metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Nitrito-κ2O:O′)bis­­[tris­­(4-fluoro­phen­yl)phosphine-κP]silver(I)

crossmark logo

aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 February 2025; accepted 2 April 2025; online 8 April 2025)

The mol­ecular structure of the title AgI complex, [Ag(NO2)(C18H12F3P)2], features a distorted tetra­hedral geometry about the central AgI atom, with a total range of bond angles spanning from 49.80 (5) to 114.92 (1)°. The distortion arises primarily due to the small bite angle [49.80 (5)°] of the nitrito ligand. The compound crystallizes with one mol­ecule in the asymmetric unit, in the space group P21/n, with Z = 4 and Z′ = 1.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Silver(I) phosphine complexes exhibit significant anti­microbial, anti­bacterial, and anti­cancer activity (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]). Solid-state characterization, particularly single-crystal X-ray diffraction, is crucial for understanding structural features relevant to their function (Malan et al., 2022a[Malan, F. P., Potgieter, K. & Meijboom, R. (2022a). IUCrData, 7, x221045.]).

Fig. 1[link] shows the mol­ecular structure of the title complex, [Ag(NO2)(C18H12F3P)2]. A distorted tetra­hedral coordination environment is observed around the central silver(I) atom, which comprises of a bidentate nitrito ligand [O1—Ag1—O2 = 49.80 (5)°, Ag1—O1 = 2.5638 (14) Å, Ag1—O2 = 2.3379 (13) Å], and two tris-4-fluoro­phenyl­phosphine ligands [P1—Ag1—P2 = 114.924 (14)°, Ag1—P1 = 2.4457 (4) Å, Ag1—P2 = 2.4680 (4) Å]. The ipso-aryl carbon atoms of each of the phosphine ligands appear in a near-staggered fashion when viewed down the P1—Ag1—P2 plane [C1—P1—P2—C19 = −60.97 (14)°, C7—P1—P2—C25 = −118.91 (13)°]. The plane defined by atoms P1, Ag1, and P2 inter­sects the plane defined by Ag1, O1, and O2 at an angle of 80.3 (8)°. All other bond lengths and angles correspond with related complexes (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]; Malan et al., 2022b[Malan, F. P., Potgieter, K. & Meijboom, R. (2022b). IUCrData, 7, x221148.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

In the crystal packing (Fig. 2[link]), the complexes arrange as discrete mol­ecular units with weak C—H⋯F hydrogen-bonding inter­actions (Table 1[link]). Pairs of nearest-neighbour silver(I) atoms are separated by a distance of 4.337 Å, indicative of a very weak argentophilic inter­action (Schmidbaur & Schier, 2015[Schmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746-784.]). No other classical hydrogen bonding or significant close-packing motifs are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1 0.95 2.42 3.367 (2) 175
C35—H35⋯F6 0.95 2.40 3.203 (3) 143
[Figure 2]
Figure 2
Packing diagram viewed along the b axis.

Synthesis and crystallization

A 1 mmol solution of silver nitrite was prepared in 10 ml aceto­nitrile and added to a solution of tris-4-fluoro­phenyl­phosphine (2 mmol) in 10 ml aceto­nitrile. The solution was stirred at 353 K, removed and left to slowly cool and crystallize.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NO2)(C18H12F3P)2]
Mr 786.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 14.3478 (4), 13.5179 (3), 17.9803 (5)
β (°) 111.215 (3)
V3) 3250.98 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.31 × 0.21 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.481, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52869, 8729, 7454
Rint 0.037
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.05
No. of reflections 8729
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.48
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(Nitrito-κ2O:O')bis[tris(4-fluorophenyl)phosphine-κP]silver(I) top
Crystal data top
[Ag(NO2)(C18H12F3P)2]F(000) = 1576
Mr = 786.37Dx = 1.607 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.3478 (4) ÅCell parameters from 35295 reflections
b = 13.5179 (3) Åθ = 2.7–31.1°
c = 17.9803 (5) ŵ = 0.79 mm1
β = 111.215 (3)°T = 150 K
V = 3250.98 (16) Å3Blade, colourless
Z = 40.31 × 0.21 × 0.09 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
8729 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source7454 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 31.1°, θmin = 2.7°
ω scansh = 1820
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1919
Tmin = 0.481, Tmax = 1.000l = 2423
52869 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.7214P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
8729 reflectionsΔρmax = 0.35 e Å3
433 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.52949 (2)0.37505 (2)0.43613 (2)0.02553 (4)
P10.40331 (3)0.25635 (3)0.35813 (2)0.01994 (8)
P20.63301 (3)0.44659 (3)0.36593 (2)0.02370 (9)
F20.01153 (8)0.40981 (9)0.23905 (7)0.0405 (3)
F10.34956 (9)0.10257 (9)0.52775 (7)0.0451 (3)
F40.38571 (9)0.47646 (9)0.02241 (7)0.0474 (3)
O20.55574 (11)0.43635 (10)0.56371 (8)0.0416 (3)
F60.79755 (11)0.85042 (9)0.44537 (11)0.0692 (5)
F50.99645 (11)0.21121 (11)0.40542 (10)0.0675 (4)
F30.50685 (12)0.13357 (10)0.08038 (8)0.0572 (4)
O10.62600 (13)0.30028 (11)0.57362 (9)0.0553 (4)
N10.60814 (14)0.37229 (12)0.60903 (9)0.0410 (4)
C130.27515 (11)0.30170 (11)0.31982 (9)0.0215 (3)
C310.56064 (12)0.45066 (11)0.25939 (10)0.0243 (3)
C180.19479 (12)0.24105 (12)0.27736 (10)0.0263 (3)
H180.20660.17420.26720.032*
C190.74614 (12)0.37744 (12)0.37632 (10)0.0253 (3)
C100.36545 (12)0.02184 (13)0.48867 (11)0.0302 (4)
C250.67937 (12)0.57296 (12)0.38659 (11)0.0279 (3)
C70.39307 (11)0.14240 (11)0.40910 (9)0.0211 (3)
C140.25681 (13)0.39942 (11)0.33524 (10)0.0254 (3)
H140.31120.44130.36380.030*
C10.42600 (11)0.21343 (11)0.26973 (9)0.0218 (3)
C20.51395 (12)0.16120 (12)0.28178 (10)0.0271 (3)
H20.55570.14370.33450.032*
C160.08347 (13)0.37408 (13)0.26691 (10)0.0286 (3)
C120.40868 (12)0.14764 (13)0.49002 (10)0.0271 (3)
H120.42990.20810.51800.032*
C90.35276 (13)0.03165 (12)0.40981 (11)0.0313 (4)
H90.33540.09350.38330.038*
C240.74763 (14)0.27651 (13)0.39130 (12)0.0374 (4)
H240.69020.24590.39570.045*
C110.39337 (13)0.06499 (14)0.53021 (10)0.0321 (4)
H110.40200.06860.58510.039*
C200.83248 (14)0.42141 (14)0.37358 (12)0.0350 (4)
H200.83340.49060.36460.042*
C170.09802 (13)0.27727 (13)0.24988 (11)0.0301 (3)
H170.04320.23660.22010.036*
C320.46685 (12)0.49614 (12)0.23619 (11)0.0297 (3)
H320.44300.52020.27570.036*
C80.36611 (12)0.05197 (12)0.36976 (10)0.0266 (3)
H80.35670.04750.31480.032*
C150.15989 (13)0.43620 (12)0.30931 (10)0.0292 (3)
H150.14690.50230.32060.035*
C60.36475 (13)0.23666 (12)0.19198 (10)0.0279 (3)
H60.30420.27170.18260.034*
C50.39137 (15)0.20901 (14)0.12767 (10)0.0349 (4)
H50.34920.22410.07450.042*
C300.72864 (15)0.59886 (15)0.46584 (12)0.0389 (4)
H300.73400.55220.50670.047*
C260.66967 (14)0.64228 (13)0.32700 (13)0.0371 (4)
H260.63570.62510.27260.045*
C30.54176 (14)0.13431 (13)0.21832 (12)0.0337 (4)
H30.60220.09930.22690.040*
C360.59289 (13)0.41359 (14)0.20094 (11)0.0323 (4)
H360.65630.38220.21600.039*
C330.40860 (13)0.50640 (13)0.15634 (11)0.0331 (4)
H330.34580.53900.14040.040*
C340.44360 (14)0.46841 (13)0.10076 (11)0.0326 (4)
C40.47966 (15)0.15968 (14)0.14281 (11)0.0357 (4)
C230.83121 (16)0.21966 (15)0.39992 (13)0.0458 (5)
H230.83120.15030.40860.055*
C350.53378 (15)0.42173 (15)0.12048 (11)0.0372 (4)
H350.55550.39560.08040.045*
C220.91361 (15)0.26623 (16)0.39562 (12)0.0424 (5)
C290.77017 (16)0.69222 (16)0.48612 (14)0.0475 (5)
H290.80530.70970.54030.057*
C210.91726 (15)0.36563 (16)0.38374 (13)0.0427 (5)
H210.97640.39590.38250.051*
C270.70967 (16)0.73673 (15)0.34703 (16)0.0477 (5)
H270.70280.78490.30690.057*
C280.75902 (15)0.75839 (14)0.42584 (16)0.0471 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03043 (7)0.02842 (7)0.01960 (7)0.00931 (5)0.01128 (5)0.00418 (4)
P10.02281 (19)0.01928 (17)0.01790 (18)0.00326 (13)0.00758 (15)0.00146 (14)
P20.0260 (2)0.02445 (19)0.0234 (2)0.00463 (15)0.01228 (16)0.00038 (15)
F20.0326 (6)0.0468 (6)0.0390 (6)0.0152 (5)0.0093 (5)0.0042 (5)
F10.0435 (6)0.0404 (6)0.0507 (7)0.0020 (5)0.0163 (5)0.0254 (5)
F40.0543 (7)0.0512 (7)0.0263 (6)0.0068 (6)0.0022 (5)0.0043 (5)
O20.0579 (9)0.0344 (7)0.0262 (7)0.0109 (6)0.0076 (6)0.0034 (5)
F60.0642 (9)0.0346 (6)0.1263 (14)0.0266 (6)0.0553 (9)0.0283 (8)
F50.0503 (8)0.0639 (9)0.0852 (11)0.0269 (7)0.0207 (8)0.0008 (8)
F30.0779 (9)0.0718 (9)0.0358 (7)0.0121 (7)0.0375 (7)0.0044 (6)
O10.0684 (11)0.0384 (8)0.0392 (8)0.0175 (7)0.0045 (7)0.0012 (6)
N10.0569 (11)0.0325 (8)0.0230 (8)0.0030 (7)0.0016 (7)0.0008 (6)
C130.0266 (8)0.0202 (7)0.0188 (7)0.0011 (5)0.0097 (6)0.0005 (5)
C310.0267 (8)0.0234 (7)0.0251 (8)0.0028 (6)0.0120 (6)0.0010 (6)
C180.0278 (8)0.0214 (7)0.0283 (8)0.0011 (6)0.0086 (7)0.0024 (6)
C190.0280 (8)0.0267 (8)0.0215 (8)0.0016 (6)0.0095 (6)0.0022 (6)
C100.0241 (8)0.0303 (8)0.0360 (9)0.0018 (6)0.0107 (7)0.0154 (7)
C250.0267 (8)0.0249 (8)0.0364 (9)0.0043 (6)0.0166 (7)0.0025 (7)
C70.0177 (7)0.0238 (7)0.0215 (7)0.0005 (5)0.0067 (6)0.0025 (6)
C140.0337 (9)0.0207 (7)0.0220 (8)0.0011 (6)0.0103 (7)0.0001 (6)
C10.0264 (8)0.0195 (7)0.0205 (7)0.0055 (5)0.0097 (6)0.0020 (5)
C20.0291 (8)0.0282 (8)0.0234 (8)0.0012 (6)0.0090 (7)0.0004 (6)
C160.0291 (8)0.0341 (9)0.0234 (8)0.0091 (6)0.0104 (7)0.0070 (6)
C120.0285 (8)0.0300 (8)0.0222 (8)0.0005 (6)0.0086 (7)0.0005 (6)
C90.0323 (9)0.0222 (8)0.0390 (10)0.0015 (6)0.0125 (8)0.0039 (7)
C240.0336 (9)0.0298 (9)0.0426 (11)0.0045 (7)0.0065 (8)0.0057 (8)
C110.0316 (9)0.0424 (10)0.0228 (8)0.0027 (7)0.0103 (7)0.0094 (7)
C200.0361 (9)0.0331 (9)0.0434 (11)0.0008 (7)0.0234 (8)0.0067 (8)
C170.0257 (8)0.0316 (8)0.0308 (9)0.0020 (6)0.0077 (7)0.0018 (7)
C320.0291 (8)0.0292 (8)0.0340 (9)0.0014 (6)0.0151 (7)0.0039 (7)
C80.0315 (8)0.0236 (7)0.0261 (8)0.0029 (6)0.0118 (7)0.0000 (6)
C150.0408 (10)0.0225 (8)0.0257 (8)0.0070 (6)0.0137 (7)0.0023 (6)
C60.0333 (9)0.0275 (8)0.0231 (8)0.0013 (6)0.0103 (7)0.0020 (6)
C50.0459 (11)0.0395 (10)0.0196 (8)0.0006 (8)0.0120 (8)0.0018 (7)
C300.0460 (11)0.0376 (10)0.0392 (11)0.0112 (8)0.0229 (9)0.0096 (8)
C260.0331 (9)0.0325 (9)0.0457 (11)0.0070 (7)0.0142 (8)0.0057 (8)
C30.0368 (10)0.0324 (9)0.0375 (10)0.0020 (7)0.0201 (8)0.0011 (7)
C360.0313 (9)0.0402 (9)0.0279 (9)0.0085 (7)0.0138 (7)0.0052 (7)
C330.0290 (9)0.0304 (9)0.0369 (10)0.0023 (7)0.0084 (7)0.0003 (7)
C340.0373 (9)0.0289 (8)0.0263 (9)0.0016 (7)0.0053 (7)0.0036 (7)
C40.0521 (11)0.0353 (9)0.0288 (9)0.0026 (8)0.0253 (9)0.0043 (7)
C230.0465 (12)0.0302 (9)0.0489 (12)0.0054 (8)0.0032 (9)0.0036 (8)
C350.0441 (11)0.0442 (10)0.0274 (9)0.0057 (8)0.0178 (8)0.0006 (8)
C220.0398 (11)0.0474 (11)0.0367 (11)0.0157 (9)0.0097 (9)0.0003 (8)
C290.0492 (12)0.0456 (11)0.0566 (14)0.0190 (9)0.0298 (11)0.0252 (10)
C210.0353 (10)0.0517 (12)0.0483 (12)0.0034 (8)0.0236 (9)0.0042 (9)
C270.0424 (11)0.0302 (10)0.0741 (16)0.0068 (8)0.0254 (11)0.0097 (10)
C280.0373 (10)0.0289 (9)0.0870 (18)0.0129 (8)0.0368 (11)0.0159 (10)
Geometric parameters (Å, º) top
Ag1—P12.4457 (4)C16—C151.372 (3)
Ag1—P22.4680 (4)C12—H120.9500
Ag1—O22.3379 (13)C12—C111.390 (2)
Ag1—O12.5638 (14)C9—H90.9500
P1—C131.8206 (16)C9—C81.390 (2)
P1—C71.8252 (15)C24—H240.9500
P1—C11.8285 (16)C24—C231.385 (3)
P2—C311.8197 (17)C11—H110.9500
P2—C191.8232 (17)C20—H200.9500
P2—C251.8220 (16)C20—C211.386 (3)
F2—C161.3595 (19)C17—H170.9500
F1—C101.3612 (18)C32—H320.9500
F4—C341.356 (2)C32—C331.382 (3)
O2—N11.239 (2)C8—H80.9500
F6—C281.355 (2)C15—H150.9500
F5—C221.358 (2)C6—H60.9500
F3—C41.362 (2)C6—C51.394 (2)
O1—N11.240 (2)C5—H50.9500
C13—C181.395 (2)C5—C41.369 (3)
C13—C141.394 (2)C30—H300.9500
C31—C321.399 (2)C30—C291.387 (3)
C31—C361.386 (2)C26—H260.9500
C18—H180.9500C26—C271.393 (3)
C18—C171.384 (2)C3—H30.9500
C19—C241.389 (2)C3—C41.371 (3)
C19—C201.391 (2)C36—H360.9500
C10—C91.369 (3)C36—C351.392 (3)
C10—C111.371 (3)C33—H330.9500
C25—C301.387 (3)C33—C341.370 (3)
C25—C261.392 (3)C34—C351.366 (3)
C7—C121.392 (2)C23—H230.9500
C7—C81.395 (2)C23—C221.366 (3)
C14—H140.9500C35—H350.9500
C14—C151.389 (2)C22—C211.365 (3)
C1—C21.393 (2)C29—H290.9500
C1—C61.391 (2)C29—C281.369 (3)
C2—H20.9500C21—H210.9500
C2—C31.387 (2)C27—H270.9500
C16—C171.377 (2)C27—C281.367 (3)
P1—Ag1—P2114.924 (14)C12—C11—H11120.8
P1—Ag1—O1108.89 (4)C19—C20—H20119.6
P2—Ag1—O1115.63 (4)C21—C20—C19120.89 (17)
O2—Ag1—P1128.18 (4)C21—C20—H20119.6
O2—Ag1—P2116.74 (4)C18—C17—H17121.0
O2—Ag1—O149.80 (5)C16—C17—C18118.04 (16)
C13—P1—Ag1115.64 (5)C16—C17—H17121.0
C13—P1—C7102.73 (7)C31—C32—H32119.7
C13—P1—C1104.54 (7)C33—C32—C31120.58 (16)
C7—P1—Ag1116.30 (5)C33—C32—H32119.7
C7—P1—C1103.93 (7)C7—C8—H8119.5
C1—P1—Ag1112.26 (5)C9—C8—C7120.98 (16)
C31—P2—Ag1109.30 (5)C9—C8—H8119.5
C31—P2—C19105.73 (7)C14—C15—H15121.0
C31—P2—C25102.32 (8)C16—C15—C14117.97 (15)
C19—P2—Ag1115.14 (5)C16—C15—H15121.0
C25—P2—Ag1120.40 (6)C1—C6—H6119.7
C25—P2—C19102.36 (7)C1—C6—C5120.66 (16)
N1—O2—Ag1103.97 (11)C5—C6—H6119.7
N1—O1—Ag192.63 (10)C6—C5—H5120.7
O2—N1—O1113.57 (15)C4—C5—C6118.51 (17)
C18—C13—P1122.04 (12)C4—C5—H5120.7
C14—C13—P1118.77 (12)C25—C30—H30119.6
C14—C13—C18119.17 (15)C29—C30—C25120.7 (2)
C32—C31—P2116.63 (12)C29—C30—H30119.6
C36—C31—P2124.56 (13)C25—C26—H26120.0
C36—C31—C32118.81 (15)C25—C26—C27120.1 (2)
C13—C18—H18119.6C27—C26—H26120.0
C17—C18—C13120.74 (15)C2—C3—H3120.9
C17—C18—H18119.6C4—C3—C2118.16 (17)
C24—C19—P2118.30 (13)C4—C3—H3120.9
C24—C19—C20118.37 (16)C31—C36—H36119.5
C20—C19—P2123.27 (13)C31—C36—C35120.97 (16)
F1—C10—C9118.21 (16)C35—C36—H36119.5
F1—C10—C11118.41 (16)C32—C33—H33120.8
C9—C10—C11123.39 (15)C34—C33—C32118.46 (16)
C30—C25—P2117.32 (14)C34—C33—H33120.8
C30—C25—C26119.51 (17)F4—C34—C33118.63 (16)
C26—C25—P2123.15 (14)F4—C34—C35118.24 (17)
C12—C7—P1118.05 (12)C35—C34—C33123.13 (17)
C12—C7—C8119.01 (14)F3—C4—C5118.87 (17)
C8—C7—P1122.88 (12)F3—C4—C3118.31 (18)
C13—C14—H14119.7C5—C4—C3122.81 (17)
C15—C14—C13120.70 (15)C24—C23—H23121.0
C15—C14—H14119.7C22—C23—C24118.03 (18)
C2—C1—P1117.51 (12)C22—C23—H23121.0
C6—C1—P1123.73 (12)C36—C35—H35121.0
C6—C1—C2118.56 (15)C34—C35—C36118.03 (17)
C1—C2—H2119.4C34—C35—H35121.0
C3—C2—C1121.28 (16)F5—C22—C23118.35 (19)
C3—C2—H2119.4F5—C22—C21118.6 (2)
F2—C16—C17117.91 (16)C21—C22—C23123.07 (19)
F2—C16—C15118.71 (15)C30—C29—H29121.0
C15—C16—C17123.37 (16)C28—C29—C30118.0 (2)
C7—C12—H12119.8C28—C29—H29121.0
C11—C12—C7120.44 (16)C20—C21—H21120.8
C11—C12—H12119.8C22—C21—C20118.35 (19)
C10—C9—H9121.1C22—C21—H21120.8
C10—C9—C8117.78 (16)C26—C27—H27120.8
C8—C9—H9121.1C28—C27—C26118.3 (2)
C19—C24—H24119.4C28—C27—H27120.8
C23—C24—C19121.24 (18)F6—C28—C29118.3 (2)
C23—C24—H24119.4F6—C28—C27118.4 (2)
C10—C11—C12118.34 (16)C27—C28—C29123.29 (18)
C10—C11—H11120.8
Ag1—P1—C13—C18177.10 (11)C19—C24—C23—C221.9 (3)
Ag1—P1—C13—C141.26 (14)C19—C20—C21—C220.7 (3)
Ag1—P1—C7—C1235.13 (14)C10—C9—C8—C71.0 (3)
Ag1—P1—C7—C8147.78 (12)C25—P2—C31—C3276.35 (13)
Ag1—P1—C1—C263.00 (13)C25—P2—C31—C36102.57 (15)
Ag1—P1—C1—C6111.73 (13)C25—P2—C19—C24158.61 (15)
Ag1—P2—C31—C3252.35 (13)C25—P2—C19—C2018.40 (17)
Ag1—P2—C31—C36128.73 (14)C25—C30—C29—C281.5 (3)
Ag1—P2—C19—C2426.15 (16)C25—C26—C27—C280.7 (3)
Ag1—P2—C19—C20150.86 (14)C7—P1—C13—C1849.33 (15)
Ag1—P2—C25—C3051.09 (16)C7—P1—C13—C14129.02 (13)
Ag1—P2—C25—C26130.57 (14)C7—P1—C1—C263.50 (13)
Ag1—O2—N1—O11.6 (2)C7—P1—C1—C6121.76 (14)
Ag1—O1—N1—O21.38 (18)C7—C12—C11—C101.8 (3)
P1—C13—C18—C17179.14 (13)C14—C13—C18—C170.8 (2)
P1—C13—C14—C15177.97 (12)C1—P1—C13—C1858.94 (14)
P1—C7—C12—C11174.42 (13)C1—P1—C13—C14122.70 (13)
P1—C7—C8—C9175.70 (13)C1—P1—C7—C12159.05 (12)
P1—C1—C2—C3173.68 (13)C1—P1—C7—C823.86 (15)
P1—C1—C6—C5174.10 (13)C1—C2—C3—C40.6 (3)
P2—C31—C32—C33177.19 (13)C1—C6—C5—C40.8 (3)
P2—C31—C36—C35178.48 (15)C2—C1—C6—C50.6 (2)
P2—C19—C24—C23179.93 (16)C2—C3—C4—F3179.86 (16)
P2—C19—C20—C21178.43 (16)C2—C3—C4—C50.9 (3)
P2—C25—C30—C29176.96 (15)C12—C7—C8—C91.4 (2)
P2—C25—C26—C27178.00 (15)C9—C10—C11—C120.6 (3)
F2—C16—C17—C18179.26 (15)C24—C19—C20—C211.4 (3)
F2—C16—C15—C14178.07 (15)C24—C23—C22—F5178.86 (19)
F1—C10—C9—C8178.03 (15)C24—C23—C22—C210.4 (3)
F1—C10—C11—C12179.42 (15)C11—C10—C9—C82.0 (3)
F4—C34—C35—C36179.96 (17)C20—C19—C24—C232.8 (3)
F5—C22—C21—C20179.84 (19)C17—C16—C15—C140.9 (3)
C13—P1—C7—C1292.21 (13)C32—C31—C36—C350.4 (3)
C13—P1—C7—C884.87 (14)C32—C33—C34—F4178.61 (16)
C13—P1—C1—C2170.89 (12)C32—C33—C34—C350.7 (3)
C13—P1—C1—C614.37 (15)C8—C7—C12—C112.8 (2)
C13—C18—C17—C161.1 (3)C15—C16—C17—C180.3 (3)
C13—C14—C15—C161.3 (2)C6—C1—C2—C31.3 (2)
C31—P2—C19—C2494.61 (15)C6—C5—C4—F3179.14 (16)
C31—P2—C19—C2088.38 (16)C6—C5—C4—C31.6 (3)
C31—P2—C25—C30172.44 (14)C30—C25—C26—C270.3 (3)
C31—P2—C25—C269.21 (17)C30—C29—C28—F6178.61 (18)
C31—C32—C33—C341.9 (3)C30—C29—C28—C270.4 (3)
C31—C36—C35—C340.8 (3)C26—C25—C30—C291.4 (3)
C18—C13—C14—C150.4 (2)C26—C27—C28—F6179.71 (18)
C19—P2—C31—C32176.84 (12)C26—C27—C28—C290.7 (3)
C19—P2—C31—C364.24 (17)C36—C31—C32—C331.8 (2)
C19—P2—C25—C3078.17 (15)C33—C34—C35—C360.7 (3)
C19—P2—C25—C26100.17 (16)C23—C22—C21—C201.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F10.952.423.367 (2)175
C35—H35···F60.952.403.203 (3)143
 

Acknowledgements

We would like to acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalan, F. P., Potgieter, K. & Meijboom, R. (2022a). IUCrData, 7, x221045.  Google Scholar
First citationMalan, F. P., Potgieter, K. & Meijboom, R. (2022b). IUCrData, 7, x221148.  Google Scholar
First citationPotgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746–784.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146