metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(μ2-di­phenyl­phosphinato-κ2O,O′)tetra-μ3-oxido-tetra­oxidohexa­molybdenum(V)

aInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by J. Simpson, University of Otago, New Zealand (Received 5 January 2016; accepted 7 January 2016; online 16 January 2016)

The mol­ecule of the title compound, [Mo4(μ2-C12H10OP2)4(μ3-O)4O4], exhibits point group symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each MoV atom is bridged by three O atoms resulting in an Mo4O4 heterocubane core. In the crystal, weak C—H⋯O inter­actions may help to consolidate packing of the mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound had formed accidentally due to the presence of oxygen in a solution originally intended to crystallize the PNP pincer compound [Mo(PNPMe—Ph)(CO)2F2] [(PNPMe—Ph) = N,N′-bis­(di­phenyl­phosphino)-N,N′-methyl-2,6-di­amino­pyridine; de Aguiar et al., 2014[Aguiar, S. R. M. M. de, Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). J. Organomet. Chem. 760, 74-83.]]. A chloro­form disolvate of the title compound was reported by Schirmer et al. (1989[Schirmer, W., Flörke, U. & Haupt, H.-J. (1989). Z. Anorg. Allg. Chem. 574, 239-255.]). The mol­ecule of the title compound [MoO(μ3-O)(μ2-C12H10PO2)]4, exhibits point group symmetry 2 with the twofold rotation axis passing through two opposite P atoms (Fig. 1[link]). Each molybdenum atom is bridged by three oxygen atoms resulting in a Mo4O4 heterocubane core. The distorted octa­hedral coordination spheres of the two unique molybdenum atoms [bond lengths range from 1.6686 (19) to 2.3982 (19) Å] are completed by a double-bonded terminal oxygen atom and two oxygen atoms of two di­phenyl­phosphinate anions, each bridging two opposite molybdenum atoms in the heterocube. The short Mo⋯Mo distance of 2.6395 (3) Å indicates MoV⋯MoV inter­actions and causes a distortion of the Mo4O4 heterocubane core with O—Mo—O angles ranging from 77.94 (7) to 89.87 (7)° and Mo—O—Mo angles from 84.60 (7) to 102.02 (7) °. For characteristic bond lengths and angles of {Mo4O4(μ3-O4}4+ heterocubane cores, see: Modec et al. (2003[Modec, B., Brenčič, J., Burkholder, E. M. & Zubieta, J. (2003). Dalton Trans. pp. 4618-4625.]). In the crystal, weak C—H⋯O inter­actions, Table 1[link], may help to consolidate packing of the mol­ecules, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.52 3.188 (4) 129
C21—H21⋯O4ii 0.93 2.57 3.420 (5) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as spheres of arbitrary radius. Non-labelled atoms are generated by the symmetry code −x + 2, y, −z + [{1\over 2}].
[Figure 2]
Figure 2
The packing of the mol­ecules in the crystal structure of the title compound in a view approximately along [001].

Synthesis and crystallization

The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014[Aguiar, S. R. M. M. de, Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). J. Organomet. Chem. 760, 74-83.]). One equivalent of 1-fluoro-2,4,6-tri­methyl­pyridinium tetra­fluorido­borate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark-red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Mo4(C12H10O2P)4O8]
Mr 1380.44
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 16.1061 (19), 19.891 (2), 15.254 (3)
V3) 4887.0 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.61 × 0.49 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.45, 0.66
No. of measured, independent and observed [I > 2σ(I)] reflections 255304, 8962, 7558
Rint 0.061
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.27
No. of reflections 8962
No. of parameters 326
H-atom treatment H-atom parameters constrained
  w = 1/[σ2(Fo2) + 23.6442P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.92, −1.05
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-tri­methyl­pyridinium tetra­fluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark-red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound had formed accidentally due to the presence of oxygen in a solution originally intended to crystallize the PNP pincer compound [Mo(PNPMe—Ph)(CO)2F2] [(PNPMe—Ph) = N,N'-bis(diphenylphosphino)-N,N'-methyl-2,6-diaminopyridine (de Aguiar et al., 2014). A chloroform disolvate of the title compound was reported by Schirmer et al. (1989). The molecule of the title compound, Fig. 1 [MoO(µ3-O)(µ2-C12H10PO2)]4, exhibits point group symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each molybdenum atom is bridged by three oxygen atoms resulting in a Mo4O4 heterocubane core. The distorted octahedral coordination spheres of the two unique molybdenum atoms [bond lengths range from 1.6686 (19) to 2.3982 (19) Å] are completed by a double-bonded terminal oxygen atom and two oxygen atoms of two diphenylphosphinate anions, each bridging two opposite molybdenum atoms in the heterocube. The short Mo···Mo distance of 2.6395 (3) Å indicates MoV···MoV interactions and causes a distortion of the Mo4O4 heterocubane core with O—Mo—O angles ranging from 77.94 (7) to 89.87 (7)° and Mo—O—Mo angles from 84.60 (7) to 102.02 (7) °. For characteristic bond lengths and angles of {Mo4O43-O4}4+ heterocubane cores, see: Modec et al. (2003). In the crystal, weak C—H···O interactions, Table 1, may help to consolidate packing of the molecules, Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as spheres of arbitrary radius. Non-labelled atoms are generated by the symmetry code −x + 2, y, −z + 1/2.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure of the title compound in a view approximately along [001].
Tetrakis(µ2-diphenylphosphinato-κ2O,O')tetra-µ3-oxido-tetraoxidohexamolybdenum(V) top
Crystal data top
[Mo4(C12H10O2P)4O8]Dx = 1.876 Mg m3
Mr = 1380.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9220 reflections
a = 16.1061 (19) Åθ = 2.4–30.0°
b = 19.891 (2) ŵ = 1.21 mm1
c = 15.254 (3) ÅT = 100 K
V = 4887.0 (11) Å3Block, dark red
Z = 40.61 × 0.49 × 0.30 mm
F(000) = 2736
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω– and φ–scansθmax = 32.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2424
Tmin = 0.45, Tmax = 0.66k = 3030
255304 measured reflectionsl = 2323
8962 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
8962 reflectionsΔρmax = 0.92 e Å3
326 parametersΔρmin = 1.05 e Å3
Crystal data top
[Mo4(C12H10O2P)4O8]V = 4887.0 (11) Å3
Mr = 1380.44Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.1061 (19) ŵ = 1.21 mm1
b = 19.891 (2) ÅT = 100 K
c = 15.254 (3) Å0.61 × 0.49 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
7558 reflections with I > 2σ(I)
Tmin = 0.45, Tmax = 0.66Rint = 0.061
255304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
8962 reflectionsΔρmax = 0.92 e Å3
326 parametersΔρmin = 1.05 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.94264 (2)0.30980 (2)0.15695 (2)0.00840 (5)
Mo21.05855 (2)0.21599 (2)0.15724 (2)0.00870 (5)
P10.76853 (4)0.26945 (3)0.25500 (4)0.01124 (11)
P21.00000.45135 (4)0.25000.01029 (15)
P31.00000.07459 (5)0.25000.01125 (15)
O11.06085 (11)0.31230 (9)0.18613 (12)0.0102 (3)
O20.93968 (11)0.21393 (9)0.18558 (12)0.0095 (3)
O30.93008 (12)0.31794 (10)0.04868 (12)0.0133 (3)
O41.07105 (12)0.20672 (10)0.04932 (12)0.0142 (3)
O51.18201 (11)0.21577 (10)0.19500 (13)0.0121 (3)
O60.81967 (11)0.31237 (10)0.19196 (12)0.0120 (3)
O70.94434 (12)0.41077 (9)0.18832 (12)0.0114 (3)
O81.05526 (12)0.11516 (9)0.18828 (13)0.0133 (3)
C10.69240 (16)0.22699 (13)0.19004 (18)0.0136 (4)
C20.72255 (18)0.17894 (16)0.1312 (2)0.0199 (5)
H20.77910.16960.12890.024*
C30.6680 (2)0.14529 (17)0.0762 (2)0.0226 (6)
H30.68800.11340.03690.027*
C40.58371 (19)0.15910 (17)0.0796 (2)0.0218 (6)
H40.54710.13610.04330.026*
C50.5542 (2)0.20701 (18)0.1370 (2)0.0260 (6)
H50.49760.21620.13890.031*
C60.60803 (18)0.24191 (17)0.1924 (2)0.0212 (5)
H60.58780.27470.23030.025*
C70.71892 (16)0.32266 (13)0.33376 (17)0.0128 (4)
C80.66756 (17)0.29415 (14)0.39712 (19)0.0166 (5)
H80.65890.24790.39770.020*
C90.62922 (19)0.33445 (16)0.4595 (2)0.0208 (5)
H90.59420.31530.50100.025*
C100.64329 (19)0.40329 (16)0.4597 (2)0.0207 (5)
H100.61790.43030.50170.025*
C110.6953 (2)0.43199 (15)0.3972 (2)0.0215 (5)
H110.70450.47820.39750.026*
C120.73355 (18)0.39208 (14)0.3343 (2)0.0175 (5)
H120.76860.41130.29280.021*
C131.06447 (16)0.50353 (13)0.18254 (17)0.0130 (4)
C141.1143 (2)0.55275 (15)0.2199 (2)0.0220 (6)
H141.11330.55970.28020.026*
C151.1655 (2)0.59151 (16)0.1671 (2)0.0254 (6)
H151.19980.62380.19220.031*
C161.1659 (2)0.58250 (16)0.0774 (2)0.0226 (6)
H161.19890.60980.04220.027*
C171.1175 (2)0.53317 (18)0.0397 (2)0.0245 (6)
H171.11870.52650.02060.029*
C181.0667 (2)0.49336 (16)0.09217 (19)0.0210 (5)
H181.03420.45990.06690.025*
C191.06746 (18)0.02056 (14)0.31128 (19)0.0167 (5)
C201.0336 (2)0.0317 (2)0.3592 (3)0.0397 (10)
H200.97620.03710.36140.048*
C211.0845 (3)0.0761 (2)0.4042 (4)0.0500 (13)
H211.06130.11090.43660.060*
C221.1683 (3)0.0686 (2)0.4008 (3)0.0392 (10)
H221.20230.09880.43030.047*
C231.2032 (2)0.0169 (2)0.3543 (3)0.0347 (9)
H231.26050.01170.35340.042*
C241.1529 (2)0.02794 (18)0.3083 (2)0.0240 (6)
H241.17660.06260.27590.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00826 (8)0.00886 (8)0.00810 (8)0.00049 (6)0.00012 (6)0.00068 (6)
Mo20.00835 (8)0.00926 (9)0.00849 (8)0.00033 (6)0.00031 (6)0.00117 (6)
P10.0070 (2)0.0143 (3)0.0124 (3)0.0001 (2)0.0006 (2)0.0027 (2)
P20.0124 (4)0.0087 (3)0.0099 (4)0.0000.0000 (3)0.000
P30.0108 (4)0.0090 (3)0.0140 (4)0.0000.0004 (3)0.000
O10.0085 (7)0.0114 (7)0.0107 (7)0.0012 (6)0.0007 (6)0.0018 (6)
O20.0082 (7)0.0090 (7)0.0113 (7)0.0008 (6)0.0015 (6)0.0006 (6)
O30.0136 (8)0.0160 (8)0.0102 (8)0.0018 (7)0.0002 (6)0.0013 (6)
O40.0156 (8)0.0163 (8)0.0106 (8)0.0012 (7)0.0007 (6)0.0023 (7)
O50.0086 (7)0.0138 (8)0.0140 (8)0.0000 (6)0.0006 (6)0.0045 (6)
O60.0082 (7)0.0150 (8)0.0128 (8)0.0016 (6)0.0006 (6)0.0036 (6)
O70.0134 (8)0.0093 (7)0.0116 (7)0.0009 (6)0.0026 (6)0.0012 (6)
O80.0144 (8)0.0104 (8)0.0151 (8)0.0001 (6)0.0030 (7)0.0005 (6)
C10.0104 (10)0.0141 (10)0.0161 (11)0.0001 (8)0.0012 (8)0.0021 (9)
C20.0151 (11)0.0237 (13)0.0209 (13)0.0016 (10)0.0005 (10)0.0026 (11)
C30.0228 (14)0.0254 (14)0.0196 (13)0.0006 (11)0.0033 (11)0.0058 (11)
C40.0189 (13)0.0261 (14)0.0204 (13)0.0030 (11)0.0072 (10)0.0008 (11)
C50.0151 (12)0.0329 (16)0.0300 (16)0.0029 (12)0.0070 (11)0.0062 (13)
C60.0126 (11)0.0276 (14)0.0233 (13)0.0030 (10)0.0019 (10)0.0052 (11)
C70.0112 (10)0.0141 (10)0.0130 (10)0.0000 (8)0.0007 (8)0.0006 (8)
C80.0159 (11)0.0167 (11)0.0174 (11)0.0026 (9)0.0039 (9)0.0014 (9)
C90.0192 (12)0.0248 (14)0.0182 (12)0.0009 (11)0.0053 (10)0.0011 (11)
C100.0186 (12)0.0250 (14)0.0184 (12)0.0014 (11)0.0017 (10)0.0048 (11)
C110.0226 (13)0.0171 (12)0.0247 (14)0.0005 (10)0.0015 (11)0.0031 (11)
C120.0160 (11)0.0153 (11)0.0212 (12)0.0007 (9)0.0028 (10)0.0019 (10)
C130.0143 (10)0.0099 (9)0.0149 (10)0.0003 (8)0.0018 (8)0.0014 (8)
C140.0251 (14)0.0185 (12)0.0223 (13)0.0083 (11)0.0022 (11)0.0047 (10)
C150.0308 (16)0.0184 (13)0.0271 (15)0.0106 (12)0.0056 (12)0.0028 (11)
C160.0207 (13)0.0182 (12)0.0289 (15)0.0008 (10)0.0083 (11)0.0060 (11)
C170.0263 (15)0.0329 (16)0.0144 (12)0.0008 (12)0.0057 (11)0.0023 (11)
C180.0246 (13)0.0247 (14)0.0138 (11)0.0064 (11)0.0036 (10)0.0017 (10)
C190.0164 (11)0.0139 (11)0.0197 (12)0.0007 (9)0.0033 (9)0.0027 (9)
C200.0243 (16)0.039 (2)0.055 (3)0.0017 (15)0.0042 (16)0.0294 (19)
C210.048 (3)0.040 (2)0.062 (3)0.0002 (19)0.014 (2)0.032 (2)
C220.044 (2)0.0339 (19)0.039 (2)0.0173 (17)0.0218 (18)0.0018 (16)
C230.0236 (15)0.050 (2)0.0302 (17)0.0138 (15)0.0116 (13)0.0103 (16)
C240.0177 (13)0.0319 (16)0.0226 (14)0.0053 (11)0.0051 (11)0.0037 (12)
Geometric parameters (Å, º) top
Mo1—O31.6717 (19)C5—C61.396 (4)
Mo1—O11.9559 (18)C5—H50.9300
Mo1—O21.9569 (18)C6—H60.9300
Mo1—O62.0519 (18)C7—C81.393 (4)
Mo1—O72.0648 (18)C7—C121.401 (4)
Mo1—O1i2.3950 (19)C8—C91.389 (4)
Mo1—Mo22.6395 (3)C8—H80.9300
Mo2—O41.6686 (19)C9—C101.388 (4)
Mo2—O21.9632 (18)C9—H90.9300
Mo2—O11.9661 (18)C10—C111.392 (4)
Mo2—O82.0615 (19)C10—H100.9300
Mo2—O52.0701 (19)C11—C121.390 (4)
Mo2—O2i2.3982 (19)C11—H110.9300
P1—O61.527 (2)C12—H120.9300
P1—O5i1.5351 (19)C13—C141.389 (4)
P1—C11.789 (3)C13—C181.394 (4)
P1—C71.789 (3)C14—C151.388 (4)
P2—O71.5298 (19)C14—H140.9300
P2—O7i1.5298 (19)C15—C161.379 (5)
P2—C13i1.793 (3)C15—H150.9300
P2—C131.793 (3)C16—C171.379 (5)
P3—O8i1.526 (2)C16—H160.9300
P3—O81.526 (2)C17—C181.391 (4)
P3—C191.791 (3)C17—H170.9300
P3—C19i1.791 (3)C18—H180.9300
O1—Mo1i2.3950 (19)C19—C201.383 (5)
O2—Mo2i2.3982 (19)C19—C241.385 (4)
O5—P1i1.5351 (19)C20—C211.386 (5)
C1—C61.391 (4)C20—H200.9300
C1—C21.398 (4)C21—C221.360 (7)
C2—C31.387 (4)C21—H210.9300
C2—H20.9300C22—C231.369 (7)
C3—C41.386 (4)C22—H220.9300
C3—H30.9300C23—C241.393 (5)
C4—C51.379 (5)C23—H230.9300
C4—H40.9300C24—H240.9300
O3—Mo1—O1109.88 (9)C6—C1—P1123.7 (2)
O3—Mo1—O2108.17 (9)C2—C1—P1116.1 (2)
O1—Mo1—O289.87 (7)C3—C2—C1119.9 (3)
O3—Mo1—O697.93 (9)C3—C2—H2120.1
O1—Mo1—O6151.61 (7)C1—C2—H2120.1
O2—Mo1—O686.71 (7)C4—C3—C2120.1 (3)
O3—Mo1—O797.84 (8)C4—C3—H3119.9
O1—Mo1—O784.81 (7)C2—C3—H3119.9
O2—Mo1—O7153.70 (7)C5—C4—C3119.9 (3)
O6—Mo1—O785.89 (8)C5—C4—H4120.0
O3—Mo1—O1i169.29 (8)C3—C4—H4120.0
O1—Mo1—O1i78.16 (7)C4—C5—C6120.9 (3)
O2—Mo1—O1i78.27 (7)C4—C5—H5119.6
O6—Mo1—O1i73.54 (7)C6—C5—H5119.6
O7—Mo1—O1i75.43 (7)C1—C6—C5119.0 (3)
O3—Mo1—Mo298.95 (7)C1—C6—H6120.5
O1—Mo1—Mo247.86 (5)C5—C6—H6120.5
O2—Mo1—Mo247.78 (5)C8—C7—C12119.8 (3)
O6—Mo1—Mo2134.41 (5)C8—C7—P1119.4 (2)
O7—Mo1—Mo2132.67 (5)C12—C7—P1120.8 (2)
O1i—Mo1—Mo291.70 (4)C9—C8—C7120.3 (3)
O4—Mo2—O2109.42 (9)C9—C8—H8119.9
O4—Mo2—O1109.06 (9)C7—C8—H8119.9
O2—Mo2—O189.39 (7)C10—C9—C8119.9 (3)
O4—Mo2—O897.02 (9)C10—C9—H9120.1
O2—Mo2—O884.49 (7)C8—C9—H9120.1
O1—Mo2—O8153.77 (8)C9—C10—C11120.1 (3)
O4—Mo2—O599.12 (9)C9—C10—H10120.0
O2—Mo2—O5151.09 (7)C11—C10—H10120.0
O1—Mo2—O585.51 (7)C12—C11—C10120.4 (3)
O8—Mo2—O587.63 (8)C12—C11—H11119.8
O4—Mo2—O2i169.42 (8)C10—C11—H11119.8
O2—Mo2—O2i77.94 (7)C11—C12—C7119.5 (3)
O1—Mo2—O2i78.02 (7)C11—C12—H12120.2
O8—Mo2—O2i75.76 (7)C7—C12—H12120.2
O5—Mo2—O2i73.16 (7)C14—C13—C18119.6 (3)
O4—Mo2—Mo199.31 (7)C14—C13—P2120.5 (2)
O2—Mo2—Mo147.57 (5)C18—C13—P2119.9 (2)
O1—Mo2—Mo147.54 (5)C15—C14—C13119.8 (3)
O8—Mo2—Mo1132.06 (5)C15—C14—H14120.1
O5—Mo2—Mo1132.95 (5)C13—C14—H14120.1
O2i—Mo2—Mo191.27 (4)C16—C15—C14120.4 (3)
O6—P1—O5i114.95 (10)C16—C15—H15119.8
O6—P1—C1106.55 (12)C14—C15—H15119.8
O5i—P1—C1107.61 (12)C17—C16—C15120.2 (3)
O6—P1—C7109.45 (12)C17—C16—H16119.9
O5i—P1—C7108.04 (12)C15—C16—H16119.9
C1—P1—C7110.19 (12)C16—C17—C18119.8 (3)
O7—P2—O7i116.31 (15)C16—C17—H17120.1
O7—P2—C13i108.61 (11)C18—C17—H17120.1
O7i—P2—C13i106.97 (11)C17—C18—C13120.1 (3)
O7—P2—C13106.97 (11)C17—C18—H18119.9
O7i—P2—C13108.61 (11)C13—C18—H18119.9
C13i—P2—C13109.25 (17)C20—C19—C24119.3 (3)
O8i—P3—O8116.17 (15)C20—C19—P3119.2 (2)
O8i—P3—C19110.42 (12)C24—C19—P3121.5 (2)
O8—P3—C19106.58 (12)C19—C20—C21120.4 (4)
O8i—P3—C19i106.58 (12)C19—C20—H20119.8
O8—P3—C19i110.42 (12)C21—C20—H20119.8
C19—P3—C19i106.27 (19)C22—C21—C20119.9 (4)
Mo1—O1—Mo284.60 (7)C22—C21—H21120.0
Mo1—O1—Mo1i101.77 (7)C20—C21—H21120.0
Mo2—O1—Mo1i101.73 (8)C21—C22—C23120.6 (3)
Mo1—O2—Mo284.65 (7)C21—C22—H22119.7
Mo1—O2—Mo2i101.90 (7)C23—C22—H22119.7
Mo2—O2—Mo2i102.02 (7)C22—C23—C24120.2 (4)
P1i—O5—Mo2129.43 (11)C22—C23—H23119.9
P1—O6—Mo1132.12 (11)C24—C23—H23119.9
P2—O7—Mo1131.57 (11)C19—C24—C23119.5 (3)
P3—O8—Mo2132.15 (12)C19—C24—H24120.2
C6—C1—C2120.1 (3)C23—C24—H24120.2
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3ii0.932.523.188 (4)129
C21—H21···O4iii0.932.573.420 (5)152
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.523.188 (4)129
C21—H21···O4ii0.932.573.420 (5)152
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo4(C12H10O2P)4O8]
Mr1380.44
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)16.1061 (19), 19.891 (2), 15.254 (3)
V3)4887.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.61 × 0.49 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.45, 0.66
No. of measured, independent and
observed [I > 2σ(I)] reflections
255304, 8962, 7558
Rint0.061
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.27
No. of reflections8962
No. of parameters326
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 1.05

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

Financial support by the Austrian Science Fund (FWF) (Project No. P24202-N17) is gratefully acknowledged. The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAguiar, S. R. M. M. de, Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). J. Organomet. Chem. 760, 74–83.  PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationModec, B., Brenčič, J., Burkholder, E. M. & Zubieta, J. (2003). Dalton Trans. pp. 4618–4625.  CSD CrossRef Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchirmer, W., Flörke, U. & Haupt, H.-J. (1989). Z. Anorg. Allg. Chem. 574, 239–255.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds