metal-organic compounds
Tetrakis(μ2-diphenylphosphinato-κ2O,O′)tetra-μ3-oxido-tetraoxidohexamolybdenum(V)
aInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at
The molecule of the title compound, [Mo4(μ2-C12H10OP2)4(μ3-O)4O4], exhibits symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each MoV atom is bridged by three O atoms resulting in an Mo4O4 heterocubane core. In the crystal, weak C—H⋯O interactions may help to consolidate packing of the molecules.
Keywords: crystal structure; heterocubane; molybdenum; Mo4O4 core.
CCDC reference: 1446068
Structure description
The title compound had formed accidentally due to the presence of oxygen in a solution originally intended to crystallize the PNP pincer compound [Mo(PNPMe—Ph)(CO)2F2] [(PNPMe—Ph) = N,N′-bis(diphenylphosphino)-N,N′-methyl-2,6-diaminopyridine; de Aguiar et al., 2014]. A chloroform disolvate of the title compound was reported by Schirmer et al. (1989). The molecule of the title compound [MoO(μ3-O)(μ2-C12H10PO2)]4, exhibits symmetry 2 with the twofold rotation axis passing through two opposite P atoms (Fig. 1). Each molybdenum atom is bridged by three oxygen atoms resulting in a Mo4O4 heterocubane core. The distorted octahedral coordination spheres of the two unique molybdenum atoms [bond lengths range from 1.6686 (19) to 2.3982 (19) Å] are completed by a double-bonded terminal oxygen atom and two oxygen atoms of two diphenylphosphinate anions, each bridging two opposite molybdenum atoms in the heterocube. The short Mo⋯Mo distance of 2.6395 (3) Å indicates MoV⋯MoV interactions and causes a distortion of the Mo4O4 heterocubane core with O—Mo—O angles ranging from 77.94 (7) to 89.87 (7)° and Mo—O—Mo angles from 84.60 (7) to 102.02 (7) °. For characteristic bond lengths and angles of {Mo4O4(μ3-O4}4+ heterocubane cores, see: Modec et al. (2003). In the crystal, weak C—H⋯O interactions, Table 1, may help to consolidate packing of the molecules, Fig. 2.
Synthesis and crystallization
The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark-red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1446068
10.1107/S2414314616000365/sj4007sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616000365/sj4007Isup2.hkl
The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.
The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark-red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.
The title compound had formed accidentally due to the presence of oxygen in a solution originally intended to crystallize the PNP pincer compound [Mo(PNPMe—Ph)(CO)2F2] [(PNPMe—Ph) = N,N'-bis(diphenylphosphino)-N,N'-methyl-2,6-diaminopyridine (de Aguiar et al., 2014). A chloroform disolvate of the title compound was reported by Schirmer et al. (1989). The molecule of the title compound, Fig. 1 [MoO(µ3-O)(µ2-C12H10PO2)]4, exhibits
symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each molybdenum atom is bridged by three oxygen atoms resulting in a Mo4O4 heterocubane core. The distorted octahedral coordination spheres of the two unique molybdenum atoms [bond lengths range from 1.6686 (19) to 2.3982 (19) Å] are completed by a double-bonded terminal oxygen atom and two oxygen atoms of two diphenylphosphinate anions, each bridging two opposite molybdenum atoms in the heterocube. The short Mo···Mo distance of 2.6395 (3) Å indicates MoV···MoV interactions and causes a distortion of the Mo4O4 heterocubane core with O—Mo—O angles ranging from 77.94 (7) to 89.87 (7)° and Mo—O—Mo angles from 84.60 (7) to 102.02 (7) °. For characteristic bond lengths and angles of {Mo4O4(µ3-O4}4+ heterocubane cores, see: Modec et al. (2003). In the crystal, weak C—H···O interactions, Table 1, may help to consolidate packing of the molecules, Fig. 2.Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as spheres of arbitrary radius. Non-labelled atoms are generated by the symmetry code −x + 2, y, −z + 1/2. | |
Fig. 2. The packing of the molecules in the crystal structure of the title compound in a view approximately along [001]. |
[Mo4(C12H10O2P)4O8] | Dx = 1.876 Mg m−3 |
Mr = 1380.44 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 9220 reflections |
a = 16.1061 (19) Å | θ = 2.4–30.0° |
b = 19.891 (2) Å | µ = 1.21 mm−1 |
c = 15.254 (3) Å | T = 100 K |
V = 4887.0 (11) Å3 | Block, dark red |
Z = 4 | 0.61 × 0.49 × 0.30 mm |
F(000) = 2736 |
Bruker Kappa APEXII CCD diffractometer | 7558 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω– and φ–scans | θmax = 32.7°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −24→24 |
Tmin = 0.45, Tmax = 0.66 | k = −30→30 |
255304 measured reflections | l = −23→23 |
8962 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + 23.6442P] where P = (Fo2 + 2Fc2)/3 |
S = 1.27 | (Δ/σ)max = 0.001 |
8962 reflections | Δρmax = 0.92 e Å−3 |
326 parameters | Δρmin = −1.05 e Å−3 |
[Mo4(C12H10O2P)4O8] | V = 4887.0 (11) Å3 |
Mr = 1380.44 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 16.1061 (19) Å | µ = 1.21 mm−1 |
b = 19.891 (2) Å | T = 100 K |
c = 15.254 (3) Å | 0.61 × 0.49 × 0.30 mm |
Bruker Kappa APEXII CCD diffractometer | 8962 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 7558 reflections with I > 2σ(I) |
Tmin = 0.45, Tmax = 0.66 | Rint = 0.061 |
255304 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.27 | w = 1/[σ2(Fo2) + 23.6442P] where P = (Fo2 + 2Fc2)/3 |
8962 reflections | Δρmax = 0.92 e Å−3 |
326 parameters | Δρmin = −1.05 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.94264 (2) | 0.30980 (2) | 0.15695 (2) | 0.00840 (5) | |
Mo2 | 1.05855 (2) | 0.21599 (2) | 0.15724 (2) | 0.00870 (5) | |
P1 | 0.76853 (4) | 0.26945 (3) | 0.25500 (4) | 0.01124 (11) | |
P2 | 1.0000 | 0.45135 (4) | 0.2500 | 0.01029 (15) | |
P3 | 1.0000 | 0.07459 (5) | 0.2500 | 0.01125 (15) | |
O1 | 1.06085 (11) | 0.31230 (9) | 0.18613 (12) | 0.0102 (3) | |
O2 | 0.93968 (11) | 0.21393 (9) | 0.18558 (12) | 0.0095 (3) | |
O3 | 0.93008 (12) | 0.31794 (10) | 0.04868 (12) | 0.0133 (3) | |
O4 | 1.07105 (12) | 0.20672 (10) | 0.04932 (12) | 0.0142 (3) | |
O5 | 1.18201 (11) | 0.21577 (10) | 0.19500 (13) | 0.0121 (3) | |
O6 | 0.81967 (11) | 0.31237 (10) | 0.19196 (12) | 0.0120 (3) | |
O7 | 0.94434 (12) | 0.41077 (9) | 0.18832 (12) | 0.0114 (3) | |
O8 | 1.05526 (12) | 0.11516 (9) | 0.18828 (13) | 0.0133 (3) | |
C1 | 0.69240 (16) | 0.22699 (13) | 0.19004 (18) | 0.0136 (4) | |
C2 | 0.72255 (18) | 0.17894 (16) | 0.1312 (2) | 0.0199 (5) | |
H2 | 0.7791 | 0.1696 | 0.1289 | 0.024* | |
C3 | 0.6680 (2) | 0.14529 (17) | 0.0762 (2) | 0.0226 (6) | |
H3 | 0.6880 | 0.1134 | 0.0369 | 0.027* | |
C4 | 0.58371 (19) | 0.15910 (17) | 0.0796 (2) | 0.0218 (6) | |
H4 | 0.5471 | 0.1361 | 0.0433 | 0.026* | |
C5 | 0.5542 (2) | 0.20701 (18) | 0.1370 (2) | 0.0260 (6) | |
H5 | 0.4976 | 0.2162 | 0.1389 | 0.031* | |
C6 | 0.60803 (18) | 0.24191 (17) | 0.1924 (2) | 0.0212 (5) | |
H6 | 0.5878 | 0.2747 | 0.2303 | 0.025* | |
C7 | 0.71892 (16) | 0.32266 (13) | 0.33376 (17) | 0.0128 (4) | |
C8 | 0.66756 (17) | 0.29415 (14) | 0.39712 (19) | 0.0166 (5) | |
H8 | 0.6589 | 0.2479 | 0.3977 | 0.020* | |
C9 | 0.62922 (19) | 0.33445 (16) | 0.4595 (2) | 0.0208 (5) | |
H9 | 0.5942 | 0.3153 | 0.5010 | 0.025* | |
C10 | 0.64329 (19) | 0.40329 (16) | 0.4597 (2) | 0.0207 (5) | |
H10 | 0.6179 | 0.4303 | 0.5017 | 0.025* | |
C11 | 0.6953 (2) | 0.43199 (15) | 0.3972 (2) | 0.0215 (5) | |
H11 | 0.7045 | 0.4782 | 0.3975 | 0.026* | |
C12 | 0.73355 (18) | 0.39208 (14) | 0.3343 (2) | 0.0175 (5) | |
H12 | 0.7686 | 0.4113 | 0.2928 | 0.021* | |
C13 | 1.06447 (16) | 0.50353 (13) | 0.18254 (17) | 0.0130 (4) | |
C14 | 1.1143 (2) | 0.55275 (15) | 0.2199 (2) | 0.0220 (6) | |
H14 | 1.1133 | 0.5597 | 0.2802 | 0.026* | |
C15 | 1.1655 (2) | 0.59151 (16) | 0.1671 (2) | 0.0254 (6) | |
H15 | 1.1998 | 0.6238 | 0.1922 | 0.031* | |
C16 | 1.1659 (2) | 0.58250 (16) | 0.0774 (2) | 0.0226 (6) | |
H16 | 1.1989 | 0.6098 | 0.0422 | 0.027* | |
C17 | 1.1175 (2) | 0.53317 (18) | 0.0397 (2) | 0.0245 (6) | |
H17 | 1.1187 | 0.5265 | −0.0206 | 0.029* | |
C18 | 1.0667 (2) | 0.49336 (16) | 0.09217 (19) | 0.0210 (5) | |
H18 | 1.0342 | 0.4599 | 0.0669 | 0.025* | |
C19 | 1.06746 (18) | 0.02056 (14) | 0.31128 (19) | 0.0167 (5) | |
C20 | 1.0336 (2) | −0.0317 (2) | 0.3592 (3) | 0.0397 (10) | |
H20 | 0.9762 | −0.0371 | 0.3614 | 0.048* | |
C21 | 1.0845 (3) | −0.0761 (2) | 0.4042 (4) | 0.0500 (13) | |
H21 | 1.0613 | −0.1109 | 0.4366 | 0.060* | |
C22 | 1.1683 (3) | −0.0686 (2) | 0.4008 (3) | 0.0392 (10) | |
H22 | 1.2023 | −0.0988 | 0.4303 | 0.047* | |
C23 | 1.2032 (2) | −0.0169 (2) | 0.3543 (3) | 0.0347 (9) | |
H23 | 1.2605 | −0.0117 | 0.3534 | 0.042* | |
C24 | 1.1529 (2) | 0.02794 (18) | 0.3083 (2) | 0.0240 (6) | |
H24 | 1.1766 | 0.0626 | 0.2759 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00826 (8) | 0.00886 (8) | 0.00810 (8) | −0.00049 (6) | −0.00012 (6) | 0.00068 (6) |
Mo2 | 0.00835 (8) | 0.00926 (9) | 0.00849 (8) | −0.00033 (6) | 0.00031 (6) | −0.00117 (6) |
P1 | 0.0070 (2) | 0.0143 (3) | 0.0124 (3) | −0.0001 (2) | 0.0006 (2) | 0.0027 (2) |
P2 | 0.0124 (4) | 0.0087 (3) | 0.0099 (4) | 0.000 | 0.0000 (3) | 0.000 |
P3 | 0.0108 (4) | 0.0090 (3) | 0.0140 (4) | 0.000 | −0.0004 (3) | 0.000 |
O1 | 0.0085 (7) | 0.0114 (7) | 0.0107 (7) | −0.0012 (6) | 0.0007 (6) | −0.0018 (6) |
O2 | 0.0082 (7) | 0.0090 (7) | 0.0113 (7) | −0.0008 (6) | 0.0015 (6) | 0.0006 (6) |
O3 | 0.0136 (8) | 0.0160 (8) | 0.0102 (8) | −0.0018 (7) | 0.0002 (6) | 0.0013 (6) |
O4 | 0.0156 (8) | 0.0163 (8) | 0.0106 (8) | −0.0012 (7) | 0.0007 (6) | −0.0023 (7) |
O5 | 0.0086 (7) | 0.0138 (8) | 0.0140 (8) | 0.0000 (6) | 0.0006 (6) | −0.0045 (6) |
O6 | 0.0082 (7) | 0.0150 (8) | 0.0128 (8) | 0.0016 (6) | 0.0006 (6) | 0.0036 (6) |
O7 | 0.0134 (8) | 0.0093 (7) | 0.0116 (7) | −0.0009 (6) | −0.0026 (6) | 0.0012 (6) |
O8 | 0.0144 (8) | 0.0104 (8) | 0.0151 (8) | 0.0001 (6) | 0.0030 (7) | −0.0005 (6) |
C1 | 0.0104 (10) | 0.0141 (10) | 0.0161 (11) | −0.0001 (8) | −0.0012 (8) | 0.0021 (9) |
C2 | 0.0151 (11) | 0.0237 (13) | 0.0209 (13) | 0.0016 (10) | 0.0005 (10) | −0.0026 (11) |
C3 | 0.0228 (14) | 0.0254 (14) | 0.0196 (13) | 0.0006 (11) | −0.0033 (11) | −0.0058 (11) |
C4 | 0.0189 (13) | 0.0261 (14) | 0.0204 (13) | −0.0030 (11) | −0.0072 (10) | −0.0008 (11) |
C5 | 0.0151 (12) | 0.0329 (16) | 0.0300 (16) | 0.0029 (12) | −0.0070 (11) | −0.0062 (13) |
C6 | 0.0126 (11) | 0.0276 (14) | 0.0233 (13) | 0.0030 (10) | −0.0019 (10) | −0.0052 (11) |
C7 | 0.0112 (10) | 0.0141 (10) | 0.0130 (10) | 0.0000 (8) | 0.0007 (8) | 0.0006 (8) |
C8 | 0.0159 (11) | 0.0167 (11) | 0.0174 (11) | −0.0026 (9) | 0.0039 (9) | 0.0014 (9) |
C9 | 0.0192 (12) | 0.0248 (14) | 0.0182 (12) | −0.0009 (11) | 0.0053 (10) | 0.0011 (11) |
C10 | 0.0186 (12) | 0.0250 (14) | 0.0184 (12) | 0.0014 (11) | 0.0017 (10) | −0.0048 (11) |
C11 | 0.0226 (13) | 0.0171 (12) | 0.0247 (14) | −0.0005 (10) | 0.0015 (11) | −0.0031 (11) |
C12 | 0.0160 (11) | 0.0153 (11) | 0.0212 (12) | −0.0007 (9) | 0.0028 (10) | 0.0019 (10) |
C13 | 0.0143 (10) | 0.0099 (9) | 0.0149 (10) | 0.0003 (8) | 0.0018 (8) | −0.0014 (8) |
C14 | 0.0251 (14) | 0.0185 (12) | 0.0223 (13) | −0.0083 (11) | 0.0022 (11) | −0.0047 (10) |
C15 | 0.0308 (16) | 0.0184 (13) | 0.0271 (15) | −0.0106 (12) | 0.0056 (12) | −0.0028 (11) |
C16 | 0.0207 (13) | 0.0182 (12) | 0.0289 (15) | 0.0008 (10) | 0.0083 (11) | 0.0060 (11) |
C17 | 0.0263 (15) | 0.0329 (16) | 0.0144 (12) | −0.0008 (12) | 0.0057 (11) | 0.0023 (11) |
C18 | 0.0246 (13) | 0.0247 (14) | 0.0138 (11) | −0.0064 (11) | 0.0036 (10) | −0.0017 (10) |
C19 | 0.0164 (11) | 0.0139 (11) | 0.0197 (12) | 0.0007 (9) | −0.0033 (9) | 0.0027 (9) |
C20 | 0.0243 (16) | 0.039 (2) | 0.055 (3) | −0.0017 (15) | −0.0042 (16) | 0.0294 (19) |
C21 | 0.048 (3) | 0.040 (2) | 0.062 (3) | 0.0002 (19) | −0.014 (2) | 0.032 (2) |
C22 | 0.044 (2) | 0.0339 (19) | 0.039 (2) | 0.0173 (17) | −0.0218 (18) | 0.0018 (16) |
C23 | 0.0236 (15) | 0.050 (2) | 0.0302 (17) | 0.0138 (15) | −0.0116 (13) | −0.0103 (16) |
C24 | 0.0177 (13) | 0.0319 (16) | 0.0226 (14) | 0.0053 (11) | −0.0051 (11) | −0.0037 (12) |
Mo1—O3 | 1.6717 (19) | C5—C6 | 1.396 (4) |
Mo1—O1 | 1.9559 (18) | C5—H5 | 0.9300 |
Mo1—O2 | 1.9569 (18) | C6—H6 | 0.9300 |
Mo1—O6 | 2.0519 (18) | C7—C8 | 1.393 (4) |
Mo1—O7 | 2.0648 (18) | C7—C12 | 1.401 (4) |
Mo1—O1i | 2.3950 (19) | C8—C9 | 1.389 (4) |
Mo1—Mo2 | 2.6395 (3) | C8—H8 | 0.9300 |
Mo2—O4 | 1.6686 (19) | C9—C10 | 1.388 (4) |
Mo2—O2 | 1.9632 (18) | C9—H9 | 0.9300 |
Mo2—O1 | 1.9661 (18) | C10—C11 | 1.392 (4) |
Mo2—O8 | 2.0615 (19) | C10—H10 | 0.9300 |
Mo2—O5 | 2.0701 (19) | C11—C12 | 1.390 (4) |
Mo2—O2i | 2.3982 (19) | C11—H11 | 0.9300 |
P1—O6 | 1.527 (2) | C12—H12 | 0.9300 |
P1—O5i | 1.5351 (19) | C13—C14 | 1.389 (4) |
P1—C1 | 1.789 (3) | C13—C18 | 1.394 (4) |
P1—C7 | 1.789 (3) | C14—C15 | 1.388 (4) |
P2—O7 | 1.5298 (19) | C14—H14 | 0.9300 |
P2—O7i | 1.5298 (19) | C15—C16 | 1.379 (5) |
P2—C13i | 1.793 (3) | C15—H15 | 0.9300 |
P2—C13 | 1.793 (3) | C16—C17 | 1.379 (5) |
P3—O8i | 1.526 (2) | C16—H16 | 0.9300 |
P3—O8 | 1.526 (2) | C17—C18 | 1.391 (4) |
P3—C19 | 1.791 (3) | C17—H17 | 0.9300 |
P3—C19i | 1.791 (3) | C18—H18 | 0.9300 |
O1—Mo1i | 2.3950 (19) | C19—C20 | 1.383 (5) |
O2—Mo2i | 2.3982 (19) | C19—C24 | 1.385 (4) |
O5—P1i | 1.5351 (19) | C20—C21 | 1.386 (5) |
C1—C6 | 1.391 (4) | C20—H20 | 0.9300 |
C1—C2 | 1.398 (4) | C21—C22 | 1.360 (7) |
C2—C3 | 1.387 (4) | C21—H21 | 0.9300 |
C2—H2 | 0.9300 | C22—C23 | 1.369 (7) |
C3—C4 | 1.386 (4) | C22—H22 | 0.9300 |
C3—H3 | 0.9300 | C23—C24 | 1.393 (5) |
C4—C5 | 1.379 (5) | C23—H23 | 0.9300 |
C4—H4 | 0.9300 | C24—H24 | 0.9300 |
O3—Mo1—O1 | 109.88 (9) | C6—C1—P1 | 123.7 (2) |
O3—Mo1—O2 | 108.17 (9) | C2—C1—P1 | 116.1 (2) |
O1—Mo1—O2 | 89.87 (7) | C3—C2—C1 | 119.9 (3) |
O3—Mo1—O6 | 97.93 (9) | C3—C2—H2 | 120.1 |
O1—Mo1—O6 | 151.61 (7) | C1—C2—H2 | 120.1 |
O2—Mo1—O6 | 86.71 (7) | C4—C3—C2 | 120.1 (3) |
O3—Mo1—O7 | 97.84 (8) | C4—C3—H3 | 119.9 |
O1—Mo1—O7 | 84.81 (7) | C2—C3—H3 | 119.9 |
O2—Mo1—O7 | 153.70 (7) | C5—C4—C3 | 119.9 (3) |
O6—Mo1—O7 | 85.89 (8) | C5—C4—H4 | 120.0 |
O3—Mo1—O1i | 169.29 (8) | C3—C4—H4 | 120.0 |
O1—Mo1—O1i | 78.16 (7) | C4—C5—C6 | 120.9 (3) |
O2—Mo1—O1i | 78.27 (7) | C4—C5—H5 | 119.6 |
O6—Mo1—O1i | 73.54 (7) | C6—C5—H5 | 119.6 |
O7—Mo1—O1i | 75.43 (7) | C1—C6—C5 | 119.0 (3) |
O3—Mo1—Mo2 | 98.95 (7) | C1—C6—H6 | 120.5 |
O1—Mo1—Mo2 | 47.86 (5) | C5—C6—H6 | 120.5 |
O2—Mo1—Mo2 | 47.78 (5) | C8—C7—C12 | 119.8 (3) |
O6—Mo1—Mo2 | 134.41 (5) | C8—C7—P1 | 119.4 (2) |
O7—Mo1—Mo2 | 132.67 (5) | C12—C7—P1 | 120.8 (2) |
O1i—Mo1—Mo2 | 91.70 (4) | C9—C8—C7 | 120.3 (3) |
O4—Mo2—O2 | 109.42 (9) | C9—C8—H8 | 119.9 |
O4—Mo2—O1 | 109.06 (9) | C7—C8—H8 | 119.9 |
O2—Mo2—O1 | 89.39 (7) | C10—C9—C8 | 119.9 (3) |
O4—Mo2—O8 | 97.02 (9) | C10—C9—H9 | 120.1 |
O2—Mo2—O8 | 84.49 (7) | C8—C9—H9 | 120.1 |
O1—Mo2—O8 | 153.77 (8) | C9—C10—C11 | 120.1 (3) |
O4—Mo2—O5 | 99.12 (9) | C9—C10—H10 | 120.0 |
O2—Mo2—O5 | 151.09 (7) | C11—C10—H10 | 120.0 |
O1—Mo2—O5 | 85.51 (7) | C12—C11—C10 | 120.4 (3) |
O8—Mo2—O5 | 87.63 (8) | C12—C11—H11 | 119.8 |
O4—Mo2—O2i | 169.42 (8) | C10—C11—H11 | 119.8 |
O2—Mo2—O2i | 77.94 (7) | C11—C12—C7 | 119.5 (3) |
O1—Mo2—O2i | 78.02 (7) | C11—C12—H12 | 120.2 |
O8—Mo2—O2i | 75.76 (7) | C7—C12—H12 | 120.2 |
O5—Mo2—O2i | 73.16 (7) | C14—C13—C18 | 119.6 (3) |
O4—Mo2—Mo1 | 99.31 (7) | C14—C13—P2 | 120.5 (2) |
O2—Mo2—Mo1 | 47.57 (5) | C18—C13—P2 | 119.9 (2) |
O1—Mo2—Mo1 | 47.54 (5) | C15—C14—C13 | 119.8 (3) |
O8—Mo2—Mo1 | 132.06 (5) | C15—C14—H14 | 120.1 |
O5—Mo2—Mo1 | 132.95 (5) | C13—C14—H14 | 120.1 |
O2i—Mo2—Mo1 | 91.27 (4) | C16—C15—C14 | 120.4 (3) |
O6—P1—O5i | 114.95 (10) | C16—C15—H15 | 119.8 |
O6—P1—C1 | 106.55 (12) | C14—C15—H15 | 119.8 |
O5i—P1—C1 | 107.61 (12) | C17—C16—C15 | 120.2 (3) |
O6—P1—C7 | 109.45 (12) | C17—C16—H16 | 119.9 |
O5i—P1—C7 | 108.04 (12) | C15—C16—H16 | 119.9 |
C1—P1—C7 | 110.19 (12) | C16—C17—C18 | 119.8 (3) |
O7—P2—O7i | 116.31 (15) | C16—C17—H17 | 120.1 |
O7—P2—C13i | 108.61 (11) | C18—C17—H17 | 120.1 |
O7i—P2—C13i | 106.97 (11) | C17—C18—C13 | 120.1 (3) |
O7—P2—C13 | 106.97 (11) | C17—C18—H18 | 119.9 |
O7i—P2—C13 | 108.61 (11) | C13—C18—H18 | 119.9 |
C13i—P2—C13 | 109.25 (17) | C20—C19—C24 | 119.3 (3) |
O8i—P3—O8 | 116.17 (15) | C20—C19—P3 | 119.2 (2) |
O8i—P3—C19 | 110.42 (12) | C24—C19—P3 | 121.5 (2) |
O8—P3—C19 | 106.58 (12) | C19—C20—C21 | 120.4 (4) |
O8i—P3—C19i | 106.58 (12) | C19—C20—H20 | 119.8 |
O8—P3—C19i | 110.42 (12) | C21—C20—H20 | 119.8 |
C19—P3—C19i | 106.27 (19) | C22—C21—C20 | 119.9 (4) |
Mo1—O1—Mo2 | 84.60 (7) | C22—C21—H21 | 120.0 |
Mo1—O1—Mo1i | 101.77 (7) | C20—C21—H21 | 120.0 |
Mo2—O1—Mo1i | 101.73 (8) | C21—C22—C23 | 120.6 (3) |
Mo1—O2—Mo2 | 84.65 (7) | C21—C22—H22 | 119.7 |
Mo1—O2—Mo2i | 101.90 (7) | C23—C22—H22 | 119.7 |
Mo2—O2—Mo2i | 102.02 (7) | C22—C23—C24 | 120.2 (4) |
P1i—O5—Mo2 | 129.43 (11) | C22—C23—H23 | 119.9 |
P1—O6—Mo1 | 132.12 (11) | C24—C23—H23 | 119.9 |
P2—O7—Mo1 | 131.57 (11) | C19—C24—C23 | 119.5 (3) |
P3—O8—Mo2 | 132.15 (12) | C19—C24—H24 | 120.2 |
C6—C1—C2 | 120.1 (3) | C23—C24—H24 | 120.2 |
Symmetry code: (i) −x+2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3ii | 0.93 | 2.52 | 3.188 (4) | 129 |
C21—H21···O4iii | 0.93 | 2.57 | 3.420 (5) | 152 |
Symmetry codes: (ii) x−1/2, −y+1/2, −z; (iii) x, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.93 | 2.52 | 3.188 (4) | 129 |
C21—H21···O4ii | 0.93 | 2.57 | 3.420 (5) | 152 |
Symmetry codes: (i) x−1/2, −y+1/2, −z; (ii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mo4(C12H10O2P)4O8] |
Mr | 1380.44 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 100 |
a, b, c (Å) | 16.1061 (19), 19.891 (2), 15.254 (3) |
V (Å3) | 4887.0 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.61 × 0.49 × 0.30 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.45, 0.66 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 255304, 8962, 7558 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.090, 1.27 |
No. of reflections | 8962 |
No. of parameters | 326 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + 23.6442P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.92, −1.05 |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
Acknowledgements
Financial support by the Austrian Science Fund (FWF) (Project No. P24202-N17) is gratefully acknowledged. The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal diffractometer.
References
Aguiar, S. R. M. M. de, Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., Veiros, L. F. & Kirchner, K. (2014). J. Organomet. Chem. 760, 74–83. PubMed Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Modec, B., Brenčič, J., Burkholder, E. M. & Zubieta, J. (2003). Dalton Trans. pp. 4618–4625. CSD CrossRef Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schirmer, W., Flörke, U. & Haupt, H.-J. (1989). Z. Anorg. Allg. Chem. 574, 239–255. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.