organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-[4-(Di­ethyl­amino)-2-hy­dr­oxy­benzyl­­idene]-2,4,6-tri­methyl­benzenaminium nitrate

crossmark logo

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private, Bag X1, Matieland, Stellenbosch 7602, South Africa, and bSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag, X54001, Durban 4000, South Africa
*Correspondence e-mail: rcluckay@sun.ac.za

(Received 14 March 2025; accepted 27 March 2025; online 4 April 2025)

The crystal structure of the title salt, C20H27N2O+·NO3, has a cationic (E)-mesityl-N-[4-(di­ethyl­amino)­benzyl­idene]benzenaminium species and a nitrate counter-ion in the asymmetric-unit. In the crystal, alternating inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding occurs between neighbouring protonated Schiff bases and nitrate ions within a supra­molecular, chain-like architecture that extends along the crystallographic b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases are well-known organic mol­ecules characterized by their ease of preparation, great pharmaceutical potential and for a myriad of applications (Adeleke et al., 2024[Adeleke, A. A., Oladipo, S. D., Luckay, R. C., Akintemi, E. O., Olofinsan, K. A., Babatunde Onajobi, I., Yussuf, S. T., Ogundare, S. A., Adeleke, O. M. & Babalola, K. I. (2024). ChemistrySelect, 9, e202304967.]). In medicine, Schiff bases have been tested as anti-oxidants (Oladipo et al., 2021[Oladipo, S. D., Yusuf, T. L., Zamisa, S. J., Tolufashe, G. F., Olofinsan, K. A., Tywabi-Ngeva, Z. & Mabuba, N. (2021). Eur. J. Chem. 12, 204-215.]) and anti-fungal agents (Jarrahpour et al., 2004[Jarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815-824.]), among others (Thakur et al., 2024[Thakur, S., Jaryal, A. & Bhalla, A. (2024). Results Chem. 7, 101350.]) and their medicinal activities have been linked to the ability of the imine functional group to strongly bind to the nucleophilic or electrophilic moieties located in the active sites of enzymes. In this work, the crystal structure of the title protonated Schiff base, isolated as its nitrate salt, is reported.

The structural analysis of the title salt revealed that its asymmetric unit contains an (E)-mesityl-N-[4-(di­ethyl­amino)­benzyl­idene]benzenaminium cation and a nitrate counter-anion (Fig. 1[link]). The dihedral angle between the phenyl rings in the protonated Schiff base is 45.60 (1)°. This is substanti­ally wider than in the recently reported (E)-4-bromo-N-[4-(di­ethyl­amino)-2-hy­droxy­benzyl­idene]benzenaminium acetate-4-bromo­aniline [11.7 (1)°; Oladipo et al., 2024[Oladipo, S. D., Zamisa, S. J. & Luckay, R. C. (2024). Z. Kristallogr. New Cryst. Struct. 239, 1037-1039.]] and similar to the one reported for the neutral Schiff base (E)-5-(di­ethyl­amino)-2-(phenyl­imino)­meth­yl)phenol [42.90 (1)°; Ranjith et al., 2014[Ranjith, B., Karunakaran, P., Srinivasan, T., Selavaraju, C., Gunasekaran, K. & Velmuruagan, D. (2014). Int. J. Chem. Tech. Res. 6, 3091-3097.]]. There is an intra­molecular N—H⋯O hydrogen bond between the iminium H1 atom and the adjacent OH group (Table 1[link]), as seen in similar compounds (protonated and neutral Schiff bases) (Oladipo et al., 2024[Oladipo, S. D., Zamisa, S. J. & Luckay, R. C. (2024). Z. Kristallogr. New Cryst. Struct. 239, 1037-1039.]; Albayrak et al., 2012[Albayrak, Ç., Kaştaş, G., Odabaşoğlu, M. & Frank, R. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 664-669.]). In the crystal, inter­molecular O—H⋯O hydrogen-bonding is observed between the H3 atom of the hydroxyl group of the protonated Schiff base and the O2 atom of the nitrate anion (Table 1[link]). The anion further inter­acts with another protonated Schiff base mol­ecule via a C7—H7⋯O4 hydrogen bond (Table 1[link]). Linking neighbouring mol­ecules in this manner occurs within a supra­molecular chain-like pattern that extends along the crystallographic b-axis direction as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.887 (19) 1.961 (19) 2.6410 (17) 132.3 (16)
O1—H3⋯O2 0.98 (2) 1.59 (2) 2.5673 (16) 178 (2)
C7—H7⋯O4i 0.95 2.47 3.359 (2) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit of the title salt showing the atom labelling and with ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Representation of intra­molecular N1—H1⋯O1 hydrogen bonds and inter­molecular O1—H3⋯O2 and C7—H7⋯O4 hydrogen-bonding in the packing of the title salt. The hydrogen bonds are shown as turquoise bonds.

Synthesis and crystallization

The title compound was obtained during an attempt to prepare a binuclear, square-pyramidal binuclear copper(II) complex [CuLNO3]2 where L = (E)-5-(di­ethyl­amino)-2-[(mesityl­imino)­meth­yl]phenol. The copper(II) complex was prepared by reacting copper(II) nitrate trihydrate (0.070 g, 0.300 mmol) with compound LH (0.100 g, 0.300 mmol) in methanol in a 1:1 ratio. The resulting mixture was stirred at room temperature for 5 h to afford a dark-brown precipitate, which was washed thoroughly with diethyl ether. The di­chloro­methane solution of the resulting complex was refluxed at 100°C. The hot solution of the complex was slowly evaporated for three days, and this afforded a dark-brown precipitate with a few yellow needles of the title salt as revealed by single-crystal X-ray diffraction analysis. The spectroscopic data for the neutral mol­ecule of LH have been previously reported (Oladipo & Luckay, 2025[Oladipo, S. D., Luckay, R. C., Olofinsan, K. A., Badeji, A. A. & Mokoena, S. (2025). Inorg. Chim. Acta, 575, 122447.]).

Refinement

For full experimental details including crystal data, data collection and structure refinement details, refer to Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H27N2O+·NO3
Mr 373.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 15.3627 (16), 7.8529 (8), 16.9991 (17)
β (°) 106.424 (2)
V3) 1967.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.912, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 39793, 4524, 3387
Rint 0.056
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.04
No. of reflections 4524
No. of parameters 257
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.24
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4, Bruker AXS Inc, Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT, Bruker AXS Inc, Madison, Wisconsin, USA .]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2020[Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.]).

Structural data


Computing details top

(E)-N-[4-(Diethylamino)-2-hydroxybenzylidene]-2,4,6-trimethylbenzenaminium nitrate top
Crystal data top
C20H27N2O+·NO3F(000) = 800
Mr = 373.44Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.3627 (16) ÅCell parameters from 5347 reflections
b = 7.8529 (8) Åθ = 2.8–26.9°
c = 16.9991 (17) ŵ = 0.09 mm1
β = 106.424 (2)°T = 100 K
V = 1967.1 (3) Å3Needle, yellow
Z = 40.36 × 0.12 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3387 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.056
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.912, Tmax = 1.000k = 1010
39793 measured reflectionsl = 2222
4524 independent reflections
Refinement top
Refinement on F2Primary atom site location: intrinsic phasing
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.9367P]
where P = (Fo2 + 2Fc2)/3
4524 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36159 (7)0.60622 (15)0.73553 (6)0.0233 (3)
O20.51066 (8)0.52660 (17)0.70465 (7)0.0311 (3)
O40.52064 (8)0.36875 (19)0.81118 (8)0.0378 (3)
N10.24624 (9)0.66708 (17)0.82160 (8)0.0201 (3)
O30.62397 (8)0.3541 (2)0.74825 (8)0.0448 (4)
N20.26047 (9)0.67856 (17)0.44476 (8)0.0221 (3)
N30.55298 (9)0.41504 (19)0.75557 (8)0.0256 (3)
C60.22393 (10)0.66044 (19)0.89762 (9)0.0183 (3)
C90.29748 (10)0.6504 (2)0.66634 (9)0.0194 (3)
C50.29141 (10)0.7121 (2)0.96781 (9)0.0198 (3)
C80.21396 (10)0.7139 (2)0.67550 (9)0.0195 (3)
C70.19268 (10)0.71869 (19)0.75056 (9)0.0197 (3)
H70.1349530.7627720.7501030.024*
C100.31165 (10)0.6372 (2)0.59033 (9)0.0203 (3)
H100.3667960.5895230.5856150.024*
C10.14072 (10)0.59584 (19)0.90178 (9)0.0195 (3)
C110.24554 (10)0.69324 (19)0.51894 (9)0.0202 (3)
C40.27264 (10)0.7048 (2)1.04296 (9)0.0203 (3)
H40.3180120.7383071.0911120.024*
C30.18878 (10)0.6494 (2)1.04934 (9)0.0208 (3)
C120.16344 (10)0.7649 (2)0.52836 (9)0.0226 (3)
H120.1188700.8079240.4818110.027*
C130.14887 (10)0.7719 (2)0.60350 (9)0.0217 (3)
H130.0931310.8171910.6079950.026*
C20.12505 (10)0.5950 (2)0.97867 (9)0.0208 (3)
H20.0680730.5553980.9827810.025*
C180.06990 (11)0.5214 (2)0.82955 (10)0.0247 (4)
H18A0.0366260.4313770.8486510.037*
H18B0.0995600.4734790.7905150.037*
H18C0.0275260.6110010.8025650.037*
C140.33831 (11)0.5834 (2)0.43356 (10)0.0242 (3)
H14A0.3222600.5381990.3769000.029*
H14B0.3502230.4849130.4714740.029*
C190.16725 (11)0.6500 (2)1.13067 (10)0.0265 (4)
H19A0.1181830.7311381.1285280.040*
H19B0.2213920.6834331.1742010.040*
H19C0.1482040.5357041.1420720.040*
C160.19707 (11)0.7476 (2)0.37022 (9)0.0260 (4)
H16A0.2309340.7757480.3302830.031*
H16B0.1705200.8544590.3840640.031*
C200.38255 (11)0.7745 (2)0.96248 (10)0.0274 (4)
H20A0.4205020.8047111.0174160.041*
H20B0.3739980.8749010.9268800.041*
H20C0.4123100.6843270.9396950.041*
C150.42461 (11)0.6876 (2)0.44842 (10)0.0267 (4)
H15A0.4129780.7880830.4128130.040*
H15B0.4721490.6181240.4361340.040*
H15C0.4444670.7237440.5059130.040*
C170.12084 (12)0.6248 (2)0.33054 (10)0.0333 (4)
H17A0.1466150.5188400.3164350.050*
H17B0.0812950.6763210.2806650.050*
H17C0.0854420.6000400.3689490.050*
H10.3015 (13)0.633 (2)0.8224 (11)0.031 (5)*
H30.4180 (16)0.573 (3)0.7241 (14)0.059 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (5)0.0323 (7)0.0179 (5)0.0038 (5)0.0065 (4)0.0024 (5)
O20.0293 (6)0.0409 (8)0.0255 (6)0.0075 (5)0.0117 (5)0.0065 (5)
O40.0266 (6)0.0605 (9)0.0292 (7)0.0037 (6)0.0127 (5)0.0153 (6)
N10.0203 (7)0.0229 (7)0.0186 (6)0.0023 (5)0.0081 (5)0.0000 (5)
O30.0248 (6)0.0820 (11)0.0288 (7)0.0200 (7)0.0096 (5)0.0059 (7)
N20.0256 (7)0.0251 (7)0.0160 (6)0.0032 (6)0.0067 (5)0.0011 (5)
N30.0183 (6)0.0390 (9)0.0186 (6)0.0009 (6)0.0035 (5)0.0023 (6)
C60.0214 (7)0.0175 (7)0.0173 (7)0.0035 (6)0.0076 (6)0.0009 (6)
C90.0206 (7)0.0185 (8)0.0190 (7)0.0006 (6)0.0055 (6)0.0005 (6)
C50.0199 (7)0.0190 (8)0.0209 (7)0.0024 (6)0.0066 (6)0.0007 (6)
C80.0218 (7)0.0191 (8)0.0186 (7)0.0018 (6)0.0074 (6)0.0003 (6)
C70.0204 (7)0.0189 (8)0.0206 (7)0.0003 (6)0.0071 (6)0.0008 (6)
C100.0215 (7)0.0206 (8)0.0203 (7)0.0015 (6)0.0083 (6)0.0019 (6)
C10.0201 (7)0.0172 (8)0.0207 (7)0.0030 (6)0.0051 (6)0.0021 (6)
C110.0249 (8)0.0175 (7)0.0188 (7)0.0052 (6)0.0074 (6)0.0023 (6)
C40.0225 (7)0.0194 (8)0.0179 (7)0.0024 (6)0.0036 (6)0.0010 (6)
C30.0257 (8)0.0182 (8)0.0204 (7)0.0050 (6)0.0095 (6)0.0022 (6)
C120.0228 (8)0.0242 (8)0.0186 (7)0.0010 (6)0.0026 (6)0.0009 (6)
C130.0200 (7)0.0230 (8)0.0224 (8)0.0002 (6)0.0064 (6)0.0011 (6)
C20.0193 (7)0.0209 (8)0.0235 (8)0.0019 (6)0.0080 (6)0.0032 (6)
C180.0253 (8)0.0257 (9)0.0222 (8)0.0031 (7)0.0051 (6)0.0018 (6)
C140.0313 (8)0.0235 (8)0.0203 (8)0.0025 (7)0.0114 (7)0.0037 (6)
C190.0298 (8)0.0304 (9)0.0217 (8)0.0019 (7)0.0115 (7)0.0022 (7)
C160.0335 (9)0.0281 (9)0.0163 (7)0.0031 (7)0.0071 (7)0.0010 (6)
C200.0215 (8)0.0351 (10)0.0262 (8)0.0032 (7)0.0076 (7)0.0016 (7)
C150.0300 (9)0.0268 (9)0.0270 (8)0.0028 (7)0.0139 (7)0.0023 (7)
C170.0380 (10)0.0367 (10)0.0198 (8)0.0067 (8)0.0003 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C91.3485 (18)C3—C21.385 (2)
O1—H30.98 (2)C3—C191.510 (2)
O2—N31.2733 (18)C12—C131.359 (2)
O4—N31.2402 (17)C12—H120.9500
N1—C71.318 (2)C13—H130.9500
N1—C61.4285 (19)C2—H20.9500
N1—H10.887 (19)C18—H18A0.9800
O3—N31.2293 (18)C18—H18B0.9800
N2—C111.3489 (19)C18—H18C0.9800
N2—C161.466 (2)C14—C151.517 (2)
N2—C141.468 (2)C14—H14A0.9900
C6—C11.396 (2)C14—H14B0.9900
C6—C51.401 (2)C19—H19A0.9800
C9—C101.374 (2)C19—H19B0.9800
C9—C81.426 (2)C19—H19C0.9800
C5—C41.388 (2)C16—C171.520 (2)
C5—C201.510 (2)C16—H16A0.9900
C8—C71.404 (2)C16—H16B0.9900
C8—C131.419 (2)C20—H20A0.9800
C7—H70.9500C20—H20B0.9800
C10—C111.415 (2)C20—H20C0.9800
C10—H100.9500C15—H15A0.9800
C1—C21.394 (2)C15—H15B0.9800
C1—C181.509 (2)C15—H15C0.9800
C11—C121.431 (2)C17—H17A0.9800
C4—C31.393 (2)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
C9—O1—H3111.5 (14)C3—C2—C1122.99 (14)
C7—N1—C6126.34 (13)C3—C2—H2118.5
C7—N1—H1117.0 (12)C1—C2—H2118.5
C6—N1—H1116.7 (12)C1—C18—H18A109.5
C11—N2—C16121.95 (13)C1—C18—H18B109.5
C11—N2—C14121.66 (13)H18A—C18—H18B109.5
C16—N2—C14116.28 (12)C1—C18—H18C109.5
O3—N3—O4121.41 (15)H18A—C18—H18C109.5
O3—N3—O2119.75 (14)H18B—C18—H18C109.5
O4—N3—O2118.84 (13)N2—C14—C15114.18 (13)
C1—C6—C5121.99 (13)N2—C14—H14A108.7
C1—C6—N1121.11 (13)C15—C14—H14A108.7
C5—C6—N1116.80 (13)N2—C14—H14B108.7
O1—C9—C10122.02 (14)C15—C14—H14B108.7
O1—C9—C8116.91 (13)H14A—C14—H14B107.6
C10—C9—C8121.07 (14)C3—C19—H19A109.5
C4—C5—C6118.40 (14)C3—C19—H19B109.5
C4—C5—C20120.39 (14)H19A—C19—H19B109.5
C6—C5—C20121.21 (13)C3—C19—H19C109.5
C7—C8—C13119.11 (14)H19A—C19—H19C109.5
C7—C8—C9123.83 (14)H19B—C19—H19C109.5
C13—C8—C9117.05 (13)N2—C16—C17112.90 (14)
N1—C7—C8125.35 (14)N2—C16—H16A109.0
N1—C7—H7117.3C17—C16—H16A109.0
C8—C7—H7117.3N2—C16—H16B109.0
C9—C10—C11121.15 (14)C17—C16—H16B109.0
C9—C10—H10119.4H16A—C16—H16B107.8
C11—C10—H10119.4C5—C20—H20A109.5
C2—C1—C6116.91 (14)C5—C20—H20B109.5
C2—C1—C18119.02 (14)H20A—C20—H20B109.5
C6—C1—C18124.02 (14)C5—C20—H20C109.5
N2—C11—C10120.32 (14)H20A—C20—H20C109.5
N2—C11—C12121.76 (14)H20B—C20—H20C109.5
C10—C11—C12117.92 (13)C14—C15—H15A109.5
C5—C4—C3121.46 (14)C14—C15—H15B109.5
C5—C4—H4119.3H15A—C15—H15B109.5
C3—C4—H4119.3C14—C15—H15C109.5
C2—C3—C4118.12 (14)H15A—C15—H15C109.5
C2—C3—C19120.72 (14)H15B—C15—H15C109.5
C4—C3—C19121.16 (14)C16—C17—H17A109.5
C13—C12—C11120.38 (14)C16—C17—H17B109.5
C13—C12—H12119.8H17A—C17—H17B109.5
C11—C12—H12119.8C16—C17—H17C109.5
C12—C13—C8122.32 (14)H17A—C17—H17C109.5
C12—C13—H13118.8H17B—C17—H17C109.5
C8—C13—H13118.8
C7—N1—C6—C144.6 (2)C16—N2—C11—C125.1 (2)
C7—N1—C6—C5139.14 (16)C14—N2—C11—C12171.08 (14)
C1—C6—C5—C42.7 (2)C9—C10—C11—N2179.71 (14)
N1—C6—C5—C4178.99 (14)C9—C10—C11—C120.2 (2)
C1—C6—C5—C20177.30 (15)C6—C5—C4—C30.6 (2)
N1—C6—C5—C201.0 (2)C20—C5—C4—C3179.33 (15)
O1—C9—C8—C75.6 (2)C5—C4—C3—C22.4 (2)
C10—C9—C8—C7175.08 (15)C5—C4—C3—C19176.95 (15)
O1—C9—C8—C13175.59 (14)N2—C11—C12—C13177.41 (15)
C10—C9—C8—C133.7 (2)C10—C11—C12—C132.5 (2)
C6—N1—C7—C8175.65 (15)C11—C12—C13—C81.7 (2)
C13—C8—C7—N1179.16 (15)C7—C8—C13—C12177.45 (15)
C9—C8—C7—N10.4 (3)C9—C8—C13—C121.4 (2)
O1—C9—C10—C11176.33 (14)C4—C3—C2—C11.0 (2)
C8—C9—C10—C112.9 (2)C19—C3—C2—C1178.41 (15)
C5—C6—C1—C24.1 (2)C6—C1—C2—C32.2 (2)
N1—C6—C1—C2179.83 (13)C18—C1—C2—C3175.28 (15)
C5—C6—C1—C18173.26 (15)C11—N2—C14—C1586.67 (18)
N1—C6—C1—C182.8 (2)C16—N2—C14—C1596.94 (16)
C16—N2—C11—C10174.94 (14)C11—N2—C16—C1786.32 (19)
C14—N2—C11—C108.9 (2)C14—N2—C16—C1790.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.887 (19)1.961 (19)2.6410 (17)132.3 (16)
O1—H3···O20.98 (2)1.59 (2)2.5673 (16)178 (2)
C7—H7···O4i0.952.473.359 (2)157
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Funding information

The authors acknowledge the funding from the National Research Foundation (grant No. CPRR23041794158) and Stellenbosch University. SDO is the recipient of a postdoctoral fellowship award from the NRF at Stellenbosch University.

References

First citationAdeleke, A. A., Oladipo, S. D., Luckay, R. C., Akintemi, E. O., Olofinsan, K. A., Babatunde Onajobi, I., Yussuf, S. T., Ogundare, S. A., Adeleke, O. M. & Babalola, K. I. (2024). ChemistrySelect, 9, e202304967.  CrossRef Google Scholar
First citationAlbayrak, Ç., Kaştaş, G., Odabaşoğlu, M. & Frank, R. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 664–669.  CrossRef PubMed Google Scholar
First citationBarbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2019). SAINT, Bruker AXS Inc, Madison, Wisconsin, USA .  Google Scholar
First citationBruker (2021). APEX4, Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationJarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOladipo, S. D., Luckay, R. C., Olofinsan, K. A., Badeji, A. A. & Mokoena, S. (2025). Inorg. Chim. Acta, 575, 122447.  CrossRef Google Scholar
First citationOladipo, S. D., Yusuf, T. L., Zamisa, S. J., Tolufashe, G. F., Olofinsan, K. A., Tywabi-Ngeva, Z. & Mabuba, N. (2021). Eur. J. Chem. 12, 204–215.  CrossRef Google Scholar
First citationOladipo, S. D., Zamisa, S. J. & Luckay, R. C. (2024). Z. Kristallogr. New Cryst. Struct. 239, 1037–1039.  CrossRef Google Scholar
First citationRanjith, B., Karunakaran, P., Srinivasan, T., Selavaraju, C., Gunasekaran, K. & Velmuruagan, D. (2014). Int. J. Chem. Tech. Res. 6, 3091–3097.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakur, S., Jaryal, A. & Bhalla, A. (2024). Results Chem. 7, 101350.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146