

organic compounds
2-[(5-Methyl-1,3,4-thiadiazol-2-yl)sulfanyl]-N′-(4-nitrobenzylidene)acetohydrazide monohydrate
aDepartment of Chemistry, Periyar Maniammai Institute of Science & Technology, Thanjavur-613403, Tamilnadu, India, bDepartment of Chemistry, Research and Development Cell, PRIST Deemed to be University, Thanjavur-613403, Tamilnadu, India, and cDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
*Correspondence e-mail: gomathichemist@pmu.edu
In the title hydrate, C12H11N5O3S2·H2O, the dihedral angle between the aromatic rings is 9.6 (3)°. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds link the components into (101) sheets.
Keywords: crystal structure; 1,3,4-thiadiazole; hydrogen bonds.
CCDC reference: 2445786
![[Scheme 3D1]](hb4512scheme3D1.gif)
![[Scheme 1]](hb4512scheme1.gif)
Structure description
1,3,4-Thiadiazole derivatives exhibit various biological activities such as cytotoxic (Janowska et al., 2020), anticancer (Hekal et al., 2023
), anticonvulsant (Luszczki et al., 2015
), anti-epileptic (Anthwal & Nain, 2022
), antinociceptive (Altıntop et al., 2016
), antitubercular (Jain et al., 2013
), antimicrobial, antifungal and anthelmintic activities (Bhinge et al., 2015
). As part of the ongoing studies in this area, the present work describes the synthesis and structure of the title hydrate, C12H11N5O3S2·H2O (I) (Fig. 1
and scheme).
![]() | Figure 1 The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. |
The dihedral angle between the C2/C5/N3/N4/S1 1,3,4-thiadiazole ring and the C10–C15 benzylidene ring is 9.6 (3)°. The torsion angles O1—C8—N1—N2, C7—C8—N1—N2 and C8—N1—N2—C9 are 177.1 (5), −2.5 (8) and 174.6 (5)°, respectively. The first and third of these indicate that the molecule adopts a near-planar trans conformation. The small value for the second appears to minimize and maintains overall near-planarity. The bond angles for the hydrazide nitrogen atoms (N1 and N2) are close to 120°, indicative of the expected sp2 (Mohan et al., 2011). Overall, the organic molecule is close to planar (r.m.s. deviation for the non-hydrogen atoms = 0.139 Å).
In the crystal, the components are linked by N—H⋯Ow and Ow—H⋯N (w = water) hydrogen bonds (Table 1), generating infinite (10
) sheets. Various supramolecular assemblies arise from this connectivity including R44(10) R22(24), R33(17), R44(10), R33(17) and R22(24) loops (Fig. 2
). Two weak C—H⋯O interactions also occur.
|
![]() | Figure 2 Part of a supramolecular layer in the crystal of (I) showing various supramolecular motifs. Symmetry codes (i) −1 + x, y, z; (ii) −x, −y, −z; (iii) |
The quantitative contribution of each type interaction to the Hirshfeld surface is provided in the two-dimensional finger print plots and it is supported by the HS mapped with dnorm. The O⋯H/H⋯O contacts provide a maximum contribution (28.4%) through strong hydrogen bonding, followed by H⋯H (25.2%), and a significant role is played by N⋯H/H⋯N (9.2%) contacts. The other contact types S⋯H/H⋯S (7.7%), C⋯H/H⋯C (8.6%) O⋯C/C⋯O (5.4%) N⋯C/C⋯N (3.9%) and S⋯O/O⋯S (3.4%) presumably play a minor role on the crystal packing of (I) (see Figs. S1 and S2 in the supporting information).
Synthesis and crystallization
The title compound was synthesized by mixing 20 mL of an ethanolic solution of (5-methyl-[1,3,4]lthiadiazol-2-ylsulfanyl) acetic acid hydrazide (0.25 mmol) and ethanol:water mixture (3:1 v/v) 4-nitrobenzaldehyde (0.25 mmol). The resulting mixture was refluxed under basic conditions for approximately 2 h. The resultant product was dissolved in 20 mL of ethanol, and the solution was allowed to crystallize via slow evaporation at room temperature, from which golden crystals of the title compound were harvested.
Refinement
The crystal data, data collection and structure .
|
Structural data
CCDC reference: 2445786
https://doi.org/10.1107/S2414314625003645/hb4512sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625003645/hb4512Isup2.hkl
The supporting information contains Two dimensional fingerprint plot showing the total contribution of individual types of interactions and HS mapped with dnorm. DOI: https://doi.org/10.1107/S2414314625003645/hb4512sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2414314625003645/hb4512Isup4.cml
C12H11N5O3S2·H2O | F(000) = 736 |
Mr = 355.39 | Dx = 1.521 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2857 reflections |
a = 4.9431 (3) Å | θ = 2.5–26.3° |
b = 18.3181 (11) Å | µ = 0.37 mm−1 |
c = 17.2223 (9) Å | T = 273 K |
β = 95.557 (2)° | Trapezoid, gold |
V = 1552.12 (16) Å3 | 0.14 × 0.10 × 0.04 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | Rint = 0.098 |
φ and ω scans | θmax = 26.3°, θmin = 2.5° |
7776 measured reflections | h = −5→5 |
2857 independent reflections | k = −22→19 |
1703 reflections with I > 2σ(I) | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.155 | W = 1/[Σ2(FO2) + 5.0708P] WHERE P = (FO2 + 2FC2)/3 |
S = 1.22 | (Δ/σ)max < 0.001 |
2857 reflections | Δρmax = 0.35 e Å−3 |
221 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The nitrogen- and oxygen-bound hydrogen atoms (H1, H14A & H14B) were located from the difference-Fourier map and refined freely. All other H atoms were positioned geometrically and refined via a riding model. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.3438 (3) | 0.03917 (9) | 0.27832 (9) | 0.0388 (5) | |
S2 | 0.7558 (3) | 0.16604 (9) | 0.27385 (9) | 0.0406 (6) | |
O1 | 0.8363 (9) | 0.2756 (2) | 0.1699 (2) | 0.0502 (17) | |
O2 | −0.8321 (10) | 0.0733 (3) | −0.2101 (3) | 0.0619 (17) | |
O3 | −0.7278 (10) | −0.0085 (2) | −0.1227 (3) | 0.0576 (17) | |
N1 | 0.5049 (11) | 0.2563 (3) | 0.0730 (3) | 0.0344 (17) | |
N2 | 0.2957 (10) | 0.2128 (3) | 0.0442 (3) | 0.0329 (17) | |
N3 | 0.7537 (10) | 0.0603 (3) | 0.3767 (3) | 0.0419 (17) | |
N4 | 0.6281 (11) | −0.0020 (3) | 0.4009 (3) | 0.0423 (17) | |
N5 | −0.6936 (11) | 0.0505 (3) | −0.1527 (3) | 0.0421 (19) | |
C2 | 0.6256 (12) | 0.0873 (3) | 0.3140 (3) | 0.033 (2) | |
O4 | 1.1824 (13) | 0.1213 (3) | 0.4840 (4) | 0.0509 (19) | |
C5 | 0.4153 (12) | −0.0206 (3) | 0.3560 (4) | 0.038 (2) | |
C6 | 0.2509 (12) | −0.0867 (3) | 0.3681 (4) | 0.049 (3) | |
C7 | 0.5363 (12) | 0.1752 (3) | 0.1848 (3) | 0.039 (2) | |
C8 | 0.6405 (13) | 0.2400 (3) | 0.1429 (3) | 0.034 (2) | |
C9 | 0.1601 (12) | 0.2331 (3) | −0.0185 (3) | 0.035 (2) | |
C10 | −0.0591 (11) | 0.1862 (3) | −0.0527 (3) | 0.0319 (19) | |
C11 | −0.2248 (12) | 0.2078 (3) | −0.1184 (3) | 0.038 (2) | |
C12 | −0.4307 (12) | 0.1647 (3) | −0.1523 (3) | 0.039 (2) | |
C13 | −0.4703 (11) | 0.0975 (3) | −0.1198 (3) | 0.032 (2) | |
C14 | −0.3105 (13) | 0.0738 (3) | −0.0551 (4) | 0.044 (2) | |
C15 | −0.1059 (13) | 0.1177 (3) | −0.0217 (4) | 0.042 (2) | |
H1 | 0.557 (9) | 0.292 (2) | 0.050 (3) | 0.006 (13)* | |
H6A | 0.29906 | −0.10554 | 0.41958 | 0.0740* | |
H6B | 0.28606 | −0.12305 | 0.33019 | 0.0740* | |
H6C | 0.06142 | −0.07423 | 0.36230 | 0.0740* | |
H7A | 0.35003 | 0.18331 | 0.19596 | 0.0460* | |
H7B | 0.54276 | 0.13154 | 0.15321 | 0.0460* | |
H9 | 0.19963 | 0.27696 | −0.04217 | 0.0420* | |
H11 | −0.19521 | 0.25314 | −0.14028 | 0.0460* | |
H12 | −0.54010 | 0.18052 | −0.19606 | 0.0460* | |
H14 | −0.34078 | 0.02823 | −0.03384 | 0.0530* | |
H15 | 0.00261 | 0.10145 | 0.02197 | 0.0500* | |
H4A | 1.231 (18) | 0.092 (5) | 0.509 (5) | 0.10 (4)* | |
H4B | 1.070 (16) | 0.104 (5) | 0.458 (5) | 0.09 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0353 (9) | 0.0392 (9) | 0.0406 (10) | −0.0011 (8) | −0.0025 (7) | 0.0083 (8) |
S2 | 0.0422 (10) | 0.0379 (9) | 0.0388 (10) | −0.0074 (8) | −0.0111 (8) | 0.0063 (8) |
O1 | 0.056 (3) | 0.048 (3) | 0.044 (3) | −0.026 (2) | −0.009 (2) | 0.004 (2) |
O2 | 0.060 (3) | 0.064 (3) | 0.056 (3) | −0.010 (3) | −0.023 (3) | 0.000 (3) |
O3 | 0.067 (3) | 0.041 (3) | 0.064 (3) | −0.018 (3) | 0.002 (3) | 0.007 (3) |
N1 | 0.043 (3) | 0.028 (3) | 0.032 (3) | −0.010 (3) | 0.002 (3) | 0.007 (2) |
N2 | 0.033 (3) | 0.035 (3) | 0.030 (3) | −0.003 (2) | 0.000 (2) | −0.003 (2) |
N3 | 0.045 (3) | 0.043 (3) | 0.035 (3) | −0.003 (3) | −0.010 (3) | 0.010 (3) |
N4 | 0.046 (3) | 0.045 (3) | 0.036 (3) | 0.006 (3) | 0.005 (3) | 0.017 (3) |
N5 | 0.045 (3) | 0.044 (4) | 0.037 (3) | −0.001 (3) | 0.003 (3) | −0.010 (3) |
C2 | 0.035 (4) | 0.033 (3) | 0.030 (4) | 0.003 (3) | 0.002 (3) | 0.003 (3) |
O4 | 0.061 (4) | 0.043 (3) | 0.046 (3) | 0.006 (3) | −0.009 (3) | −0.004 (3) |
C5 | 0.033 (4) | 0.039 (4) | 0.041 (4) | 0.009 (3) | 0.005 (3) | 0.005 (3) |
C6 | 0.040 (4) | 0.044 (4) | 0.065 (5) | −0.005 (3) | 0.010 (4) | 0.020 (4) |
C7 | 0.043 (4) | 0.035 (4) | 0.036 (4) | −0.010 (3) | −0.006 (3) | 0.007 (3) |
C8 | 0.042 (4) | 0.027 (3) | 0.031 (4) | 0.000 (3) | −0.001 (3) | −0.004 (3) |
C9 | 0.037 (4) | 0.037 (4) | 0.031 (4) | 0.002 (3) | 0.002 (3) | 0.001 (3) |
C10 | 0.029 (3) | 0.037 (4) | 0.030 (3) | 0.003 (3) | 0.004 (3) | −0.002 (3) |
C11 | 0.041 (4) | 0.034 (3) | 0.038 (4) | 0.003 (3) | −0.004 (3) | 0.014 (3) |
C12 | 0.039 (4) | 0.045 (4) | 0.030 (4) | 0.000 (3) | −0.006 (3) | 0.002 (3) |
C13 | 0.028 (4) | 0.034 (4) | 0.032 (4) | −0.002 (3) | 0.001 (3) | −0.003 (3) |
C14 | 0.048 (4) | 0.038 (4) | 0.046 (4) | 0.000 (3) | 0.003 (3) | 0.011 (3) |
C15 | 0.041 (4) | 0.042 (4) | 0.040 (4) | 0.001 (3) | −0.010 (3) | 0.014 (3) |
S1—C2 | 1.712 (6) | C10—C15 | 1.392 (8) |
S1—C5 | 1.738 (7) | C10—C11 | 1.389 (8) |
S2—C2 | 1.749 (6) | C11—C12 | 1.373 (8) |
S2—C7 | 1.799 (6) | C12—C13 | 1.374 (8) |
O1—C8 | 1.221 (7) | C13—C14 | 1.372 (8) |
O2—N5 | 1.220 (7) | C14—C15 | 1.374 (9) |
O3—N5 | 1.217 (7) | O4—H4A | 0.72 (9) |
N1—N2 | 1.361 (8) | O4—H4B | 0.75 (8) |
N1—C8 | 1.353 (8) | C6—H6C | 0.9600 |
N2—C9 | 1.270 (7) | C6—H6A | 0.9600 |
N3—N4 | 1.383 (8) | C6—H6B | 0.9600 |
N3—C2 | 1.296 (7) | C7—H7B | 0.9700 |
N4—C5 | 1.290 (8) | C7—H7A | 0.9700 |
N5—C13 | 1.470 (8) | C9—H9 | 0.9300 |
N1—H1 | 0.82 (4) | C11—H11 | 0.9300 |
C5—C6 | 1.484 (8) | C12—H12 | 0.9300 |
C7—C8 | 1.506 (8) | C14—H14 | 0.9300 |
C9—C10 | 1.461 (8) | C15—H15 | 0.9300 |
C2—S1—C5 | 87.2 (3) | N5—C13—C14 | 118.7 (5) |
C2—S2—C7 | 101.5 (3) | N5—C13—C12 | 119.9 (5) |
N2—N1—C8 | 119.3 (5) | C12—C13—C14 | 121.4 (5) |
N1—N2—C9 | 117.3 (5) | C13—C14—C15 | 119.8 (5) |
N4—N3—C2 | 111.6 (5) | C10—C15—C14 | 120.7 (6) |
N3—N4—C5 | 113.7 (5) | H4A—O4—H4B | 103 (10) |
O2—N5—O3 | 123.9 (6) | C5—C6—H6B | 109.00 |
O2—N5—C13 | 117.0 (5) | C5—C6—H6C | 109.00 |
O3—N5—C13 | 119.1 (5) | C5—C6—H6A | 109.00 |
C8—N1—H1 | 117 (3) | H6A—C6—H6C | 110.00 |
N2—N1—H1 | 124 (3) | H6B—C6—H6C | 109.00 |
S1—C2—N3 | 114.7 (4) | H6A—C6—H6B | 109.00 |
S2—C2—N3 | 118.4 (4) | S2—C7—H7B | 111.00 |
S1—C2—S2 | 126.9 (3) | C8—C7—H7A | 110.00 |
N4—C5—C6 | 123.9 (6) | C8—C7—H7B | 110.00 |
S1—C5—N4 | 112.9 (4) | H7A—C7—H7B | 109.00 |
S1—C5—C6 | 123.3 (5) | S2—C7—H7A | 111.00 |
S2—C7—C8 | 106.0 (4) | C10—C9—H9 | 121.00 |
N1—C8—C7 | 115.9 (5) | N2—C9—H9 | 121.00 |
O1—C8—C7 | 122.3 (5) | C10—C11—H11 | 119.00 |
O1—C8—N1 | 121.8 (5) | C12—C11—H11 | 119.00 |
N2—C9—C10 | 118.7 (5) | C13—C12—H12 | 121.00 |
C11—C10—C15 | 117.6 (5) | C11—C12—H12 | 121.00 |
C9—C10—C11 | 121.1 (5) | C13—C14—H14 | 120.00 |
C9—C10—C15 | 121.3 (5) | C15—C14—H14 | 120.00 |
C10—C11—C12 | 122.5 (5) | C10—C15—H15 | 120.00 |
C11—C12—C13 | 118.1 (5) | C14—C15—H15 | 120.00 |
C5—S1—C2—S2 | 178.8 (4) | O2—N5—C13—C14 | 179.8 (6) |
C5—S1—C2—N3 | 0.1 (5) | O3—N5—C13—C12 | −179.2 (5) |
C2—S1—C5—N4 | 0.5 (5) | O3—N5—C13—C14 | −1.3 (8) |
C2—S1—C5—C6 | −178.4 (5) | S2—C7—C8—O1 | −0.4 (7) |
C7—S2—C2—S1 | −4.9 (5) | S2—C7—C8—N1 | 179.2 (4) |
C7—S2—C2—N3 | 173.8 (5) | N2—C9—C10—C11 | 175.9 (5) |
C2—S2—C7—C8 | −177.1 (4) | N2—C9—C10—C15 | −5.5 (8) |
C8—N1—N2—C9 | 174.6 (5) | C9—C10—C11—C12 | 179.4 (5) |
N2—N1—C8—O1 | 177.1 (5) | C15—C10—C11—C12 | 0.7 (8) |
N2—N1—C8—C7 | −2.5 (8) | C9—C10—C15—C14 | −179.1 (6) |
N1—N2—C9—C10 | 177.6 (5) | C11—C10—C15—C14 | −0.5 (9) |
C2—N3—N4—C5 | 1.0 (7) | C10—C11—C12—C13 | −0.6 (9) |
N4—N3—C2—S1 | −0.6 (6) | C11—C12—C13—N5 | 178.1 (5) |
N4—N3—C2—S2 | −179.5 (4) | C11—C12—C13—C14 | 0.3 (8) |
N3—N4—C5—S1 | −1.0 (7) | N5—C13—C14—C15 | −177.9 (6) |
N3—N4—C5—C6 | 177.9 (5) | C12—C13—C14—C15 | −0.1 (9) |
O2—N5—C13—C12 | 1.9 (8) | C13—C14—C15—C10 | 0.2 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.82 (4) | 2.08 (4) | 2.900 (8) | 176 (5) |
O4—H4A···N4ii | 0.72 (9) | 2.32 (9) | 3.037 (8) | 175 (10) |
O4—H4B···N3 | 0.75 (8) | 2.15 (9) | 2.898 (8) | 176 (13) |
C7—H7B···O3iii | 0.97 | 2.51 | 3.400 (7) | 153 |
C12—H12···O1iv | 0.93 | 2.46 | 3.349 (6) | 159 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y, −z+1; (iii) −x, −y, −z; (iv) x−3/2, −y+1/2, z−1/2. |
Acknowledgements
LM thanks Professor Raphael G. Raptis at Florida International University, Miami, for access to the single-crystal X-ray diffraction facility. MN and SG thank R. Shayamaladevi for the support provided during the experimental phase.
References
Altıntop, M. D., Can, Ö. D., Demir Özkay, Ü. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1004. Google Scholar
Anthwal, T. & Nain, S. (2022). Front. Chem. 9, 671212–671212. CrossRef PubMed Google Scholar
Bhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367–372. Web of Science CrossRef CAS Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia. Google Scholar
Hekal, M. H., Farag, P. S., Hemdan, M. M., El-Sayed, A. A., Hassaballah, A. I. & El-Sayed, W. M. (2023). RSC Adv. 13, 15810–15825. CrossRef CAS PubMed Google Scholar
Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557–576. Web of Science CrossRef CAS PubMed Google Scholar
Janowska, S., Paneth, A. & Wujec, M. (2020). Molecules 25, 4309–4309. CrossRef PubMed Google Scholar
Luszczki, J. J., Karpińska, M., Matysiak, J. & Niewiadomy, A. (2015). Pharmacol. Rep. 67, 588–592. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohan, S., Ananthan, S., Ramesh, P., Saravanan, D. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o2612. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.