organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Acetyl-2-amino-4-(2-fluoro­phen­yl)-6-methyl-4H-pyran-3-carbo­nitrile dichlo­methane hemisolvate

crossmark logo

aUniversity of KwaZulu-Natal, School of Chemistry and Physics, Private bag X54001, Durban, 4000, South Africa, and bMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya
*Correspondence e-mail: 224171425@stu.ukzn.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 March 2025; accepted 14 April 2025; online 24 April 2025)

The title compound, 2C15H13FN2O2·CH2Cl2, crystallizes with two main mol­ecules in the asymmetric unit with a disordered di­chloro­methane solvent mol­ecule. The dihedral angles between the fluoro phenyl ring and 4H-pyran ring are 74.36 (15) and 80.69 (15)° in the two mol­ecules. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional supra­molecular network propagating in the (100) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amino-4H-pyran derivatives are useful building blocks in creating pharmacologically active heterocycles in multicomponent reactions, such as anti-tumor (Fouda, 2016[Fouda, A. M. (2016). Med. Chem. Res. 25, 1229-1238.]), anti­bacterial (Kathrotiya & Patel, 2012[Kathrotiya, H. G. & Patel, M. P. (2012). J. Med. Chem. 21, 3406-3416.]), anti­mycobacterial (Alvey et al., 2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]) anti­leishmanial (Narender & Gupta, 2004[Narender, T. & Gupta, S. (2004). BMCL. 15, 3913-3916.]) and anti­proliferative agents (Mansouri et al., 2011[Mansouri, K., Khodarahmi, R., Foroumadi, A., Mostafaie, A. & Mohammadi Motlagh, H. (2011). Med. Chem. Res. 20, 920-929.]). Our previous study on aryl-based 2-amino carbo­nitriles identified different hydrogen-bonding patters in the crystal structures (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]). A structural analysis using the Cambridge Structural Database (CSD version 5.46, November 2024 update); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed various types of hydrogen-bonding patterns driven by substituents on the 4H-pyran core. These were dominated by N—H⋯N and N—H⋯O inter­actions involving the amino and carbon­yl/cyano groups. This analysis indicated that the binding affinity of these compounds towards calf thymus de­oxy­ribonucleic acid may be associated with hydrogen bonds involving their amino functional groups. This finding is consistent with our exploration of potential anti­cancer agents (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]). The current study continues our investigation into the structures of 4H-pyran derivatives as potential anti­cancer agents and reports the synthesis and structure of the title compound.

There are two symmetrically independent C15H13FN2O2 mol­ecules in the asymmetric unit (Fig. 1[link]). Each mol­ecule comprises a cyclo­alkanone, 4H-pyran core with attached phenyl moiety, cyano, and amino groups. The dihedral angle between the fluoro­phenyl and 4H-pyran rings are 74.36 (15)° (C1 mol­ecule) and 80.69 (15)° (C16 mol­ecule) and are similar to those of related compounds in the literature (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.], 2023[Zamisa, S. J., Adeleke, A. A., Devnarain, N., Rhman, M. A., Owira, P. M. O. & Omondi, B. (2023). RSC Adv. 13, 21820-21837.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. The disordered components, including the aromatic and methine hydrogen atoms, are omitted for clarity.

In the crystal, the mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) engendered by the amine functional group. One of these hydrogen atoms, H1B or H4B, inter­acts with the nitro­gen atom N3 or N2 of a neighbouring mol­ecule via an N—H⋯N link with the graph-set descriptor R22(12) (involving the amino and the cyano group) (Motif I). An N—H⋯O hydrogen bond graph with graph-set descriptor C22(10) with the carbonyl group oxygen atom O3 or O1 of a neighbouring mol­ecule acting as acceptor to the amine (Motif II), Fig. 2[link] (Nyapola et al., 2024[Nyapola, C., Zamisa, S. J., Njogu, E. M. & Omondi, B. (2024). IUCrData, 9, x241049.]; Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]) is also observed. These two motifs combined create a supra­molecular structure that propagates in the (100) plane of the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 2.26 3.066 (4) 156
N1—H1B⋯O3ii 0.86 2.03 2.844 (8) 159
N1—H1B⋯O3Aii 0.86 2.02 2.855 (7) 165
N4—H4A⋯N2iii 0.86 2.20 3.016 (4) 157
N4—H4B⋯O1iv 0.86 2.06 2.910 (3) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
A projection of the crystal packing along the a-axis. Dashed lines denote N—H⋯N and N—H⋯O hydrogen bonds. Motifs 1 and II (see text) are depicted by blue and red dotted lines, respectively.

Synthesis and crystallization

0.015 mmol of 1,3-cyclo­hexa­nedione were mixed with 0.015 mmol of malonotrile and 0.015 mmol of benzaldehyde in a microwave vessel. A catalytic amount of tri­ethyl­amine was added in a tightly sealed 35 ml microwave reaction vessel, and the mixture was subjected to microwave radiation at 150°C for 10 minutes. An off-white solid precipitate was formed and collected by vacuum filtration. The reaction progress was monitored using thin-layer chromatography with a solvent ratio of 1:1 for ethyl acetate and hexane. The resulting precipitate was isolated and recrystallized from ethanol solution. Crystals of the title compound were obtained through slow isothermal evaporation from absolute di­chloro­methane solution.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link]. SIMU restraints and EADP constraints in SHELXL were used to model the disorder of the solvent mol­ecule. The hydrogen atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.96 Å depending on hybridization and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula 2C15H13FN2O2·CH2Cl2
Mr 629.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.8670 (4), 15.2671 (6), 19.1569 (8)
β (°) 97.463 (2)
V3) 3151.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.31 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.485, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 84575, 6190, 4405
Rint 0.063
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.239, 1.08
No. of reflections 6190
No. of parameters 419
No. of restraints 59
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

5-Acetyl-2-amino-4-(2-fluorophenyl)-6-methyl-4H-pyran-3-carbonitrile dichloromethane hemisolvate top
Crystal data top
2C15H13FN2O2·CH2Cl2F(000) = 1304
Mr = 629.47Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8670 (4) ÅCell parameters from 9748 reflections
b = 15.2671 (6) Åθ = 2.3–27.0°
c = 19.1569 (8) ŵ = 0.26 mm1
β = 97.463 (2)°T = 296 K
V = 3151.4 (2) Å3Block, colourless
Z = 40.31 × 0.22 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6190 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4405 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.063
Detector resolution: 7.9 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.485, Tmax = 0.746l = 2323
84575 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.239 w = 1/[σ2(Fo2) + (0.1098P)2 + 1.8679P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
6190 reflectionsΔρmax = 0.71 e Å3
419 parametersΔρmin = 0.60 e Å3
59 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.6616 (2)0.83522 (16)0.26782 (10)0.0953 (7)
O10.7001 (3)0.93283 (16)0.55386 (12)0.0889 (7)
O20.6515 (2)0.66060 (13)0.52455 (10)0.0754 (6)
N10.6603 (3)0.53973 (16)0.46177 (14)0.0874 (9)
H1A0.6649610.5099470.4240970.105*
H1B0.6555780.5132180.5009380.105*
N20.6820 (4)0.60700 (19)0.28440 (15)0.0938 (10)
C10.6117 (3)0.9631 (2)0.43838 (18)0.0780 (9)
H1C0.6727770.9707700.4069080.117*
H1D0.5929061.0188170.4577000.117*
H1E0.5376200.9386040.4130900.117*
C20.6612 (3)0.90264 (18)0.49666 (15)0.0590 (7)
C30.6610 (2)0.80710 (17)0.48275 (13)0.0512 (6)
C40.6532 (3)0.74986 (18)0.53509 (14)0.0592 (7)
C50.6604 (3)0.62692 (18)0.45944 (14)0.0616 (7)
C60.6671 (3)0.67926 (16)0.40317 (13)0.0524 (6)
C70.6665 (2)0.77841 (15)0.40747 (13)0.0487 (6)
H70.5917200.7998620.3783720.058*
C80.6404 (4)0.7660 (2)0.61059 (16)0.0832 (10)
H8A0.7200990.7606020.6384250.125*
H8B0.5843490.7237710.6261430.125*
H8C0.6084240.8238910.6157980.125*
C90.6762 (3)0.63938 (18)0.33777 (15)0.0617 (7)
C100.7795 (2)0.81656 (16)0.37852 (13)0.0518 (6)
C110.7726 (3)0.84350 (19)0.30958 (16)0.0651 (7)
C120.8707 (4)0.8794 (2)0.2811 (2)0.0873 (11)
H120.8615620.8965050.2341320.105*
C130.9811 (4)0.8896 (3)0.3224 (3)0.0961 (12)
H131.0482770.9139370.3037860.115*
C140.9936 (3)0.8638 (3)0.3919 (2)0.0920 (11)
H141.0689620.8712360.4203240.110*
C150.8935 (3)0.8266 (2)0.41938 (18)0.0727 (8)
H150.9032070.8082150.4660510.087*
F20.3253 (2)0.65517 (16)0.13286 (11)0.1017 (7)
O40.30673 (19)0.84069 (12)0.38524 (9)0.0618 (5)
N30.3590 (3)0.89205 (18)0.14758 (15)0.0865 (9)
N40.3104 (3)0.96089 (15)0.32094 (13)0.0688 (7)
H4A0.3162730.9903220.2832340.083*
H4B0.3004450.9877020.3592850.083*
C160.3714 (4)0.5364 (2)0.3085 (2)0.0996 (13)
H16A0.2975180.5265200.2762010.149*
H16B0.3990920.4820900.3303640.149*
H16C0.4350430.5598510.2835420.149*
C170.3444 (4)0.5994 (2)0.3631 (2)0.0860 (10)
C180.3294 (2)0.69418 (17)0.34666 (15)0.0562 (6)
C190.3188 (3)0.75174 (18)0.39809 (15)0.0584 (7)
C200.3169 (2)0.87347 (16)0.31995 (13)0.0516 (6)
C210.3321 (2)0.82051 (16)0.26544 (13)0.0497 (6)
C220.3258 (2)0.72140 (15)0.27028 (14)0.0516 (6)
H220.3986280.6967390.2521220.062*
C230.3164 (4)0.7376 (3)0.47495 (17)0.0837 (10)
H23A0.2381840.7124840.4823710.100*
H23B0.3272340.7926660.4991630.100*
H23C0.3823270.6985360.4927900.100*
C240.3476 (3)0.85970 (17)0.20039 (15)0.0597 (7)
C250.2090 (3)0.68716 (16)0.22507 (14)0.0550 (6)
C260.2138 (3)0.6560 (2)0.15778 (17)0.0715 (8)
C270.1119 (5)0.6249 (3)0.1150 (2)0.0957 (12)
H270.1191650.6045880.0699680.115*
C280.0002 (4)0.6245 (3)0.1398 (3)0.1032 (14)
H280.0699570.6034210.1115210.124*
C290.0109 (3)0.6550 (3)0.2067 (2)0.0913 (11)
H290.0874120.6546090.2235500.110*
C300.0939 (3)0.6862 (2)0.24847 (18)0.0711 (8)
H300.0864990.7070980.2933460.085*
O3A0.3692 (6)0.5749 (4)0.4238 (4)0.0913 (13)0.5
O30.2981 (7)0.5700 (4)0.4175 (4)0.107 (2)0.5
Cl20.0289 (13)0.5107 (10)0.3527 (10)0.183 (2)0.3333
Cl30.0044 (12)0.3416 (6)0.4020 (5)0.1845 (17)0.3333
C1A0.0493 (19)0.4488 (8)0.4202 (10)0.182 (2)0.3333
H1AA0.0296050.4683280.4656480.219*0.3333
H1AB0.1383980.4523740.4199220.219*0.3333
Cl3A0.0105 (8)0.3565 (4)0.4722 (4)0.1845 (17)0.3333
C1B0.045 (2)0.3910 (15)0.3879 (10)0.182 (2)0.3333
H1BA0.0020480.3582950.3568470.219*0.3333
H1BB0.1293730.3695940.3788810.219*0.3333
Cl2A0.0494 (14)0.4896 (11)0.3592 (10)0.183 (2)0.3333
Cl10.0398 (7)0.5174 (6)0.3831 (4)0.183 (2)0.3333
Cl40.0405 (12)0.3494 (5)0.4256 (5)0.1845 (17)0.3333
C1C0.0492 (18)0.4449 (9)0.4279 (13)0.182 (2)0.3333
H1CA0.0540820.4640650.4757860.219*0.3333
H1CB0.1322630.4373090.4032690.219*0.3333
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1047 (15)0.1224 (18)0.0571 (11)0.0045 (12)0.0040 (10)0.0216 (10)
O10.123 (2)0.0682 (14)0.0725 (15)0.0101 (13)0.0004 (13)0.0274 (11)
O20.1291 (19)0.0538 (11)0.0446 (10)0.0029 (11)0.0166 (11)0.0041 (8)
N10.156 (3)0.0467 (14)0.0599 (15)0.0021 (15)0.0174 (16)0.0057 (11)
N20.159 (3)0.0625 (16)0.0641 (17)0.0180 (18)0.0316 (18)0.0145 (14)
C10.098 (2)0.0503 (16)0.086 (2)0.0146 (15)0.0117 (18)0.0010 (15)
C20.0612 (15)0.0557 (15)0.0615 (17)0.0043 (12)0.0134 (13)0.0107 (13)
C30.0566 (14)0.0501 (14)0.0474 (13)0.0034 (11)0.0088 (11)0.0045 (11)
C40.0758 (18)0.0559 (15)0.0466 (14)0.0005 (13)0.0101 (12)0.0029 (11)
C50.087 (2)0.0474 (14)0.0506 (15)0.0006 (13)0.0084 (13)0.0000 (11)
C60.0701 (16)0.0441 (13)0.0430 (13)0.0012 (11)0.0075 (11)0.0013 (10)
C70.0588 (14)0.0431 (13)0.0435 (13)0.0024 (10)0.0046 (10)0.0008 (10)
C80.121 (3)0.083 (2)0.0489 (17)0.007 (2)0.0238 (17)0.0078 (15)
C90.087 (2)0.0458 (14)0.0530 (16)0.0081 (13)0.0119 (13)0.0026 (12)
C100.0630 (15)0.0409 (12)0.0526 (14)0.0041 (11)0.0120 (11)0.0025 (10)
C110.0790 (19)0.0589 (16)0.0594 (17)0.0044 (14)0.0160 (14)0.0053 (13)
C120.104 (3)0.081 (2)0.085 (2)0.010 (2)0.045 (2)0.0221 (19)
C130.091 (3)0.082 (2)0.126 (4)0.004 (2)0.055 (3)0.006 (2)
C140.0598 (19)0.107 (3)0.112 (3)0.0048 (18)0.0196 (19)0.012 (2)
C150.0657 (18)0.084 (2)0.0692 (19)0.0023 (15)0.0119 (14)0.0028 (16)
F20.1180 (17)0.1154 (18)0.0760 (13)0.0059 (13)0.0281 (12)0.0268 (12)
O40.0872 (13)0.0507 (10)0.0483 (10)0.0004 (9)0.0120 (9)0.0018 (8)
N30.138 (3)0.0617 (16)0.0629 (17)0.0072 (16)0.0236 (16)0.0076 (13)
N40.109 (2)0.0436 (12)0.0536 (13)0.0007 (12)0.0116 (13)0.0040 (10)
C160.113 (3)0.0431 (17)0.135 (3)0.0125 (17)0.012 (2)0.0041 (19)
C170.110 (2)0.0546 (16)0.088 (2)0.0015 (16)0.0097 (19)0.0247 (15)
C180.0607 (15)0.0455 (13)0.0601 (16)0.0011 (11)0.0005 (12)0.0102 (12)
C190.0614 (15)0.0557 (15)0.0562 (16)0.0037 (12)0.0001 (12)0.0113 (12)
C200.0607 (15)0.0443 (13)0.0492 (14)0.0031 (11)0.0049 (11)0.0016 (10)
C210.0600 (14)0.0405 (12)0.0487 (13)0.0032 (10)0.0073 (11)0.0009 (10)
C220.0581 (14)0.0394 (12)0.0570 (15)0.0029 (10)0.0063 (11)0.0013 (10)
C230.105 (3)0.087 (2)0.0570 (18)0.0057 (19)0.0022 (17)0.0175 (16)
C240.0834 (19)0.0422 (13)0.0542 (16)0.0032 (12)0.0119 (13)0.0025 (12)
C250.0666 (16)0.0366 (12)0.0602 (16)0.0000 (11)0.0021 (12)0.0018 (11)
C260.090 (2)0.0567 (17)0.0664 (19)0.0031 (15)0.0030 (16)0.0045 (14)
C270.125 (3)0.083 (2)0.072 (2)0.013 (2)0.016 (2)0.0143 (18)
C280.106 (3)0.087 (3)0.103 (3)0.025 (2)0.040 (3)0.007 (2)
C290.067 (2)0.094 (3)0.108 (3)0.0108 (18)0.0091 (19)0.015 (2)
C300.0692 (19)0.0662 (18)0.076 (2)0.0005 (15)0.0018 (15)0.0026 (15)
O3A0.116 (3)0.060 (2)0.092 (2)0.001 (2)0.008 (2)0.0293 (18)
O30.132 (5)0.073 (3)0.108 (4)0.012 (4)0.008 (4)0.044 (3)
Cl20.183 (5)0.198 (5)0.172 (4)0.039 (4)0.029 (3)0.042 (3)
Cl30.249 (6)0.148 (2)0.152 (5)0.028 (3)0.007 (4)0.019 (3)
C1A0.181 (5)0.196 (5)0.171 (4)0.040 (4)0.026 (4)0.044 (4)
Cl3A0.249 (6)0.148 (2)0.152 (5)0.028 (3)0.007 (4)0.019 (3)
C1B0.181 (5)0.196 (5)0.171 (4)0.040 (4)0.026 (4)0.044 (4)
Cl2A0.183 (5)0.198 (5)0.172 (4)0.039 (4)0.029 (3)0.042 (3)
Cl10.183 (5)0.198 (5)0.172 (4)0.039 (4)0.029 (3)0.042 (3)
Cl40.249 (6)0.148 (2)0.152 (5)0.028 (3)0.007 (4)0.019 (3)
C1C0.181 (5)0.196 (5)0.171 (4)0.040 (4)0.026 (4)0.044 (4)
Geometric parameters (Å, º) top
F1—C111.364 (4)C16—H16A0.9600
O1—C21.213 (3)C16—H16B0.9600
O2—C41.377 (3)C16—H16C0.9600
O2—C51.364 (3)C16—C171.477 (6)
N1—H1A0.8600C17—C181.486 (4)
N1—H1B0.8600C17—O3A1.217 (7)
N1—C51.332 (4)C17—O31.293 (8)
N2—C91.145 (4)C18—C191.336 (4)
C1—H1C0.9600C18—C221.517 (4)
C1—H1D0.9600C19—C231.492 (4)
C1—H1E0.9600C20—C211.348 (4)
C1—C21.494 (4)C21—C221.518 (3)
C2—C31.483 (4)C21—C241.412 (4)
C3—C41.341 (4)C22—H220.9800
C3—C71.516 (3)C22—C251.533 (4)
C4—C81.491 (4)C23—H23A0.9600
C5—C61.351 (4)C23—H23B0.9600
C6—C71.516 (3)C23—H23C0.9600
C6—C91.408 (4)C25—C261.381 (4)
C7—H70.9800C25—C301.382 (4)
C7—C101.527 (4)C26—C271.374 (5)
C8—H8A0.9600C27—H270.9300
C8—H8B0.9600C27—C281.363 (6)
C8—H8C0.9600C28—H280.9300
C10—C111.376 (4)C28—C291.383 (6)
C10—C151.385 (4)C29—H290.9300
C11—C121.372 (5)C29—C301.389 (5)
C12—H120.9300C30—H300.9300
C12—C131.358 (6)Cl2—C1A1.734 (8)
C13—H130.9300Cl3—C1A1.757 (8)
C13—C141.377 (6)C1A—H1AA0.9700
C14—H140.9300C1A—H1AB0.9700
C14—C151.390 (5)Cl3A—C1B1.730 (16)
C15—H150.9300C1B—H1BA0.9700
F2—C261.359 (4)C1B—H1BB0.9700
O4—C191.383 (3)C1B—Cl2A1.601 (18)
O4—C201.365 (3)Cl1—C1C1.765 (9)
N3—C241.147 (4)Cl4—C1C1.758 (9)
N4—H4A0.8600C1C—H1CA0.9700
N4—H4B0.8600C1C—H1CB0.9700
N4—C201.337 (3)
C5—O2—C4120.4 (2)C16—C17—C18120.6 (3)
H1A—N1—H1B120.0O3A—C17—C16115.9 (5)
C5—N1—H1A120.0O3A—C17—C18120.4 (5)
C5—N1—H1B120.0O3—C17—C16118.6 (4)
H1C—C1—H1D109.5O3—C17—C18117.7 (5)
H1C—C1—H1E109.5C17—C18—C22117.4 (3)
H1D—C1—H1E109.5C19—C18—C17120.1 (3)
C2—C1—H1C109.5C19—C18—C22122.5 (2)
C2—C1—H1D109.5O4—C19—C23107.7 (3)
C2—C1—H1E109.5C18—C19—O4122.0 (2)
O1—C2—C1119.3 (3)C18—C19—C23130.3 (3)
O1—C2—C3121.9 (3)N4—C20—O4110.0 (2)
C3—C2—C1118.8 (2)N4—C20—C21128.5 (2)
C2—C3—C7117.1 (2)C21—C20—O4121.5 (2)
C4—C3—C2120.4 (2)C20—C21—C22122.7 (2)
C4—C3—C7122.5 (2)C20—C21—C24118.0 (2)
O2—C4—C8107.7 (2)C24—C21—C22119.2 (2)
C3—C4—O2122.4 (2)C18—C22—C21109.6 (2)
C3—C4—C8129.8 (3)C18—C22—H22108.4
N1—C5—O2110.2 (2)C18—C22—C25111.6 (2)
N1—C5—C6128.2 (3)C21—C22—H22108.4
C6—C5—O2121.6 (2)C21—C22—C25110.2 (2)
C5—C6—C7123.1 (2)C25—C22—H22108.4
C5—C6—C9118.1 (2)C19—C23—H23A109.5
C9—C6—C7118.8 (2)C19—C23—H23B109.5
C3—C7—C6110.0 (2)C19—C23—H23C109.5
C3—C7—H7108.2H23A—C23—H23B109.5
C3—C7—C10111.6 (2)H23A—C23—H23C109.5
C6—C7—H7108.2H23B—C23—H23C109.5
C6—C7—C10110.6 (2)N3—C24—C21179.3 (4)
C10—C7—H7108.2C26—C25—C22121.0 (3)
C4—C8—H8A109.5C26—C25—C30116.4 (3)
C4—C8—H8B109.5C30—C25—C22122.5 (3)
C4—C8—H8C109.5F2—C26—C25118.3 (3)
H8A—C8—H8B109.5F2—C26—C27118.3 (3)
H8A—C8—H8C109.5C27—C26—C25123.4 (4)
H8B—C8—H8C109.5C26—C27—H27120.6
N2—C9—C6179.1 (4)C28—C27—C26118.8 (4)
C11—C10—C7121.1 (2)C28—C27—H27120.6
C11—C10—C15116.2 (3)C27—C28—H28119.7
C15—C10—C7122.6 (2)C27—C28—C29120.5 (4)
F1—C11—C10117.9 (3)C29—C28—H28119.7
F1—C11—C12118.5 (3)C28—C29—H29120.4
C12—C11—C10123.6 (3)C28—C29—C30119.2 (4)
C11—C12—H12120.4C30—C29—H29120.4
C13—C12—C11119.2 (4)C25—C30—C29121.7 (3)
C13—C12—H12120.4C25—C30—H30119.1
C12—C13—H13120.1C29—C30—H30119.1
C12—C13—C14119.9 (3)Cl2—C1A—Cl3104.0 (8)
C14—C13—H13120.1Cl2—C1A—H1AA111.0
C13—C14—H14120.0Cl2—C1A—H1AB111.0
C13—C14—C15120.0 (4)Cl3—C1A—H1AA111.0
C15—C14—H14120.0Cl3—C1A—H1AB111.0
C10—C15—C14121.2 (3)H1AA—C1A—H1AB109.0
C10—C15—H15119.4Cl3A—C1B—H1BA105.6
C14—C15—H15119.4Cl3A—C1B—H1BB105.6
C20—O4—C19120.4 (2)H1BA—C1B—H1BB106.1
H4A—N4—H4B120.0Cl2A—C1B—Cl3A126.8 (17)
C20—N4—H4A120.0Cl2A—C1B—H1BA105.6
C20—N4—H4B120.0Cl2A—C1B—H1BB105.6
H16A—C16—H16B109.5Cl1—C1C—H1CA111.8
H16A—C16—H16C109.5Cl1—C1C—H1CB111.8
H16B—C16—H16C109.5Cl4—C1C—Cl199.6 (7)
C17—C16—H16A109.5Cl4—C1C—H1CA111.8
C17—C16—H16B109.5Cl4—C1C—H1CB111.8
C17—C16—H16C109.5H1CA—C1C—H1CB109.6
F1—C11—C12—C13178.8 (3)O4—C20—C21—C226.5 (4)
O1—C2—C3—C428.1 (4)O4—C20—C21—C24177.1 (2)
O1—C2—C3—C7153.5 (3)N4—C20—C21—C22174.2 (3)
O2—C5—C6—C70.5 (5)N4—C20—C21—C242.2 (4)
O2—C5—C6—C9179.9 (3)C16—C17—C18—C19172.5 (3)
N1—C5—C6—C7180.0 (3)C16—C17—C18—C227.9 (5)
N1—C5—C6—C90.5 (5)C17—C18—C19—O4179.0 (3)
C1—C2—C3—C4151.8 (3)C17—C18—C19—C231.5 (5)
C1—C2—C3—C726.7 (4)C17—C18—C22—C21170.5 (3)
C2—C3—C4—O2179.4 (3)C17—C18—C22—C2567.1 (3)
C2—C3—C4—C81.9 (5)C18—C22—C25—C26140.8 (3)
C2—C3—C7—C6179.3 (2)C18—C22—C25—C3039.8 (3)
C2—C3—C7—C1056.2 (3)C19—O4—C20—N4175.8 (2)
C3—C7—C10—C11142.6 (2)C19—O4—C20—C213.6 (4)
C3—C7—C10—C1537.0 (3)C19—C18—C22—C2110.0 (4)
C4—O2—C5—N1178.3 (3)C19—C18—C22—C25112.4 (3)
C4—O2—C5—C62.1 (4)C20—O4—C19—C186.2 (4)
C4—C3—C7—C62.3 (4)C20—O4—C19—C23174.2 (3)
C4—C3—C7—C10125.4 (3)C20—C21—C22—C1812.5 (3)
C5—O2—C4—C31.3 (4)C20—C21—C22—C25110.7 (3)
C5—O2—C4—C8179.3 (3)C21—C22—C25—C2697.1 (3)
C5—C6—C7—C31.6 (4)C21—C22—C25—C3082.3 (3)
C5—C6—C7—C10125.3 (3)C22—C18—C19—O41.6 (4)
C6—C7—C10—C1194.6 (3)C22—C18—C19—C23178.0 (3)
C6—C7—C10—C1585.8 (3)C22—C25—C26—F21.0 (4)
C7—C3—C4—O21.0 (4)C22—C25—C26—C27179.8 (3)
C7—C3—C4—C8176.4 (3)C22—C25—C30—C29180.0 (3)
C7—C10—C11—F10.1 (4)C24—C21—C22—C18171.2 (2)
C7—C10—C11—C12179.0 (3)C24—C21—C22—C2565.6 (3)
C7—C10—C15—C14178.3 (3)C25—C26—C27—C280.0 (6)
C9—C6—C7—C3177.9 (2)C26—C25—C30—C290.5 (4)
C9—C6—C7—C1054.2 (3)C26—C27—C28—C290.2 (6)
C10—C11—C12—C130.2 (5)C27—C28—C29—C300.0 (6)
C11—C10—C15—C141.4 (5)C28—C29—C30—C250.4 (5)
C11—C12—C13—C140.2 (6)C30—C25—C26—F2179.5 (3)
C12—C13—C14—C150.6 (6)C30—C25—C26—C270.3 (5)
C13—C14—C15—C101.4 (6)O3A—C17—C18—C1913.1 (6)
C15—C10—C11—F1179.5 (3)O3A—C17—C18—C22167.4 (5)
C15—C10—C11—C120.6 (4)O3—C17—C18—C1927.6 (6)
F2—C26—C27—C28179.2 (3)O3—C17—C18—C22151.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.263.066 (4)156
N1—H1B···O3ii0.862.032.844 (8)159
N1—H1B···O3Aii0.862.022.855 (7)165
N4—H4A···N2iii0.862.203.016 (4)157
N4—H4B···O1iv0.862.062.910 (3)170
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the University of KwaZulu-Natal for financial support.

References

First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouda, A. M. (2016). Med. Chem. Res. 25, 1229–1238.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKathrotiya, H. G. & Patel, M. P. (2012). J. Med. Chem. 21, 3406–3416.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMansouri, K., Khodarahmi, R., Foroumadi, A., Mostafaie, A. & Mohammadi Motlagh, H. (2011). Med. Chem. Res. 20, 920–929.  CrossRef CAS Google Scholar
First citationNarender, T. & Gupta, S. (2004). BMCL. 15, 3913–3916.  Google Scholar
First citationNyapola, C., Zamisa, S. J., Njogu, E. M. & Omondi, B. (2024). IUCrData, 9, x241049.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZamisa, S. J., Adeleke, A. A., Devnarain, N., Rhman, M. A., Owira, P. M. O. & Omondi, B. (2023). RSC Adv. 13, 21820–21837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814–5834.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146