (14)0.0060 (13)
C30.0265 (15)0.0160 (13)0.0216 (14)0.0004 (11)0.0100 (13)0.0017 (11)
C40.0286 (15)0.0186 (14)0.0194 (13)0.0023 (11)0.0126 (12)0.0023 (11)
C50.0236 (14)0.0140 (13)0.0200 (13)0.0052 (10)0.0135 (12)0.0004 (10)
C60.0265 (15)0.0129 (12)0.0233 (14)0.0015 (11)0.0137 (12)0.0001 (11)
C70.0308 (15)0.0124 (12)0.0256 (14)0.0002 (11)0.0184 (13)0.0017 (11)
C80.0233 (15)0.0133 (13)0.0255 (15)0.0042 (10)0.0156 (13)0.0032 (10)
O80.0535 (16)0.0149 (9)0.0491 (15)0.0047 (11)0.0433 (14)0.0027 (11)
C90.0184 (13)0.0109 (11)0.0225 (13)0.0006 (9)0.0146 (12)0.0004 (10)
N100.0186 (11)0.0134 (10)0.0163 (11)0.0011 (8)0.0112 (10)0.0008 (9)
C110.0162 (12)0.0111 (11)0.0193 (13)0.0026 (9)0.0094 (11)0.0032 (10)
C120.0157 (12)0.0112 (11)0.0154 (12)0.0016 (9)0.0066 (10)0.0017 (10)
C130.0148 (11)0.0117 (12)0.0142 (12)0.0003 (10)0.0061 (10)0.0021 (10)
C140.0173 (12)0.0109 (11)0.0187 (13)0.0020 (9)0.0101 (11)0.0022 (10)
C150.0279 (15)0.0173 (12)0.0235 (14)0.0038 (11)0.0187 (13)0.0014 (11)
C160.054 (2)0.045 (2)0.064 (3)0.0270 (18)0.052 (2)0.0283 (19)
O16A0.029 (2)0.027 (2)0.030 (2)0.0033 (16)0.0202 (19)0.0022 (16)
O16B0.035 (3)0.017 (2)0.053 (3)0.002 (2)0.039 (3)0.004 (2)
C1'0.0189 (12)0.0091 (11)0.0198 (13)0.0006 (9)0.0129 (11)0.0008 (9)
C2'0.0241 (13)0.0130 (12)0.0276 (13)0.0008 (10)0.0207 (12)0.0001 (11)
O2'0.0338 (12)0.0201 (10)0.0328 (11)0.0096 (8)0.0278 (10)0.0076 (9)
C3'0.0297 (16)0.0198 (13)0.0222 (14)0.0004 (13)0.0207 (13)0.0017 (12)
C4'0.0216 (14)0.0168 (12)0.0222 (14)0.0016 (11)0.0138 (12)0.0052 (11)
C5'0.0156 (12)0.0130 (11)0.0214 (13)0.0004 (9)0.0125 (11)0.0005 (10)
Br5'0.01627 (12)0.01734 (12)0.02339 (13)0.00335 (12)0.01274 (10)0.00167 (12)
C6'0.0197 (12)0.0105 (11)0.0181 (12)0.0017 (10)0.0135 (11)0.0003 (10)
Geometric parameters (Å, º) top
O1—C11.230 (4)N10—C131.391 (3)
C1—C111.454 (4)N10—C121.398 (3)
C1—C21.506 (4)N10—C151.473 (3)
C2—C31.518 (4)C11—C121.361 (4)
C2—H2A0.9900C13—C141.358 (4)
C2—H2B0.9900C15—C161.511 (5)
C3—C41.524 (4)C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900C16—O16A1.290 (5)
C4—C121.506 (4)C16—O16B1.425 (5)
C4—H4A0.9900C16—H16A0.9900
C4—H4B0.9900C16—H16B0.9900
C5—C131.513 (3)O16A—H16C0.8400
C5—C61.532 (4)O16B—H16D0.8400
C5—H5A0.9900C1'—C6'1.398 (3)
C5—H5B0.9900C1'—C2'1.408 (4)
C6—C71.513 (4)C2'—O2'1.363 (3)
C6—H6A0.9900C2'—C3'1.391 (4)
C6—H6B0.9900O2'—H2'0.76 (4)
C7—C81.512 (4)C3'—C4'1.389 (4)
C7—H7A0.9900C3'—H3'0.9500
C7—H7B0.9900C4'—C5'1.382 (4)
C8—O81.232 (4)C4'—H4'0.9500
C8—C141.452 (4)C5'—C6'1.384 (4)
C9—C111.506 (4)C5'—Br5'1.909 (2)
C9—C141.524 (3)Br5'—O2'i3.1657 (19)
C9—C1'1.529 (4)C6'—H6'0.9500
C9—H91.0000
O1—C1—C11120.1 (3)C13—N10—C15121.1 (2)
O1—C1—C2121.9 (3)C12—N10—C15119.8 (2)
C11—C1—C2118.0 (3)C12—C11—C1121.4 (2)
C1—C2—C3111.5 (2)C12—C11—C9121.3 (2)
C1—C2—H2A109.3C1—C11—C9117.4 (2)
C3—C2—H2A109.3C11—C12—N10119.5 (2)
C1—C2—H2B109.3C11—C12—C4122.6 (2)
C3—C2—H2B109.3N10—C12—C4117.8 (2)
H2A—C2—H2B108.0C14—C13—N10120.5 (2)
C2—C3—C4111.7 (2)C14—C13—C5122.0 (2)
C2—C3—H3A109.3N10—C13—C5117.5 (2)
C4—C3—H3A109.3C13—C14—C8121.8 (2)
C2—C3—H3B109.3C13—C14—C9120.3 (2)
C4—C3—H3B109.3C8—C14—C9117.9 (2)
H3A—C3—H3B107.9N10—C15—C16111.2 (2)
C12—C4—C3112.4 (2)N10—C15—H15A109.4
C12—C4—H4A109.1C16—C15—H15A109.4
C3—C4—H4A109.1N10—C15—H15B109.4
C12—C4—H4B109.1C16—C15—H15B109.4
C3—C4—H4B109.1H15A—C15—H15B108.0
H4A—C4—H4B107.9O16A—C16—C15121.4 (4)
C13—C5—C6110.8 (2)O16B—C16—C15106.9 (3)
C13—C5—H5A109.5O16A—C16—H16A107.0
C6—C5—H5A109.5C15—C16—H16A107.0
C13—C5—H5B109.5O16A—C16—H16B107.0
C6—C5—H5B109.5C15—C16—H16B107.0
H5A—C5—H5B108.1H16A—C16—H16B106.7
C7—C6—C5112.0 (2)C16—O16A—H16C109.5
C7—C6—H6A109.2C16—O16B—H16D109.5
C5—C6—H6A109.2C6'—C1'—C2'117.9 (2)
C7—C6—H6B109.2C6'—C1'—C9120.3 (2)
C5—C6—H6B109.2C2'—C1'—C9121.8 (2)
H6A—C6—H6B107.9O2'—C2'—C3'116.9 (2)
C8—C7—C6111.4 (2)O2'—C2'—C1'122.7 (2)
C8—C7—H7A109.4C3'—C2'—C1'120.3 (2)
C6—C7—H7A109.4C2'—O2'—H2'110 (3)
C8—C7—H7B109.4C4'—C3'—C2'121.3 (3)
C6—C7—H7B109.4C4'—C3'—H3'119.3
H7A—C7—H7B108.0C2'—C3'—H3'119.3
O8—C8—C14122.0 (2)C5'—C4'—C3'117.9 (3)
O8—C8—C7119.2 (3)C5'—C4'—H4'121.0
C14—C8—C7118.8 (2)C3'—C4'—H4'121.0
C11—C9—C14108.3 (2)C4'—C5'—C6'121.9 (2)
C11—C9—C1'112.3 (2)C4'—C5'—Br5'119.2 (2)
C14—C9—C1'112.8 (2)C6'—C5'—Br5'118.86 (19)
C11—C9—H9107.8C5'—Br5'—O2'i170.21 (9)
C14—C9—H9107.8C5'—C6'—C1'120.5 (2)
C1'—C9—H9107.8C5'—C6'—H6'119.7
C13—N10—C12119.1 (2)C1'—C6'—H6'119.7
O1—C1—C2—C3147.2 (3)C5—C13—C14—C82.2 (4)
C11—C1—C2—C333.9 (4)N10—C13—C14—C96.0 (4)
C1—C2—C3—C454.2 (3)C5—C13—C14—C9177.0 (2)
C2—C3—C4—C1246.0 (3)O8—C8—C14—C13178.2 (3)
C13—C5—C6—C751.0 (3)C7—C8—C14—C133.8 (4)
C5—C6—C7—C853.0 (3)O8—C8—C14—C92.6 (4)
C6—C7—C8—O8152.5 (3)C7—C8—C14—C9175.4 (2)
C6—C7—C8—C1429.4 (4)C11—C9—C14—C1329.8 (3)
O1—C1—C11—C12176.1 (3)C1'—C9—C14—C1395.1 (3)
C2—C1—C11—C125.0 (4)C11—C9—C14—C8151.0 (2)
O1—C1—C11—C93.5 (4)C1'—C9—C14—C884.2 (3)
C2—C1—C11—C9175.4 (2)C13—N10—C15—C16100.2 (3)
C14—C9—C11—C1231.0 (3)C12—N10—C15—C1680.4 (3)
C1'—C9—C11—C1294.3 (3)N10—C15—C16—O16A50.0 (5)
C14—C9—C11—C1149.4 (2)N10—C15—C16—O16B163.7 (3)
C1'—C9—C11—C185.4 (3)C11—C9—C1'—C6'32.8 (3)
C1—C11—C12—N10172.3 (2)C14—C9—C1'—C6'89.9 (3)
C9—C11—C12—N108.1 (4)C11—C9—C1'—C2'145.8 (2)
C1—C11—C12—C43.6 (4)C14—C9—C1'—C2'91.5 (3)
C9—C11—C12—C4176.0 (2)C6'—C1'—C2'—O2'179.4 (2)
C13—N10—C12—C1119.9 (4)C9—C1'—C2'—O2'2.0 (4)
C15—N10—C12—C11160.7 (2)C6'—C1'—C2'—C3'1.9 (4)
C13—N10—C12—C4156.2 (2)C9—C1'—C2'—C3'176.7 (2)
C15—N10—C12—C423.2 (3)O2'—C2'—C3'—C4'179.6 (3)
C3—C4—C12—C1117.5 (4)C1'—C2'—C3'—C4'0.8 (4)
C3—C4—C12—N10166.5 (2)C2'—C3'—C4'—C5'0.7 (4)
C12—N10—C13—C1420.9 (4)C3'—C4'—C5'—C6'1.1 (4)
C15—N10—C13—C14159.7 (3)C3'—C4'—C5'—Br5'179.8 (2)
C12—N10—C13—C5156.2 (2)C4'—C5'—C6'—C1'0.0 (4)
C15—N10—C13—C523.2 (4)Br5'—C5'—C6'—C1'178.73 (19)
C6—C5—C13—C1425.8 (3)C2'—C1'—C6'—C5'1.5 (4)
C6—C5—C13—N10151.2 (2)C9—C1'—C6'—C5'177.1 (2)
N10—C13—C14—C8174.8 (3)
Symmetry code: (i) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O80.76 (4)1.89 (5)2.639 (3)167 (5)
O16A—H16C···O8i0.842.293.119 (5)170
C5—H5A···O2ii0.992.553.514 (3)165
C15—H15A···O1iii0.992.563.206 (4)123
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2'—H2'···O80.76 (4)1.89 (5)2.639 (3)167 (5)
O16A—H16C···O8i0.842.293.119 (5)170
C5—H5A···O2'ii0.992.553.514 (3)165.0
C15—H15A···O1iii0.992.563.206 (4)122.5
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H22BrNO4
Mr432.30
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)16.0067 (4), 8.9455 (1), 16.1617 (4)
β (°) 128.853 (4)
V3)1802.17 (10)
Z4
Radiation typeCu Kα
µ (mm1)3.35
Crystal size (mm)0.36 × 0.26 × 0.23
Data collection
DiffractometerAgilent SuperNova Dual Source
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.719, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7428, 2804, 2800
Rint0.018
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.06
No. of reflections2804
No. of parameters259
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.33
Absolute structureFlack x determined using 907 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.001 (10)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer and the Chemistry Department, University of Otago for support of the work of JS. SKM thanks Dr Alaa F. Mohamed, National Organization for Drug Control and Research (NODCAR), Egypt, for providing the necessary chemicals.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAntonini, I. (2002). Curr. Med. Chem. 9, 1701–1716.  Web of Science PubMed CAS Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, Y.-J., Jia, R.-H., Tu, S.-J., Zhang, X.-J., Jiang, B., Zhang, Y. & Zhang, J.-Y. (2005). Chin. J. Struct. Chem. 24, 1457–1461.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHua, G.-P., Zhang, X.-J., Tu, S.-J., Zhu, S.-L., Li, T.-J., Zhu, X.-T. & Zhang, J.-P. (2005). Chin. J. Struct. Chem. 23, 399–402.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85–o86.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSebestík, J., Hlavácek, J. & Stibor, I. (2007). Curr. Protein Pept. Sci. 8, 471–483.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E., Seetharaman, J. & Shanmugasundaram, P. S. (1996). J. Mol. Struct. 385, 129–135.  CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Zhang, Y. & Zhang, X.-J. (2005). Acta Cryst. E61, o1885–o1887.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds