organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(5-Methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]-N′-(4-nitro­benzyl­­idene)acetohydrazide monohydrate

crossmark logo

aDepartment of Chemistry, Periyar Maniammai Institute of Science & Technology, Thanjavur-613403, Tamilnadu, India, bDepartment of Chemistry, Research and Development Cell, PRIST Deemed to be University, Thanjavur-613403, Tamilnadu, India, and cDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
*Correspondence e-mail: gomathichemist@pmu.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 March 2025; accepted 22 April 2025; online 24 April 2025)

In the title hydrate, C12H11N5O3S2·H2O, the dihedral angle between the aromatic rings is 9.6 (3)°. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds link the components into (101) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3,4-Thia­diazole derivatives exhibit various biological activities such as cytotoxic (Janowska et al., 2020[Janowska, S., Paneth, A. & Wujec, M. (2020). Molecules 25, 4309-4309.]), anti­cancer (Hekal et al., 2023[Hekal, M. H., Farag, P. S., Hemdan, M. M., El-Sayed, A. A., Hassaballah, A. I. & El-Sayed, W. M. (2023). RSC Adv. 13, 15810-15825.]), anti­convulsant (Luszczki et al., 2015[Luszczki, J. J., Karpińska, M., Matysiak, J. & Niewiadomy, A. (2015). Pharmacol. Rep. 67, 588-592.]), anti-epileptic (Anthwal & Nain, 2022[Anthwal, T. & Nain, S. (2022). Front. Chem. 9, 671212-671212.]), anti­nociceptive (Altıntop et al., 2016[Altıntop, M. D., Can, Ö. D., Demir Özkay, Ü. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1004.]), anti­tubercular (Jain et al., 2013[Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557-576.]), anti­microbial, anti­fungal and anthelmintic activities (Bhinge et al., 2015[Bhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367-372.]). As part of the ongoing studies in this area, the present work describes the synthesis and structure of the title hydrate, C12H11N5O3S2·H2O (I) (Fig. 1[link] and scheme).

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

The dihedral angle between the C2/C5/N3/N4/S1 1,3,4-thia­diazole ring and the C10–C15 benzyl­idene ring is 9.6 (3)°. The torsion angles O1—C8—N1—N2, C7—C8—N1—N2 and C8—N1—N2—C9 are 177.1 (5), −2.5 (8) and 174.6 (5)°, respectively. The first and third of these indicate that the mol­ecule adopts a near-planar trans conformation. The small value for the second appears to minimize steric hindrance and maintains overall near-planarity. The bond angles for the hydrazide nitro­gen atoms (N1 and N2) are close to 120°, indicative of the expected sp2 hybridization (Mohan et al., 2011[Mohan, S., Ananthan, S., Ramesh, P., Saravanan, D. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o2612.]). Overall, the organic mol­ecule is close to planar (r.m.s. deviation for the non-hydrogen atoms = 0.139 Å).

In the crystal, the components are linked by N—H⋯Ow and Ow—H⋯N (w = water) hydrogen bonds (Table 1[link]), generating infinite (10[\overline{1}]) sheets. Various supra­molecular assemblies arise from this connectivity including R44(10) R22(24), R33(17), R44(10), R33(17) and R22(24) loops (Fig. 2[link]). Two weak C—H⋯O inter­actions also occur.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.82 (4) 2.08 (4) 2.900 (8) 176 (5)
O4—H4A⋯N4ii 0.72 (9) 2.32 (9) 3.037 (8) 175 (10)
O4—H4B⋯N3 0.75 (8) 2.15 (9) 2.898 (8) 176 (13)
C7—H7B⋯O3iii 0.97 2.51 3.400 (7) 153
C12—H12⋯O1iv 0.93 2.46 3.349 (6) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, -y, -z+1]; (iii) [-x, -y, -z]; (iv) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of a supra­molecular layer in the crystal of (I) showing various supra­molecular motifs. Symmetry codes (i) −1 + x, y, z; (ii) −x, −y, −z; (iii) [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) −[{3\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (v) 1 − x, −y, 1 − z].

The qu­anti­tative contribution of each type inter­action to the Hirshfeld surface is provided in the two-dimensional finger print plots and it is supported by the HS mapped with dnorm. The O⋯H/H⋯O contacts provide a maximum contribution (28.4%) through strong hydrogen bonding, followed by H⋯H (25.2%), and a significant role is played by N⋯H/H⋯N (9.2%) contacts. The other contact types S⋯H/H⋯S (7.7%), C⋯H/H⋯C (8.6%) O⋯C/C⋯O (5.4%) N⋯C/C⋯N (3.9%) and S⋯O/O⋯S (3.4%) presumably play a minor role on the crystal packing of (I) (see Figs. S1 and S2 in the supporting information).

Synthesis and crystallization

The title compound was synthesized by mixing 20 mL of an ethano­lic solution of (5-methyl-[1,3,4]lthia­diazol-2-ylsulfan­yl) acetic acid hydrazide (0.25 mmol) and ethanol:water mixture (3:1 v/v) 4-nitro­benz­aldehyde (0.25 mmol). The resulting mixture was refluxed under basic conditions for approximately 2 h. The resultant product was dissolved in 20 mL of ethanol, and the solution was allowed to crystallize via slow evaporation at room temperature, from which golden crystals of the title compound were harvested.

Refinement

The crystal data, data collection and structure refinement details for the compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H11N5O3S2·H2O
Mr 355.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 273
a, b, c (Å) 4.9431 (3), 18.3181 (11), 17.2223 (9)
β (°) 95.557 (2)
V3) 1552.12 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.14 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker D8 Quest
No. of measured, independent and observed [I > 2σ(I)] reflections 7776, 2857, 1703
Rint 0.098
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.155, 1.22
No. of reflections 2857
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

2-[(5-Methyl-1,3,4-thiadiazol-2-yl)sulfanyl]-N'-(4-nitrobenzylidene)acetohydrazide monohydrate top
Crystal data top
C12H11N5O3S2·H2OF(000) = 736
Mr = 355.39Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2857 reflections
a = 4.9431 (3) Åθ = 2.5–26.3°
b = 18.3181 (11) ŵ = 0.37 mm1
c = 17.2223 (9) ÅT = 273 K
β = 95.557 (2)°Trapezoid, gold
V = 1552.12 (16) Å30.14 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.098
φ and ω scansθmax = 26.3°, θmin = 2.5°
7776 measured reflectionsh = 55
2857 independent reflectionsk = 2219
1703 reflections with I > 2σ(I)l = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.090H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 W = 1/[Σ2(FO2) + 5.0708P] WHERE P = (FO2 + 2FC2)/3
S = 1.22(Δ/σ)max < 0.001
2857 reflectionsΔρmax = 0.35 e Å3
221 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The nitrogen- and oxygen-bound hydrogen atoms (H1, H14A & H14B) were located from the difference-Fourier map and refined freely. All other H atoms were positioned geometrically and refined via a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3438 (3)0.03917 (9)0.27832 (9)0.0388 (5)
S20.7558 (3)0.16604 (9)0.27385 (9)0.0406 (6)
O10.8363 (9)0.2756 (2)0.1699 (2)0.0502 (17)
O20.8321 (10)0.0733 (3)0.2101 (3)0.0619 (17)
O30.7278 (10)0.0085 (2)0.1227 (3)0.0576 (17)
N10.5049 (11)0.2563 (3)0.0730 (3)0.0344 (17)
N20.2957 (10)0.2128 (3)0.0442 (3)0.0329 (17)
N30.7537 (10)0.0603 (3)0.3767 (3)0.0419 (17)
N40.6281 (11)0.0020 (3)0.4009 (3)0.0423 (17)
N50.6936 (11)0.0505 (3)0.1527 (3)0.0421 (19)
C20.6256 (12)0.0873 (3)0.3140 (3)0.033 (2)
O41.1824 (13)0.1213 (3)0.4840 (4)0.0509 (19)
C50.4153 (12)0.0206 (3)0.3560 (4)0.038 (2)
C60.2509 (12)0.0867 (3)0.3681 (4)0.049 (3)
C70.5363 (12)0.1752 (3)0.1848 (3)0.039 (2)
C80.6405 (13)0.2400 (3)0.1429 (3)0.034 (2)
C90.1601 (12)0.2331 (3)0.0185 (3)0.035 (2)
C100.0591 (11)0.1862 (3)0.0527 (3)0.0319 (19)
C110.2248 (12)0.2078 (3)0.1184 (3)0.038 (2)
C120.4307 (12)0.1647 (3)0.1523 (3)0.039 (2)
C130.4703 (11)0.0975 (3)0.1198 (3)0.032 (2)
C140.3105 (13)0.0738 (3)0.0551 (4)0.044 (2)
C150.1059 (13)0.1177 (3)0.0217 (4)0.042 (2)
H10.557 (9)0.292 (2)0.050 (3)0.006 (13)*
H6A0.299060.105540.419580.0740*
H6B0.286060.123050.330190.0740*
H6C0.061420.074230.362300.0740*
H7A0.350030.183310.195960.0460*
H7B0.542760.131540.153210.0460*
H90.199630.276960.042170.0420*
H110.195210.253140.140280.0460*
H120.540100.180520.196060.0460*
H140.340780.028230.033840.0530*
H150.002610.101450.021970.0500*
H4A1.231 (18)0.092 (5)0.509 (5)0.10 (4)*
H4B1.070 (16)0.104 (5)0.458 (5)0.09 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0353 (9)0.0392 (9)0.0406 (10)0.0011 (8)0.0025 (7)0.0083 (8)
S20.0422 (10)0.0379 (9)0.0388 (10)0.0074 (8)0.0111 (8)0.0063 (8)
O10.056 (3)0.048 (3)0.044 (3)0.026 (2)0.009 (2)0.004 (2)
O20.060 (3)0.064 (3)0.056 (3)0.010 (3)0.023 (3)0.000 (3)
O30.067 (3)0.041 (3)0.064 (3)0.018 (3)0.002 (3)0.007 (3)
N10.043 (3)0.028 (3)0.032 (3)0.010 (3)0.002 (3)0.007 (2)
N20.033 (3)0.035 (3)0.030 (3)0.003 (2)0.000 (2)0.003 (2)
N30.045 (3)0.043 (3)0.035 (3)0.003 (3)0.010 (3)0.010 (3)
N40.046 (3)0.045 (3)0.036 (3)0.006 (3)0.005 (3)0.017 (3)
N50.045 (3)0.044 (4)0.037 (3)0.001 (3)0.003 (3)0.010 (3)
C20.035 (4)0.033 (3)0.030 (4)0.003 (3)0.002 (3)0.003 (3)
O40.061 (4)0.043 (3)0.046 (3)0.006 (3)0.009 (3)0.004 (3)
C50.033 (4)0.039 (4)0.041 (4)0.009 (3)0.005 (3)0.005 (3)
C60.040 (4)0.044 (4)0.065 (5)0.005 (3)0.010 (4)0.020 (4)
C70.043 (4)0.035 (4)0.036 (4)0.010 (3)0.006 (3)0.007 (3)
C80.042 (4)0.027 (3)0.031 (4)0.000 (3)0.001 (3)0.004 (3)
C90.037 (4)0.037 (4)0.031 (4)0.002 (3)0.002 (3)0.001 (3)
C100.029 (3)0.037 (4)0.030 (3)0.003 (3)0.004 (3)0.002 (3)
C110.041 (4)0.034 (3)0.038 (4)0.003 (3)0.004 (3)0.014 (3)
C120.039 (4)0.045 (4)0.030 (4)0.000 (3)0.006 (3)0.002 (3)
C130.028 (4)0.034 (4)0.032 (4)0.002 (3)0.001 (3)0.003 (3)
C140.048 (4)0.038 (4)0.046 (4)0.000 (3)0.003 (3)0.011 (3)
C150.041 (4)0.042 (4)0.040 (4)0.001 (3)0.010 (3)0.014 (3)
Geometric parameters (Å, º) top
S1—C21.712 (6)C10—C151.392 (8)
S1—C51.738 (7)C10—C111.389 (8)
S2—C21.749 (6)C11—C121.373 (8)
S2—C71.799 (6)C12—C131.374 (8)
O1—C81.221 (7)C13—C141.372 (8)
O2—N51.220 (7)C14—C151.374 (9)
O3—N51.217 (7)O4—H4A0.72 (9)
N1—N21.361 (8)O4—H4B0.75 (8)
N1—C81.353 (8)C6—H6C0.9600
N2—C91.270 (7)C6—H6A0.9600
N3—N41.383 (8)C6—H6B0.9600
N3—C21.296 (7)C7—H7B0.9700
N4—C51.290 (8)C7—H7A0.9700
N5—C131.470 (8)C9—H90.9300
N1—H10.82 (4)C11—H110.9300
C5—C61.484 (8)C12—H120.9300
C7—C81.506 (8)C14—H140.9300
C9—C101.461 (8)C15—H150.9300
C2—S1—C587.2 (3)N5—C13—C14118.7 (5)
C2—S2—C7101.5 (3)N5—C13—C12119.9 (5)
N2—N1—C8119.3 (5)C12—C13—C14121.4 (5)
N1—N2—C9117.3 (5)C13—C14—C15119.8 (5)
N4—N3—C2111.6 (5)C10—C15—C14120.7 (6)
N3—N4—C5113.7 (5)H4A—O4—H4B103 (10)
O2—N5—O3123.9 (6)C5—C6—H6B109.00
O2—N5—C13117.0 (5)C5—C6—H6C109.00
O3—N5—C13119.1 (5)C5—C6—H6A109.00
C8—N1—H1117 (3)H6A—C6—H6C110.00
N2—N1—H1124 (3)H6B—C6—H6C109.00
S1—C2—N3114.7 (4)H6A—C6—H6B109.00
S2—C2—N3118.4 (4)S2—C7—H7B111.00
S1—C2—S2126.9 (3)C8—C7—H7A110.00
N4—C5—C6123.9 (6)C8—C7—H7B110.00
S1—C5—N4112.9 (4)H7A—C7—H7B109.00
S1—C5—C6123.3 (5)S2—C7—H7A111.00
S2—C7—C8106.0 (4)C10—C9—H9121.00
N1—C8—C7115.9 (5)N2—C9—H9121.00
O1—C8—C7122.3 (5)C10—C11—H11119.00
O1—C8—N1121.8 (5)C12—C11—H11119.00
N2—C9—C10118.7 (5)C13—C12—H12121.00
C11—C10—C15117.6 (5)C11—C12—H12121.00
C9—C10—C11121.1 (5)C13—C14—H14120.00
C9—C10—C15121.3 (5)C15—C14—H14120.00
C10—C11—C12122.5 (5)C10—C15—H15120.00
C11—C12—C13118.1 (5)C14—C15—H15120.00
C5—S1—C2—S2178.8 (4)O2—N5—C13—C14179.8 (6)
C5—S1—C2—N30.1 (5)O3—N5—C13—C12179.2 (5)
C2—S1—C5—N40.5 (5)O3—N5—C13—C141.3 (8)
C2—S1—C5—C6178.4 (5)S2—C7—C8—O10.4 (7)
C7—S2—C2—S14.9 (5)S2—C7—C8—N1179.2 (4)
C7—S2—C2—N3173.8 (5)N2—C9—C10—C11175.9 (5)
C2—S2—C7—C8177.1 (4)N2—C9—C10—C155.5 (8)
C8—N1—N2—C9174.6 (5)C9—C10—C11—C12179.4 (5)
N2—N1—C8—O1177.1 (5)C15—C10—C11—C120.7 (8)
N2—N1—C8—C72.5 (8)C9—C10—C15—C14179.1 (6)
N1—N2—C9—C10177.6 (5)C11—C10—C15—C140.5 (9)
C2—N3—N4—C51.0 (7)C10—C11—C12—C130.6 (9)
N4—N3—C2—S10.6 (6)C11—C12—C13—N5178.1 (5)
N4—N3—C2—S2179.5 (4)C11—C12—C13—C140.3 (8)
N3—N4—C5—S11.0 (7)N5—C13—C14—C15177.9 (6)
N3—N4—C5—C6177.9 (5)C12—C13—C14—C150.1 (9)
O2—N5—C13—C121.9 (8)C13—C14—C15—C100.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (4)2.08 (4)2.900 (8)176 (5)
O4—H4A···N4ii0.72 (9)2.32 (9)3.037 (8)175 (10)
O4—H4B···N30.75 (8)2.15 (9)2.898 (8)176 (13)
C7—H7B···O3iii0.972.513.400 (7)153
C12—H12···O1iv0.932.463.349 (6)159
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+2, y, z+1; (iii) x, y, z; (iv) x3/2, y+1/2, z1/2.
 

Acknowledgements

LM thanks Professor Raphael G. Raptis at Florida Inter­national University, Miami, for access to the single-crystal X-ray diffraction facility. MN and SG thank R. Shayamaladevi for the support provided during the experimental phase.

References

First citationAltıntop, M. D., Can, Ö. D., Demir Özkay, Ü. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1004.  Google Scholar
First citationAnthwal, T. & Nain, S. (2022). Front. Chem. 9, 671212–671212.  CrossRef PubMed Google Scholar
First citationBhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367–372.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.  Google Scholar
First citationHekal, M. H., Farag, P. S., Hemdan, M. M., El-Sayed, A. A., Hassaballah, A. I. & El-Sayed, W. M. (2023). RSC Adv. 13, 15810–15825.  CrossRef CAS PubMed Google Scholar
First citationJain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557–576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJanowska, S., Paneth, A. & Wujec, M. (2020). Molecules 25, 4309–4309.  CrossRef PubMed Google Scholar
First citationLuszczki, J. J., Karpińska, M., Matysiak, J. & Niewiadomy, A. (2015). Pharmacol. Rep. 67, 588–592.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan, S., Ananthan, S., Ramesh, P., Saravanan, D. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o2612.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146