metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-1-ferrocenyl­ethanol

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 November 2015; accepted 18 January 2016; online 23 January 2016)

In the title compound, [Fe(C5H5)(C7H8ClO)], the ferrocene cyclo­penta­diene rings are slightly staggered and inclined to one another at an angle of 0.79 (13)°. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds each form inversion dimers and these combine with an edge-to-face C—H⋯π hydrogen bond to stack the mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound [Fe(C5H5)(C7H8ClO)], (1), Fig. 1[link], synthesized by the lithium aluminium hydride reduction of 2-chloro-1-ferrocenyl­ethanone, is used in the synthesis of 1,2-di­hydroxy­ethyl ferrocene (Schlögl & Egger, 1963[Schlögl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392.]). The two Cp rings of the ferrocene unit are slightly staggered with a mean C⋯Cg1⋯Cg2⋯C angle of 14.8 (3)° (Cg1 and Cg2 are the centroids of the substituted and unsubstituted Cp rings, respectively). The rings are almost coplanar with an angle of 0.79 (13)° between them. The methyl­ene C atom lies close to the plane of the substituted Cp ring with the OH and CH2Cl units of the chloro­ethanol substituent pointing towards and away from the Fe atom, respectively. In the crystal, three mol­ecules are linked via C—H⋯Cl hydrogen bonds (Table 1[link]), forming two inversion dimers with a third inversion dimer resulting from C—H⋯O contacts. A C—H⋯π(ring) hydrogen bond completes the inter­molecular inter­actions that combine to stack chains of mol­ecules along the b axis, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C12 Cp ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.55 3.472 (3) 164
C7—H7⋯Cl1ii 0.95 2.89 3.6720 (17) 141
C8—H8⋯Cl1iii 0.95 2.81 3.5153 (17) 132
C12—H12⋯Cg2iv 0.95 2.88 3.6321 (17) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the b-axis direction. Hydrogen bonds are drawn as blue dashed lines.

The structures of three other ferrocenyl­ethanol derivatives are known (Glidewell et al., 1996[Glidewell, C., Klar, R. B., Lightfoot, P., Zakaria, C. M. & Ferguson, G. (1996). Acta Cryst. B52, 110-121.]; Pool et al., 1998[Pool, B. R., Sun, C.-C. & White, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 1269-1272.]). The Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) also reveals several 1-hy­droxy­ferrocene compounds (Kowalski et al., 2012[Kowalski, K., Koceva-Chyła, A., Pieniążek, A., Bernasińska, J., Skiba, J., Rybarczyk-Pirek, A. J. & Jóźwiak, Z. (2012). J. Organomet. Chem. 700, 58-68.], 2013[Kowalski, K., Skiba, J., Oehninger, L., Ott, I., Solecka, J., Rajnisz, A. & Therrien, B. (2013). Organometallics, 32, 5766-5773.]; Jary & Baumgartner, 1998[Jary, W. G. & Baumgartner, J. (1998). Tetrahedron Asymmetry, 9, 2081-2085.]; Niazimbetova et al., 1999[Niazimbetova, Z. I., Evans, D. H., Guzei, I. A., Incarvito, C. D. & Rheingold, A. L. (1999). J. Electrochem. Soc. 146, 1492-1495.]). We have also recently reported the closely related derivative 2-chloro-1-ferrocenyl­ethanone (McAdam & Simpson, 2016[McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x152177.]).

Synthesis and crystallization

The title compound was synthesized by a literature method (Schlögl & Egger, 1963[Schlögl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376-392.]). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low-angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C7H8ClO)]
Mr 264.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 92
a, b, c (Å) 6.0366 (4), 7.6215 (5), 23.0837 (14)
β (°) 91.737 (3)
V3) 1061.55 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.36 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.805, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19263, 3807, 3355
Rint 0.027
(sin θ/λ)max−1) 0.777
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.03
No. of reflections 3807
No. of parameters 140
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.11, −0.88
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

The title compound was synthesized by a literature method (Schlögl & Egger, 1963). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.

Refinement top

High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final refinement cycles.

Experimental top

The title compound was synthesized by a literature method (Schlögl & Egger, 1963). Orange blocks for the X-ray study were grown from a CH2Cl2 solution layered with hexane.

Refinement top

High displacement parameters for the O2 atom and the fact that no hydrogen bond is formed involving this hydroxyl group suggests possible disorder. However, a reasonable disorder model for the H atom bound to O2 could not be developed. Two low-angle reflections with Fo << Fc that may have been affected by the beamstop were omitted from the final refinement cycles.

Structure description top

The title compound C12H13ClFeO, (1), Fig. 1, synthesized by the lithium aluminium hydride reduction of 2-chloro-1-ferrocenylethanone, is used in the synthesis of 1,2-dihydroxyethyl ferrocene (Schlögl & Egger, 1963). The two Cp rings of the ferrocene unit are slightly staggered with a mean C···Cg1···Cg2···C angle of 14.8 (3)° (Cg1 and Cg2 are the centroids of the substituted and unsubstituted Cp rings, respectively). The rings are almost coplanar with an angle of 0.79 (13) ° between them. The methylene C atom lies close to the plane of the substituted Cp ring with the OH and CH2Cl units of the chloroethanol substituent pointing toward and away from the Fe atom, respectively. In the crystal, three molecules are linked via C—H···Cl hydrogen bonds (Table 1), forming two inversion dimers with a third inversion dimer resulting from C—H···O contacts. A C—H···π(ring) hydrogen bond completes the intermolecular interactions that combine to stack chains of molecules along the b axis, Fig. 2. The structures of three other ferrocenylethanol derivatives are known (Glidewell et al., 1996; Pool et al., (1998). The Cambridge Structural Database (Groom & Allen, 2014) also reveals several 1-hydroxyferrocene compounds (Kowalski et al., 2012, 2013; Jary & Baumgartner, 1998; Niazimbetova et al., 1999). We have also recently reported the closely related derivative 2-chloro-1-ferrocenylethanone (McAdam & Simpson, 2016).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b-axis direction. Hydrogen bonds are drawn as blue dashed lines.
2-Chloro-1-ferrocenylethanol top
Crystal data top
[Fe(C5H5)(C7H8ClO)]F(000) = 544
Mr = 264.52Dx = 1.655 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0366 (4) ÅCell parameters from 8579 reflections
b = 7.6215 (5) Åθ = 2.8–32.3°
c = 23.0837 (14) ŵ = 1.64 mm1
β = 91.737 (3)°T = 92 K
V = 1061.55 (12) Å3Block, orange
Z = 40.36 × 0.22 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3355 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
ω scansθmax = 33.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 99
Tmin = 0.805, Tmax = 1.000k = 911
19263 measured reflectionsl = 3535
3807 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.2107P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3807 reflectionsΔρmax = 1.11 e Å3
140 parametersΔρmin = 0.88 e Å3
Crystal data top
[Fe(C5H5)(C7H8ClO)]V = 1061.55 (12) Å3
Mr = 264.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0366 (4) ŵ = 1.64 mm1
b = 7.6215 (5) ÅT = 92 K
c = 23.0837 (14) Å0.36 × 0.22 × 0.12 mm
β = 91.737 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3807 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
3355 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 1.000Rint = 0.027
19263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.11 e Å3
3807 reflectionsΔρmin = 0.88 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06729 (10)0.20675 (7)0.42483 (2)0.03633 (13)
C10.2756 (3)0.1647 (3)0.47986 (8)0.0272 (4)
H1A0.28220.03710.48780.033*
H1B0.42180.20160.46580.033*
C20.2281 (4)0.2618 (3)0.53529 (8)0.0292 (4)
H20.08240.21990.54940.035*
O20.2121 (5)0.4418 (2)0.52523 (8)0.0592 (6)
H2A0.337 (7)0.449 (6)0.511 (2)0.089*
C30.4036 (3)0.2173 (2)0.58031 (7)0.0194 (3)
C40.6268 (3)0.2814 (2)0.58528 (8)0.0246 (3)
H40.69240.36560.56080.029*
C50.7325 (3)0.1961 (3)0.63363 (9)0.0255 (4)
H50.88110.21410.64710.031*
C60.5779 (3)0.0800 (2)0.65812 (7)0.0217 (3)
H60.60540.00650.69080.026*
C70.3751 (3)0.0919 (2)0.62570 (7)0.0185 (3)
H70.24360.02800.63280.022*
Fe10.45990 (4)0.33245 (3)0.65905 (2)0.01497 (7)
C80.2107 (3)0.5095 (2)0.67295 (7)0.0200 (3)
H80.07820.52330.65010.024*
C90.4145 (3)0.5980 (2)0.66431 (7)0.0232 (3)
H90.44230.68090.63470.028*
C100.5702 (3)0.5403 (2)0.70817 (8)0.0240 (3)
H100.71970.57800.71290.029*
C110.4608 (3)0.4159 (2)0.74365 (7)0.0216 (3)
H110.52470.35640.77620.026*
C120.2397 (3)0.3966 (2)0.72168 (7)0.0190 (3)
H120.13020.32150.73690.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0448 (3)0.0318 (2)0.0313 (2)0.0146 (2)0.0173 (2)0.01182 (18)
C10.0314 (9)0.0271 (9)0.0227 (8)0.0102 (7)0.0066 (7)0.0091 (6)
C20.0397 (10)0.0277 (9)0.0199 (7)0.0173 (8)0.0021 (7)0.0005 (7)
O20.1191 (15)0.0275 (8)0.0296 (7)0.0287 (9)0.0176 (9)0.0034 (6)
C30.0251 (7)0.0162 (7)0.0168 (6)0.0066 (6)0.0008 (5)0.0021 (5)
C40.0293 (8)0.0186 (7)0.0266 (8)0.0014 (6)0.0132 (7)0.0049 (6)
C50.0155 (7)0.0283 (9)0.0327 (9)0.0017 (6)0.0008 (6)0.0135 (7)
C60.0253 (7)0.0170 (7)0.0224 (7)0.0070 (6)0.0032 (6)0.0028 (6)
C70.0187 (6)0.0131 (6)0.0236 (7)0.0002 (5)0.0016 (5)0.0040 (5)
Fe10.01566 (11)0.01211 (11)0.01724 (11)0.00047 (7)0.00223 (7)0.00292 (7)
C80.0238 (7)0.0178 (7)0.0182 (7)0.0059 (6)0.0008 (5)0.0024 (5)
C90.0365 (9)0.0133 (7)0.0203 (7)0.0018 (6)0.0071 (6)0.0024 (5)
C100.0230 (7)0.0205 (8)0.0286 (8)0.0046 (6)0.0026 (6)0.0097 (6)
C110.0258 (7)0.0205 (7)0.0181 (7)0.0025 (6)0.0030 (6)0.0038 (6)
C120.0219 (7)0.0188 (7)0.0164 (6)0.0002 (6)0.0049 (5)0.0007 (5)
Geometric parameters (Å, º) top
Cl1—C11.7893 (19)C6—H60.9500
C1—C21.513 (3)C7—Fe12.0475 (16)
C1—H1A0.9900C7—H70.9500
C1—H1B0.9900Fe1—C92.0466 (17)
C2—O21.395 (3)Fe1—C102.0476 (17)
C2—C31.500 (2)Fe1—C122.0528 (15)
C2—H21.0000Fe1—C82.0533 (16)
O2—H2A0.83 (4)Fe1—C112.0537 (16)
C3—C71.433 (2)C8—C91.423 (3)
C3—C41.435 (3)C8—C121.423 (2)
C3—Fe12.0375 (16)C8—H80.9500
C4—C51.426 (3)C9—C101.430 (3)
C4—Fe12.0422 (17)C9—H90.9500
C4—H40.9500C10—C111.428 (3)
C5—C61.416 (3)C10—H100.9500
C5—Fe12.0472 (17)C11—C121.421 (2)
C5—H50.9500C11—H110.9500
C6—C71.418 (2)C12—H120.9500
C6—Fe12.0521 (17)
C2—C1—Cl1111.45 (13)C4—Fe1—C668.44 (7)
C2—C1—H1A109.3C9—Fe1—C6167.18 (8)
Cl1—C1—H1A109.3C5—Fe1—C640.43 (8)
C2—C1—H1B109.3C10—Fe1—C6128.61 (7)
Cl1—C1—H1B109.3C7—Fe1—C640.48 (7)
H1A—C1—H1B108.0C3—Fe1—C12129.56 (7)
O2—C2—C3112.43 (19)C4—Fe1—C12168.29 (8)
O2—C2—C1110.76 (17)C9—Fe1—C1268.39 (7)
C3—C2—C1109.13 (15)C5—Fe1—C12150.03 (8)
O2—C2—H2108.1C10—Fe1—C1268.42 (7)
C3—C2—H2108.1C7—Fe1—C12108.56 (7)
C1—C2—H2108.1C6—Fe1—C12117.60 (7)
C2—O2—H2A94 (3)C3—Fe1—C8108.61 (7)
C7—C3—C4107.59 (15)C4—Fe1—C8129.63 (7)
C7—C3—C2124.01 (17)C9—Fe1—C840.61 (7)
C4—C3—C2128.34 (17)C5—Fe1—C8167.82 (8)
C7—C3—Fe169.85 (9)C10—Fe1—C868.45 (7)
C4—C3—Fe169.59 (10)C7—Fe1—C8118.11 (7)
C2—C3—Fe1128.03 (12)C6—Fe1—C8150.92 (7)
C5—C4—C3107.72 (15)C12—Fe1—C840.55 (6)
C5—C4—Fe169.79 (10)C3—Fe1—C11167.74 (7)
C3—C4—Fe169.23 (9)C4—Fe1—C11149.86 (8)
C5—C4—H4126.1C9—Fe1—C1168.52 (7)
C3—C4—H4126.1C5—Fe1—C11116.79 (7)
Fe1—C4—H4126.4C10—Fe1—C1140.75 (7)
C6—C5—C4108.22 (15)C7—Fe1—C11128.91 (7)
C6—C5—Fe169.97 (10)C6—Fe1—C11108.02 (7)
C4—C5—Fe169.41 (10)C12—Fe1—C1140.50 (7)
C6—C5—H5125.9C8—Fe1—C1168.21 (7)
C4—C5—H5125.9C9—C8—C12108.14 (15)
Fe1—C5—H5126.3C9—C8—Fe169.44 (10)
C5—C6—C7108.56 (16)C12—C8—Fe169.71 (9)
C5—C6—Fe169.60 (10)C9—C8—H8125.9
C7—C6—Fe169.59 (9)C12—C8—H8125.9
C5—C6—H6125.7Fe1—C8—H8126.5
C7—C6—H6125.7C8—C9—C10107.92 (15)
Fe1—C6—H6126.7C8—C9—Fe169.95 (10)
C6—C7—C3107.91 (15)C10—C9—Fe169.60 (10)
C6—C7—Fe169.93 (9)C8—C9—H9126.0
C3—C7—Fe169.09 (9)C10—C9—H9126.0
C6—C7—H7126.0Fe1—C9—H9126.0
C3—C7—H7126.0C11—C10—C9107.76 (15)
Fe1—C7—H7126.5C11—C10—Fe169.86 (9)
C3—Fe1—C441.17 (7)C9—C10—Fe169.52 (10)
C3—Fe1—C9117.38 (7)C11—C10—H10126.1
C4—Fe1—C9107.95 (7)C9—C10—H10126.1
C3—Fe1—C568.87 (7)Fe1—C10—H10126.1
C4—Fe1—C540.81 (8)C12—C11—C10108.04 (15)
C9—Fe1—C5128.99 (8)C12—C11—Fe169.72 (9)
C3—Fe1—C10150.44 (8)C10—C11—Fe169.40 (10)
C4—Fe1—C10116.66 (7)C12—C11—H11126.0
C9—Fe1—C1040.88 (8)C10—C11—H11126.0
C5—Fe1—C10107.50 (7)Fe1—C11—H11126.5
C3—Fe1—C741.06 (7)C11—C12—C8108.14 (15)
C4—Fe1—C768.90 (7)C11—C12—Fe169.78 (9)
C9—Fe1—C7151.11 (7)C8—C12—Fe169.75 (9)
C5—Fe1—C768.39 (7)C11—C12—H12125.9
C10—Fe1—C7166.99 (7)C8—C12—H12125.9
C3—Fe1—C668.62 (7)Fe1—C12—H12126.1
Cl1—C1—C2—O257.5 (2)C4—C5—C6—C70.22 (19)
Cl1—C1—C2—C3178.25 (14)C5—C6—C7—C30.01 (19)
O2—C2—C3—C7136.5 (2)C4—C3—C7—C60.23 (18)
C1—C2—C3—C7100.2 (2)C2—C3—C7—C6177.67 (15)
O2—C2—C3—C446.6 (3)C12—C8—C9—C100.31 (19)
C1—C2—C3—C476.7 (2)C8—C9—C10—C110.06 (19)
C7—C3—C4—C50.36 (18)C9—C10—C11—C120.21 (19)
C2—C3—C4—C5177.66 (16)C10—C11—C12—C80.40 (19)
C3—C4—C5—C60.36 (19)C9—C8—C12—C110.44 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C12 Cp ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.553.472 (3)164
C7—H7···Cl1ii0.952.893.6720 (17)141
C8—H8···Cl1iii0.952.813.5153 (17)132
C12—H12···Cg2iv0.952.883.6321 (17)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C12 Cp ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.553.472 (3)164
C7—H7···Cl1ii0.952.893.6720 (17)141
C8—H8···Cl1iii0.952.813.5153 (17)132
C12—H12···Cg2iv0.952.883.6321 (17)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H8ClO)]
Mr264.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)92
a, b, c (Å)6.0366 (4), 7.6215 (5), 23.0837 (14)
β (°) 91.737 (3)
V3)1061.55 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.36 × 0.22 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.805, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19263, 3807, 3355
Rint0.027
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.03
No. of reflections3807
No. of parameters140
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.88

Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Klar, R. B., Lightfoot, P., Zakaria, C. M. & Ferguson, G. (1996). Acta Cryst. B52, 110–121.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJary, W. G. & Baumgartner, J. (1998). Tetrahedron Asymmetry, 9, 2081–2085.  CSD CrossRef CAS Google Scholar
First citationKowalski, K., Koceva-Chyła, A., Pieniążek, A., Bernasińska, J., Skiba, J., Rybarczyk-Pirek, A. J. & Jóźwiak, Z. (2012). J. Organomet. Chem. 700, 58–68.  CSD CrossRef CAS Google Scholar
First citationKowalski, K., Skiba, J., Oehninger, L., Ott, I., Solecka, J., Rajnisz, A. & Therrien, B. (2013). Organometallics, 32, 5766–5773.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x152177.  Google Scholar
First citationNiazimbetova, Z. I., Evans, D. H., Guzei, I. A., Incarvito, C. D. & Rheingold, A. L. (1999). J. Electrochem. Soc. 146, 1492–1495.  CSD CrossRef CAS Google Scholar
First citationPool, B. R., Sun, C.-C. & White, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 1269–1272.  Google Scholar
First citationSchlögl, K. & Egger, H. (1963). Monatsh. Chem. 94, 376–392.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds