metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Acetato-κO){2-[(2-amino­eth­yl-κN)disulfan­yl]ethanaminium}di­chlorido­zinc(II)

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kuwamuran12@chem.sci.osaka-u.ac.jp

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 4 December 2015; accepted 18 January 2016; online 23 January 2016)

In the title compound, [Zn(C4H13N2S2)(CH3COO)Cl2], the ZnII ion is in a tetra­hedral coordination geometry, coordinated by one acetate, two chloride and one 2-[(2-amino­eth­yl)disulfan­yl]ethanaminium ligand, with a Zn—O distance of 1.977 (3) Å, a Zn—N distance of 2.015 (3) Å and Zn—Cl distances of 2.2673 (18) and 2.2688 (15) Å. In the crystal, mol­ecules are self-assembled by N—H⋯Cl hydrogen bonds, leading to a one-dimensional chain structure. The chains inter­act with each other through N—H⋯O, N—H⋯S, C—H⋯Cl and C—H⋯S hydrogen bonding, completing a three-dimensional hydrogen-bonding network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Lead(II), bis­muth(III), and copper(I) compounds with 2,2′-di­thio­bis­(ethyl­amine) can show a variety of extended structural arrangements and are used as ionic conductive and non-linear optical materials (Louvain et al., 2007[Louvain, N., Bi, W., Mercier, N., Buzaré, J.-Y., Legein, C. & Corbel, G. (2007). Dalton Trans. pp. 965-970.], 2014[Louvain, N., Frison, G., Dittmer, J., Legein, C. & Mercier, N. (2014). Eur. J. Inorg. Chem. pp. 364-376.]; Tamura et al., 2007[Tamura, M., Matsuura, N., Kawamoto, T. & Konno, T. (2007). Inorg. Chem. 46, 6834-6836.]; Bi et al., 2008[Bi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013-1017.]).

In the title compound, [Zn(C4H13N2S2)(CH3COO)Cl2], the Zn(II) ion is in a tetra­hedral coordination geometry, Fig. 1[link], coordinated by one acetate, two chloride and one 2-[(2-amino­eth­yl)disulfan­yl]ethanaminium ligands, with a Zn1—O1 distance of 1.977 (3) Å, a Zn1—N1 distance of 2.015 (3) Å and Zn1—Cl distances of 2.2673 (18) and 2.2688 (15) Å. In the crystal, mol­ecules are self-assembled by N—H⋯Cl hydrogen bonds, Table 1[link], leading to a one-dimensional chain structure. The chains inter­act with each other through N—H⋯O, N—H⋯S, C—H⋯Cl and C—H⋯S hydrogen bonding, completing a three-dimensional hydrogen-bonding network structure, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.91 2.53 3.436 (4) 172
N1—H1B⋯Cl2ii 0.91 2.70 3.522 (4) 151
N1—H1B⋯O2 0.91 2.62 3.075 (4) 112
N2—H2A⋯O2iii 0.91 1.84 2.730 (4) 164
N2—H2B⋯Cl1iv 0.91 2.32 3.190 (4) 159
N2—H2C⋯S2 0.91 2.81 3.261 (3) 112
N2—H2C⋯O1v 0.91 2.06 2.922 (4) 157
C2—H3⋯Cl2ii 0.99 2.85 3.705 (4) 145
C3—H5⋯Cl1vi 0.99 2.92 3.690 (5) 135
C4—H7⋯S1 0.99 2.88 3.412 (4) 115
C6—H9⋯S1v 0.98 2.97 3.765 (5) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x-1, -y+2, -z+1; (iv) x-1, y+1, z-1; (v) -x, -y+2, -z+1; (vi) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along a axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

To a solution of amino­ethane­thiol hydro­chloride (19.0 mg, 0.167 mmol) in 1.5 ml of methanol was added 2-benzoyl­pyridine (30.1 mg, 0.164 mmol). The mixture was stirred at room temperature for 1 h. To the resulting solution was added a solution of Zn(CH3COO)2 (36.0 mg, 0.164 mmol) in 5 ml of methanol. The mixture was stirred at room temperature for 1 h. To the colorless solution was added Ni(NO3)2·6H2O (7.1 mg, 0.024 mmol). The red solution was stirred at room temperature for 1.5 h to give a red solution, which was allowed to stand overnight. A small amount of colorless block-shaped crystals of [Zn(C4H13N2S2)(C2H3O2)Cl2] was obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C4H13N2S2)(C2H3O2)Cl2]
Mr 348.60
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.907 (4), 10.320 (7), 10.707 (7)
α, β, γ (°) 68.331 (14), 81.936 (15), 71.917 (12)
V3) 674.0 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.51
Crystal size (mm) 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS 7
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.466, 0.806
No. of measured, independent and observed [I > 2σ(I)] reflections 5387, 3039, 2471
Rint 0.039
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.10
No. of reflections 3039
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.20, −0.52
Computer programs: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tolyo, Japan.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218-224.]).

Structural data


Synthesis and crystallization top

To a solution of amino­ethane­thiol hydro­chloride (19.0 mg, 0.167 mmol) in 1.5 ml of methanol was added 2-benzoyl­pyridine (30.1 mg, 0.164 mmol). The mixture was stirred at room temperature for 1 h. To the resulting solution was added a solution of Zn(CH3COO)2 (36.0 mg, 0.164 mmol) in 5 ml of methanol. The mixture was stirred at room temperature for 1 h. To the colorless solution was added Ni(NO3)2·6H2O (7.1 mg, 0.024 mmol). The red solution was stirred at room temperature for 1.5 h to give a red solution, which was allowed to stand overnight. A small amount of colorless block crystals of [ZnCl2(CH3COO)(C4H13N2S2)] was obtained.

Refinement top

C-bound H atoms were placed at calculated positions (C—H = 0.98 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(Cmethyl­ene) or 1.5Ueq(Cmethyl), respectively. N-bound H atoms were placed at calculated positions (N—H = 0.91 Å) and refined as riding, with Uiso(H) = 1.2Ueq(Namine) or 1.5Ueq(Nammonium).

Related literature top

Lead(II), bismuth(III), and copper(I) compounds with 2,2'-dithiobis(ethylamine) can show a variety of extended structural arrangements and are used as ionic conductive and nonlinear optical materials (Louvain et al., 2007, 2014; Tamura et al., 2007; Bi et al., 2008).

Experimental top

To a solution of aminoethanethiol hydrochloride (19.0 mg, 0.167 mmol) in 1.5 ml of methanol was added 2-benzoylpyridine (30.1 mg, 0.164 mmol). The mixture was stirred at room temperature for 1 h. To the resulting solution was added a solution of Zn(CH3COO)2 (36.0 mg, 0.164 mmol) in 5 ml of methanol. The mixture was stirred at room temperature for 1 h. To the colorless solution was added Ni(NO3)2·6H2O (7.1 mg, 0.024 mmol). The red solution was stirred at room temperature for 1.5 h to give a red solution, which was allowed to stand overnight. A small amount of colorless block-shaped crystals of [ZnCl2(CH3COO)(C4H13N2S2)] was obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Lead(II), bismuth(III), and copper(I) compounds with 2,2'-dithiobis(ethylamine) can show a variety of extended structural arrangements and are used as ionic conductive and non-linear optical materials (Louvain et al., 2007, 2014; Tamura et al., 2007; Bi et al., 2008).

In the title compound, [Zn(C4H13N2S2)(CH3COO)Cl2], the Zn(II) ion is in a tetrahedral coordination geometry, Fig. 1, coordinated by one acetate, two chloride and one 2-[(2-aminoethyl)disulfanyl]ethanaminium ligands, with a Zn1—O1 distance of 1.977 (3) Å, a Zn1—N1 distance of 2.015 (3) Å and Zn1—Cl distances of 2.2673 (18) and 2.2688 (15) Å. In the crystal, molecules are self-assembled by N—H···Cl hydrogen bonds, Table 1, leading to a one-dimensional chain structure. The chains interact with each other through N—H···O, N—H···S, C—H···Cl and C—H···S hydrogen bonding, completing a three-dimensional hydrogen-bonding network structure, Fig. 2.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO (Rigaku, 2000); data reduction: PROCESS-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Yadokari-XG (Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along a axis. Hydrogen bonds are shown as dashed lines.
(Acetato-κO){2-[(2-aminoethyl-κN)disulfanyl]ethan-1-aminium}dichloridozinc(II) top
Crystal data top
[Zn(C4H13N2S2)(C2H3O2)Cl2]Z = 2
Mr = 348.60F(000) = 356
Triclinic, P1Dx = 1.718 Mg m3
a = 6.907 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.320 (7) ÅCell parameters from 1503 reflections
c = 10.707 (7) Åθ = 3.1–27.7°
α = 68.331 (14)°µ = 2.51 mm1
β = 81.936 (15)°T = 200 K
γ = 71.917 (12)°Block, colorless
V = 674.0 (8) Å30.20 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS 7
diffractometer
2471 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.039
/w scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.466, Tmax = 0.806k = 1313
5387 measured reflectionsl = 1313
3039 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.149P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3039 reflectionsΔρmax = 1.20 e Å3
138 parametersΔρmin = 0.52 e Å3
Crystal data top
[Zn(C4H13N2S2)(C2H3O2)Cl2]γ = 71.917 (12)°
Mr = 348.60V = 674.0 (8) Å3
Triclinic, P1Z = 2
a = 6.907 (4) ÅMo Kα radiation
b = 10.320 (7) ŵ = 2.51 mm1
c = 10.707 (7) ÅT = 200 K
α = 68.331 (14)°0.20 × 0.10 × 0.10 mm
β = 81.936 (15)°
Data collection top
Rigaku R-AXIS 7
diffractometer
3039 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2471 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.806Rint = 0.039
5387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.10Δρmax = 1.20 e Å3
3039 reflectionsΔρmin = 0.52 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.37629 (6)0.52770 (4)0.71825 (4)0.03651 (17)
Cl10.46685 (15)0.28147 (10)0.79271 (10)0.0476 (3)
Cl20.64255 (14)0.61874 (10)0.62265 (10)0.0440 (3)
N10.1676 (4)0.5888 (3)0.5784 (3)0.0355 (7)
H1A0.20940.52780.53030.043*
H1B0.04850.57550.62180.043*
N20.5827 (5)1.2558 (3)0.1010 (3)0.0407 (7)
H2A0.70851.29400.13250.061*
H2B0.58151.28850.00950.061*
H2C0.48841.28360.12880.061*
S10.03739 (16)0.94437 (11)0.24546 (10)0.0488 (3)
S20.26116 (16)1.05857 (11)0.34154 (11)0.0472 (3)
C10.1253 (6)0.7383 (4)0.4832 (4)0.0395 (9)
H10.25560.76290.45210.047*
H20.04330.80540.52970.047*
C20.0112 (6)0.7605 (4)0.3617 (4)0.0397 (9)
H30.11980.73700.39240.048*
H40.09260.69310.31530.048*
O10.3115 (4)0.5845 (3)0.8799 (2)0.0426 (6)
C30.4926 (6)1.0338 (4)0.3006 (4)0.0474 (10)
H50.48110.92870.33380.057*
H60.61031.08060.34860.057*
C50.1261 (5)0.6340 (4)0.9035 (4)0.0365 (8)
O20.0136 (4)0.6437 (3)0.8396 (3)0.0526 (7)
C40.5334 (6)1.0955 (4)0.1531 (4)0.0432 (9)
H70.41191.05510.10370.052*
H80.64861.06620.13720.052*
C60.0799 (6)0.6893 (5)1.0234 (4)0.0483 (10)
H90.09930.78640.99460.072*
H100.17230.62261.09630.072*
H110.06140.69391.05540.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0315 (3)0.0388 (3)0.0309 (3)0.00430 (19)0.00581 (19)0.0056 (2)
Cl10.0531 (6)0.0391 (5)0.0416 (5)0.0057 (5)0.0049 (5)0.0087 (4)
Cl20.0361 (5)0.0510 (6)0.0440 (6)0.0130 (4)0.0023 (4)0.0161 (5)
N10.0299 (15)0.0360 (16)0.0321 (16)0.0050 (13)0.0049 (13)0.0041 (13)
N20.0350 (16)0.0451 (18)0.0339 (17)0.0058 (14)0.0067 (14)0.0071 (14)
S10.0419 (5)0.0464 (6)0.0409 (6)0.0078 (5)0.0062 (5)0.0021 (5)
S20.0519 (6)0.0395 (5)0.0438 (6)0.0048 (5)0.0164 (5)0.0087 (4)
C10.0365 (19)0.0343 (19)0.040 (2)0.0060 (16)0.0127 (17)0.0031 (17)
C20.040 (2)0.039 (2)0.034 (2)0.0057 (17)0.0078 (16)0.0068 (16)
O10.0351 (14)0.0494 (16)0.0365 (15)0.0056 (12)0.0047 (12)0.0111 (13)
C30.043 (2)0.046 (2)0.046 (2)0.0115 (18)0.0021 (19)0.0107 (19)
C50.0272 (18)0.0367 (19)0.0322 (19)0.0080 (15)0.0094 (16)0.0053 (15)
O20.0388 (15)0.0707 (19)0.0471 (17)0.0110 (14)0.0017 (13)0.0225 (15)
C40.041 (2)0.042 (2)0.043 (2)0.0066 (17)0.0096 (18)0.0110 (18)
C60.040 (2)0.059 (2)0.041 (2)0.0099 (19)0.0010 (18)0.0154 (19)
Geometric parameters (Å, º) top
Zn1—O11.977 (3)C1—H10.9900
Zn1—N12.015 (3)C1—H20.9900
Zn1—Cl12.2673 (18)C2—H30.9900
Zn1—Cl22.2688 (15)C2—H40.9900
N1—C11.465 (4)O1—C51.251 (4)
N1—H1A0.9100C3—C41.500 (5)
N1—H1B0.9100C3—H50.9900
N2—C41.478 (5)C3—H60.9900
N2—H2A0.9100C5—O21.218 (4)
N2—H2B0.9100C5—C61.545 (5)
N2—H2C0.9100C4—H70.9900
S1—C21.800 (4)C4—H80.9900
S1—S22.0384 (17)C6—H90.9800
S2—C31.829 (4)C6—H100.9800
C1—C21.524 (5)C6—H110.9800
O1—Zn1—N1121.89 (12)C1—C2—H3109.3
O1—Zn1—Cl1106.49 (8)S1—C2—H3109.3
N1—Zn1—Cl1104.45 (9)C1—C2—H4109.3
O1—Zn1—Cl2102.22 (8)S1—C2—H4109.3
N1—Zn1—Cl2109.45 (10)H3—C2—H4108.0
Cl1—Zn1—Cl2112.50 (5)C5—O1—Zn1115.4 (2)
C1—N1—Zn1117.2 (2)C4—C3—S2113.7 (3)
C1—N1—H1A108.0C4—C3—H5108.8
Zn1—N1—H1A108.0S2—C3—H5108.8
C1—N1—H1B108.0C4—C3—H6108.8
Zn1—N1—H1B108.0S2—C3—H6108.8
H1A—N1—H1B107.2H5—C3—H6107.7
C4—N2—H2A109.5O2—C5—O1125.7 (4)
C4—N2—H2B109.5O2—C5—C6119.8 (3)
H2A—N2—H2B109.5O1—C5—C6114.5 (3)
C4—N2—H2C109.5N2—C4—C3111.7 (3)
H2A—N2—H2C109.5N2—C4—H7109.3
H2B—N2—H2C109.5C3—C4—H7109.3
C2—S1—S2103.27 (14)N2—C4—H8109.3
C3—S2—S1102.93 (14)C3—C4—H8109.3
N1—C1—C2112.4 (3)H7—C4—H8107.9
N1—C1—H1109.1C5—C6—H9109.5
C2—C1—H1109.1C5—C6—H10109.5
N1—C1—H2109.1H9—C6—H10109.5
C2—C1—H2109.1C5—C6—H11109.5
H1—C1—H2107.9H9—C6—H11109.5
C1—C2—S1111.6 (2)H10—C6—H11109.5
Zn1—N1—C1—C2164.8 (2)Zn1—O1—C5—O23.3 (5)
N1—C1—C2—S1179.5 (3)Zn1—O1—C5—C6175.2 (2)
S2—S1—C2—C173.0 (3)S2—C3—C4—N267.0 (4)
S1—S2—C3—C462.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.912.533.436 (4)172
N1—H1B···Cl2ii0.912.703.522 (4)151
N1—H1B···O20.912.623.075 (4)112
N2—H2A···O2iii0.911.842.730 (4)164
N2—H2B···Cl1iv0.912.323.190 (4)159
N2—H2C···S20.912.813.261 (3)112
N2—H2C···O1v0.912.062.922 (4)157
C2—H3···Cl2ii0.992.853.705 (4)145
C3—H5···Cl1vi0.992.923.690 (5)135
C4—H7···S10.992.883.412 (4)115
C6—H9···S1v0.982.973.765 (5)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1, y+2, z+1; (iv) x1, y+1, z1; (v) x, y+2, z+1; (vi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.912.533.436 (4)171.8
N1—H1B···Cl2ii0.912.703.522 (4)151.0
N1—H1B···O20.912.623.075 (4)111.8
N2—H2A···O2iii0.911.842.730 (4)163.6
N2—H2B···Cl1iv0.912.323.190 (4)159.1
N2—H2C···S20.912.813.261 (3)112.2
N2—H2C···O1v0.912.062.922 (4)156.6
C2—H3···Cl2ii0.992.853.705 (4)144.5
C3—H5···Cl1vi0.992.923.690 (5)134.9
C4—H7···S10.992.883.412 (4)114.6
C6—H9···S1v0.982.973.765 (5)139.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1, y+2, z+1; (iv) x1, y+1, z1; (v) x, y+2, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C4H13N2S2)(C2H3O2)Cl2]
Mr348.60
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.907 (4), 10.320 (7), 10.707 (7)
α, β, γ (°)68.331 (14), 81.936 (15), 71.917 (12)
V3)674.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS 7
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.466, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
5387, 3039, 2471
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.10
No. of reflections3039
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.52

Computer programs: PROCESS-AUTO (Rigaku, 2000), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Yadokari-XG (Kabuto et al., 2009).

 

Acknowledgements

This work was supported by CREST, JST, and a Grant-in-Aid for Science Research No. 25600005 from the Ministry of Education, Culture, Sports, Science and Technology of Japan. NK acknowledges support from the Kurita Water and Environment Foundation.

References

First citationBi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013–1017.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218–224.  CrossRef Google Scholar
First citationLouvain, N., Bi, W., Mercier, N., Buzaré, J.-Y., Legein, C. & Corbel, G. (2007). Dalton Trans. pp. 965–970.  CSD CrossRef Google Scholar
First citationLouvain, N., Frison, G., Dittmer, J., Legein, C. & Mercier, N. (2014). Eur. J. Inorg. Chem. pp. 364–376.  CSD CrossRef Google Scholar
First citationRigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tolyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTamura, M., Matsuura, N., Kawamoto, T. & Konno, T. (2007). Inorg. Chem. 46, 6834–6836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds