organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­methyl­ammonium 2-amino-5-nitro­terephthalate hemihydrate

aMax-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: stock@ac.uni-kiel.de

Edited by J. Simpson, University of Otago, New Zealand (Received 18 December 2015; accepted 8 January 2016; online 16 January 2016)

The asymmetric unit of the title compound, C2H8N+·C8H5N2O6·0.5H2O, comprises a monodeprotonated 2-amino-5-nitro­terephthalate anion and a di­methyl­ammonium counter-ion on general positions and a water mol­ecule that lies on a twofold rotation axis. Extensive hydrogen bonding is observed between the carboxyl­ate group and the di­methyl­ammonium ion, the water mol­ecule and the carb­oxy­lic acid group, as well as between the amino group, the water mol­ecule and the carb­oxy­lic acid group (N—H⋯O and O—H⋯O hydrogen bonds are involved).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound comprises a mono-deprotonated benzene 1,4-di­carb­oxy­lic acid with an NH2 and an NO2 group at the 2- and 5-positions, respectively (Fig. 1[link]). Charge balance is accomplished with a di­methyl­ammonium counter-cation. Extensive N—H⋯O and O—H⋯O hydrogen bonding between the cation, the anion and the water mol­ecule leads to a three-dimensional structure (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3B⋯O1 0.89 1.87 2.761 (4) 175
N1—H3A⋯O1i 0.89 2.01 2.880 (4) 164
N3—H6B⋯O4 0.86 2.11 2.736 (4) 130
N3—H6B⋯O4ii 0.86 2.32 3.035 (4) 141
N3—H6A⋯O7iii 0.86 2.10 2.959 (3) 173
O3—H9⋯O2iv 0.82 1.80 2.614 (3) 169
O7—H7⋯O2v 0.89 (4) 1.85 (4) 2.743 (3) 176 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y-1, z; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The components of the title compound (the atom O7 lies on a twofold axis) showing the atom labelling with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the crystallographic b axis. Hydrogen bonds are shown as dashed lines.

Functionalized terephthalate ions are of special inter­est for the synthesis of porous coordination polymers in order to tune host–guest inter­actions within functionalized pore surfaces (Biswas et al., 2011[Biswas, S., Ahnfeldt, T. & Stock, N. (2011). Inorg. Chem. 50, 9518-9526.]). A compound with the same cation but the non-functionalized terephthalate ion, which does not contain an additional water mol­ecule, has been reported (Zhao et al., 2007[Zhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.]). Extensive hydrogen bonding is also observed in this structure. Thus, the terephthalate ions are linked to each other by O—H⋯O hydrogen bonds, forming a one-dimensional polymeric chain. In addition, the terephthalate anions and di­methyl­ammonium cations are connected into a three-dimensional structure by N—H⋯O hydrogen-bonds (Zhao et al., 2007[Zhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.]).

Synthesis and crystallization

Di­methyl­ammonium 2-amino-5-nitro­terephtalate hemi hydrate was obtained from 10 mg 2-amino-5-nitro-terephthalic acid (0.18 mmol), 0.256 ml DMF and 0.244 ml H2O. A 2 ml teflon-lined steel autoclave was used for the synthesis. The reactor was heated to 150°C for 24 h then cooled down to room temperature over 12 h, to give crystals suitable for X-ray data collection.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C2H8N+·2C8H5N2O6·H2O
Mr 560.48
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 21.494 (4), 6.4300 (13), 19.193 (4)
β (°) 99.98 (3)
V3) 2612.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.21 × 0.12 × 0.05
 
Data collection
Diffractometer Stoe IPDS1 diffractometer
Absorption correction Numerical (X-SHAPE and X-RED; Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.96, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 8870, 2305, 1218
Rint 0.087
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.00
No. of reflections 2305
No. of parameters 191
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.23
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

Di­methyl­ammonium 2-amino-5-nitro­terephtalate hemi hydrate was obtained from 10 mg 2-amino-5-nitro-terephthalic acid (0.18 mmol), 0.256 ml DMF and 244 ml H2O. A 2 ml teflon lined steel autoclave was used for the synthesis. The reactor was heated to 150 °C for 24 h then cooled down to room temperature over 12 h, to give crystals suitable for X-ray data collection.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

Dimethylammonium 2-amino-5-nitroterephtalate hemi hydrate was obtained from 10 mg 2-amino-5-nitro-terephthalic acid (0.18 mmol), 0.256 ml DMF and 244 ml H2O. A 2 ml teflon-lined steel autoclave was used for the synthesis. The reactor was heated to 150°C for 24 h then cooled down to room temperature over 12 h, to give crystals suitable for X-ray data collection.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound consists of a mono-deprotonated benzene 1,4-dicarboxylic acid with an NH2 and an NO2 group at the 2- and 5-positions, respectively, Fig. 1. Charge balance is accomplished with a dimethylammonium counter-cation. Extensive N—H···O and O—H···O hydrogen bonding, Table 1, between the cation, the anion and the water molecule leads to a three-dimensional structure, Fig. 2.

Functionalized terephthalate ions are of special interest for the synthesis of porous coordination polymers in order to tune host–guest interactions within functionalized pore surfaces (Biswas et al., 2011). A compound with the same cation but the non-functionalized terephthalate ion, which does not contain an additional water molecule, has been reported (Zhao et al., 2007). Extensive hydrogen bonding is also observed in this structure. Thus, the terephthalate ions are linked to each other by O—H···O hydrogen bonds, forming a one-dimensional polymeric chain. In addition, the terephthalate anions and dimethylammonium cations are connected into a three-dimensional structure by N—H···O hydrogen-bonds (Zhao et al., 2007).

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit of the title compound showing the atom labelling with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. : Crystal packing of the title compound viewed along the crystallographic b axis. Hydrogen bonds are shown as dashed lines.
Dimethylammonium 2-amino-5-nitroterephthalate hemihydrate top
Crystal data top
2C2H8N+·2C8H5N2O6·H2OF(000) = 1176
Mr = 560.48Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.494 (4) ÅCell parameters from 9323 reflections
b = 6.4300 (13) Åθ = 2.1–25°
c = 19.193 (4) ŵ = 0.12 mm1
β = 99.98 (3)°T = 293 K
V = 2612.5 (9) Å3Needle, brown
Z = 40.21 × 0.12 × 0.05 mm
Data collection top
Stoe IPDS-1
diffractometer
1218 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
Phi scanθmax = 25.0°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe, 2008)
h = 2525
Tmin = 0.96, Tmax = 0.98k = 77
8870 measured reflectionsl = 2222
2305 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2305 reflectionsΔρmax = 0.17 e Å3
191 parametersΔρmin = 0.23 e Å3
Crystal data top
2C2H8N+·2C8H5N2O6·H2OV = 2612.5 (9) Å3
Mr = 560.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.494 (4) ŵ = 0.12 mm1
b = 6.4300 (13) ÅT = 293 K
c = 19.193 (4) Å0.21 × 0.12 × 0.05 mm
β = 99.98 (3)°
Data collection top
Stoe IPDS-1
diffractometer
2305 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe, 2008)
1218 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.087
8870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
2305 reflectionsΔρmin = 0.23 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1647 (2)0.5874 (7)0.6545 (3)0.0857 (13)
H1A0.15540.62180.70030.103*
H1B0.18100.70790.63430.103*
H1C0.12680.54180.62430.103*
C20.2293 (2)0.3567 (7)0.5941 (2)0.0754 (12)
H2A0.26020.24760.60260.091*
H2B0.19260.30710.56280.091*
H2C0.24680.47320.57280.091*
N10.21164 (14)0.4215 (5)0.66167 (15)0.0564 (7)
H3A0.19650.31170.68150.091 (14)*
H3B0.24620.46400.69060.085 (14)*
C30.38888 (14)0.5454 (5)0.67852 (15)0.0394 (7)
C40.37102 (14)0.6636 (5)0.61645 (15)0.0432 (7)
C50.38628 (15)0.5967 (5)0.55256 (15)0.0482 (8)
H50.37410.67700.51220.064 (10)*
C60.41882 (14)0.4154 (5)0.54760 (15)0.0432 (7)
C70.43852 (14)0.2946 (5)0.61005 (15)0.0438 (8)
C80.42165 (15)0.3674 (5)0.67438 (15)0.0452 (8)
H80.43370.28930.71530.057 (10)*
C90.36954 (16)0.5969 (5)0.74900 (15)0.0439 (7)
C100.43132 (15)0.3464 (6)0.47806 (16)0.0498 (8)
N20.33726 (14)0.8558 (5)0.61761 (15)0.0572 (8)
N30.47084 (14)0.1170 (5)0.61051 (16)0.0613 (8)
H6A0.48120.04840.64930.077 (13)*
H6B0.48130.07120.57210.076 (13)*
O10.31397 (11)0.5663 (4)0.75635 (12)0.0555 (6)
O20.41281 (11)0.6591 (4)0.79741 (11)0.0609 (7)
O30.40789 (14)0.4728 (4)0.42515 (13)0.0717 (8)
H90.41360.42200.38760.17 (3)*
O40.45861 (13)0.1878 (5)0.46819 (12)0.0748 (8)
O50.33347 (14)0.9371 (4)0.67470 (13)0.0740 (8)
O60.31376 (18)0.9364 (5)0.56135 (15)0.1048 (13)
O70.50000.9096 (6)0.75000.0556 (9)
H70.529 (2)0.826 (7)0.737 (2)0.100 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (3)0.071 (3)0.095 (3)0.013 (2)0.009 (2)0.005 (2)
C20.076 (3)0.085 (3)0.066 (3)0.001 (2)0.014 (2)0.010 (2)
N10.0667 (19)0.0524 (19)0.0493 (16)0.0100 (15)0.0074 (15)0.0073 (14)
C30.0457 (17)0.0415 (18)0.0313 (15)0.0016 (15)0.0076 (13)0.0029 (12)
C40.0538 (18)0.0402 (19)0.0362 (16)0.0059 (15)0.0092 (13)0.0002 (13)
C50.063 (2)0.048 (2)0.0341 (17)0.0029 (16)0.0104 (14)0.0042 (14)
C60.0530 (18)0.044 (2)0.0338 (16)0.0026 (15)0.0096 (13)0.0021 (13)
C70.0474 (18)0.044 (2)0.0402 (18)0.0049 (15)0.0076 (14)0.0007 (13)
C80.0552 (19)0.048 (2)0.0331 (16)0.0017 (16)0.0096 (13)0.0048 (14)
C90.057 (2)0.043 (2)0.0333 (16)0.0007 (15)0.0129 (14)0.0009 (13)
C100.058 (2)0.054 (2)0.0387 (17)0.0031 (17)0.0117 (15)0.0022 (16)
N20.075 (2)0.0490 (19)0.0479 (17)0.0158 (15)0.0123 (14)0.0025 (14)
N30.082 (2)0.058 (2)0.0458 (17)0.0266 (16)0.0178 (14)0.0051 (14)
O10.0532 (14)0.0672 (17)0.0488 (13)0.0041 (11)0.0169 (10)0.0068 (11)
O20.0691 (16)0.0805 (19)0.0338 (11)0.0170 (13)0.0105 (11)0.0075 (11)
O30.106 (2)0.0723 (19)0.0376 (13)0.0244 (15)0.0160 (14)0.0045 (12)
O40.101 (2)0.075 (2)0.0511 (15)0.0311 (17)0.0185 (13)0.0058 (13)
O50.118 (2)0.0561 (17)0.0507 (16)0.0237 (15)0.0234 (14)0.0048 (12)
O60.165 (3)0.096 (2)0.0505 (16)0.075 (2)0.0096 (18)0.0136 (16)
O70.059 (2)0.056 (2)0.052 (2)0.0000.0088 (16)0.000
Geometric parameters (Å, º) top
C1—N11.458 (5)C5—H50.9300
C1—H1A0.9600C6—C71.430 (4)
C1—H1B0.9600C6—C101.475 (4)
C1—H1C0.9600C7—N31.336 (4)
C2—N11.474 (4)C7—C81.425 (4)
C2—H2A0.9600C8—H80.9300
C2—H2B0.9600C9—O11.243 (4)
C2—H2C0.9600C9—O21.261 (4)
N1—H3A0.8900C10—O41.208 (4)
N1—H3B0.8900C10—O31.330 (4)
C3—C81.354 (4)N2—O61.225 (4)
C3—C41.409 (4)N2—O51.229 (3)
C3—C91.519 (4)N3—H6A0.8600
C4—C51.391 (4)N3—H6B0.8600
C4—N21.435 (4)O3—H90.8200
C5—C61.371 (4)O7—H70.89 (4)
N1—C1—H1A109.5C6—C5—H5119.2
N1—C1—H1B109.5C4—C5—H5119.2
H1A—C1—H1B109.5C5—C6—C7119.0 (3)
N1—C1—H1C109.5C5—C6—C10119.6 (3)
H1A—C1—H1C109.5C7—C6—C10121.4 (3)
H1B—C1—H1C109.5N3—C7—C8119.0 (3)
N1—C2—H2A109.5N3—C7—C6123.3 (3)
N1—C2—H2B109.5C8—C7—C6117.7 (3)
H2A—C2—H2B109.5C3—C8—C7122.8 (3)
N1—C2—H2C109.5C3—C8—H8118.6
H2A—C2—H2C109.5C7—C8—H8118.6
H2B—C2—H2C109.5O1—C9—O2124.6 (3)
C1—N1—C2113.8 (3)O1—C9—C3118.9 (3)
C1—N1—H3A108.8O2—C9—C3116.4 (3)
C2—N1—H3A108.8O4—C10—O3121.8 (3)
C1—N1—H3B108.8O4—C10—C6124.5 (3)
C2—N1—H3B108.8O3—C10—C6113.7 (3)
H3A—N1—H3B107.7O6—N2—O5121.7 (3)
C8—C3—C4118.3 (3)O6—N2—C4118.9 (3)
C8—C3—C9117.5 (3)O5—N2—C4119.5 (3)
C4—C3—C9124.0 (3)C7—N3—H6A120.0
C5—C4—C3120.5 (3)C7—N3—H6B120.0
C5—C4—N2118.5 (3)H6A—N3—H6B120.0
C3—C4—N2121.0 (3)C10—O3—H9109.5
C6—C5—C4121.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3B···O10.891.872.761 (4)175
N1—H3A···O1i0.892.012.880 (4)164
N3—H6B···O40.862.112.736 (4)130
N3—H6B···O4ii0.862.323.035 (4)141
N3—H6A···O7iii0.862.102.959 (3)173
O3—H9···O2iv0.821.802.614 (3)169
O7—H7···O2v0.89 (4)1.85 (4)2.743 (3)176 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z1/2; (v) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3B···O10.891.872.761 (4)174.8
N1—H3A···O1i0.892.012.880 (4)164.1
N3—H6B···O40.862.112.736 (4)129.7
N3—H6B···O4ii0.862.323.035 (4)140.8
N3—H6A···O7iii0.862.102.959 (3)172.7
O3—H9···O2iv0.821.802.614 (3)168.7
O7—H7···O2v0.89 (4)1.85 (4)2.743 (3)176 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z1/2; (v) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula2C2H8N+·2C8H5N2O6·H2O
Mr560.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.494 (4), 6.4300 (13), 19.193 (4)
β (°) 99.98 (3)
V3)2612.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.21 × 0.12 × 0.05
Data collection
DiffractometerStoe IPDS1
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe, 2008)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
8870, 2305, 1218
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.00
No. of reflections2305
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

The authors would like to thank Inke Jess for collecting the single-crystal data.

References

First citationBiswas, S., Ahnfeldt, T. & Stock, N. (2011). Inorg. Chem. 50, 9518–9526.  CrossRef PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds