organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Chloro­propio­phenone

crossmark logo

aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 14 April 2025; accepted 17 April 2025; online 29 April 2025)

The title compound, 3-chloro­propio­phenone (or 3-chloro-1-phenyl­propan-1-one), C9H9ClO, consists of an almost planar mol­ecule that is charaterized by very small torsion angles within the alkyl side chain (torsion angles < 6.3°). No hydrogen bonds are observed in the crystal packing. The compound exhibits a melting point of 54°C.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

β-Chloro ketones are useful building blocks for many chemical transformation reactions. They are accessible via different reaction schemes such as Friedel-Crafts acyl­ation (Sartori & Maggi, 2006[Sartori, G. & Maggi, R. (2006). Chem. Rev. 106, 1077-1104.]), Wacker-type oxidation (Liu et al., 2017[Liu, B., Jin, F., Wang, T., Yuan, X. & Han, W. (2017). Angew. Chem. Int. Ed. 56, 12712-12717.]), or light-mediated ring opening of aryl cyclo­propanes (Petzold et al., 2019[Petzold, D., Singh, P., Almqvist, F. & König, B. (2019). Angew. Chem. Int. Ed. 58, 8577-8580.]). The title compound was obtained in almost qu­anti­tative yield in high purity. It can be designated as a suitable building block in the ongoing efforts to synthesize feasible new ligands for Cu-based complexes (Sonneck et al., 2015[Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals, 5, 466-474.], 2016[Sonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals, 6, 66.]).

The mol­ecular structure of 3-chloro­propio­phenone is almost planar with torsion angles of less than 6.3 degrees [maximum torsion angle: C1—C2—C3—O1 = −6.21 (19)°] in the side chain (Fig. 1[link]). The main deviation out of the plane defined by the non-hydrogen atoms of the mol­ecule is observed for O1 with −0.1091 (10) Å and for Cl1 with 0.1065 (8) Å. In addition, the layered packing prevents the formation of extended halogen or hydrogen-bonding networks. The mol­ecules form stacks along the c axis. In a stack, neighbouring mol­ecules are related by the c glide plane. All bond lengths and angles are within the expected range and the C=O bond is 1.2158 (18) Å.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

Synthesis and crystallization

3-Chloro­propio­phenone was obtained as colourless crystals in qu­anti­tative yield from the Friedel–Crafts acyl­ation of benzene and 3-chloro­propionyl chloride in di­chloro­methane. AlCl3 (38.2 g, 286.5 mmol, 1.25 eq.) was suspended in 50 ml of dry di­chloro­methane at 0°C. A solution of 3-chloro­propionyl chloride (29.1 g, 229.2 mmol, 1.0 eq.) in 90 ml di­chloro­methane was added dropwise at 0°C to the AlCl3 suspension. Afterwards, a solution of benzene (17.9 g, 229.2 mmol, 1.0 eq.) in 25 mL di­chloro­methane was added dropwise at 0°C to the suspension and further stirred for 2 h at 0°C and 12 h at ambient conditions. The final solution was poured onto ice and concentrated hydro­chloric acid (70 g:7 g) and after separation of the organic phase, the aqueous phase was extracted twice with 100 ml portions of di­chloro­methane. The combined organic phases were extracted twice with 150 ml portions of water and finally dried over Na2SO4. The solvent was removed completely under diminished pressure and the off-white crystalline solid residue was recrystallized from pentane to yield the final product (37.5 g, 97%). Colourless single crystals of 3-chloro­propio­phenone were obtained from a pentane solution by slow evaporation of the solvent at 4°C over the period of one week. Analytic data for C9H9ClO: m.p. 54°C, elemental analysis % (calculated): C 64.14 (64.11), H 5.25 (5.38); Cl 21.01 (21.02). 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 7.98–7.93 (m, 2H, ArH); 7.61–7.56 (m, 1H, ArH); 7.51–7.45 (m, 2H, ArH); 3.92 (t, 3J = 6.8 Hz, 2H); 3.45 (t, 3J = 6.7 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ (p.p.m.) = 196.78 (CO); 136.45 (C); 133.65, 128.84, 128.84, 128.14, 128.14 (CH); 41.36, 38.79 (CH2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C9H9ClO
Mr 168.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.4485 (13), 20.347 (5), 7.4860 (17)
β (°) 102.123 (4)
V3) 811.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.51 × 0.43 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.79, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 9113, 1951, 1595
Rint 0.032
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.08
No. of reflections 1951
No. of parameters 100
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.24
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

3-Chloro-1-phenylpropan-1-one top
Crystal data top
C9H9ClOF(000) = 352
Mr = 168.61Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.4485 (13) ÅCell parameters from 2965 reflections
b = 20.347 (5) Åθ = 3.0–28.7°
c = 7.4860 (17) ŵ = 0.40 mm1
β = 102.123 (4)°T = 150 K
V = 811.4 (3) Å3Plate, colourless
Z = 40.51 × 0.43 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
1951 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.032
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.79, Tmax = 0.97k = 2625
9113 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1951 reflectionsΔρmax = 0.36 e Å3
100 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were located in a difference map and refined as riding on their parent atoms with U(H)=1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4181 (3)0.91110 (7)0.3732 (2)0.0292 (3)
H1A0.55860.92050.31200.035*
H1B0.48120.91540.50670.035*
C20.3239 (3)0.84182 (7)0.3283 (2)0.0243 (3)
H2A0.17940.83310.38590.029*
H2B0.26580.83730.19440.029*
C30.5285 (3)0.79232 (7)0.39585 (19)0.0252 (3)
C40.4665 (3)0.72090 (7)0.38053 (19)0.0229 (3)
C50.6530 (3)0.67574 (8)0.4561 (2)0.0283 (3)
H50.81390.69110.51630.034*
C60.6055 (3)0.60927 (8)0.4438 (2)0.0313 (4)
H60.73340.57890.49530.038*
C70.3713 (3)0.58649 (8)0.3564 (2)0.0309 (3)
H70.33890.54060.34840.037*
C80.1843 (3)0.63050 (8)0.2808 (2)0.0280 (3)
H80.02410.61480.22050.034*
C90.2314 (3)0.69757 (7)0.29323 (19)0.0245 (3)
H90.10260.72770.24190.029*
Cl10.17021 (9)0.96882 (2)0.29882 (7)0.04702 (17)
O10.7414 (2)0.81030 (6)0.46074 (17)0.0399 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (8)0.0274 (7)0.0294 (8)0.0056 (6)0.0081 (6)0.0028 (6)
C20.0243 (7)0.0254 (7)0.0237 (7)0.0038 (5)0.0064 (6)0.0007 (5)
C30.0227 (7)0.0327 (8)0.0202 (7)0.0042 (6)0.0050 (6)0.0002 (6)
C40.0221 (7)0.0290 (7)0.0190 (6)0.0001 (5)0.0074 (6)0.0011 (5)
C50.0214 (7)0.0381 (8)0.0254 (8)0.0028 (6)0.0051 (6)0.0014 (6)
C60.0298 (8)0.0356 (8)0.0303 (8)0.0108 (6)0.0103 (7)0.0052 (6)
C70.0375 (9)0.0266 (7)0.0317 (8)0.0034 (6)0.0144 (7)0.0011 (6)
C80.0256 (8)0.0295 (7)0.0294 (8)0.0017 (6)0.0065 (6)0.0001 (6)
C90.0216 (7)0.0277 (7)0.0243 (7)0.0015 (5)0.0052 (6)0.0027 (5)
Cl10.0454 (3)0.0260 (2)0.0684 (3)0.00011 (18)0.0092 (2)0.00376 (19)
O10.0255 (6)0.0408 (7)0.0487 (8)0.0080 (5)0.0034 (5)0.0026 (5)
Geometric parameters (Å, º) top
C1—C21.514 (2)C4—C51.399 (2)
C1—Cl11.7882 (17)C5—C61.377 (2)
C1—H1A0.9900C5—H50.9500
C1—H1B0.9900C6—C71.386 (2)
C2—C31.509 (2)C6—H60.9500
C2—H2A0.9900C7—C81.385 (2)
C2—H2B0.9900C7—H70.9500
C3—O11.2158 (18)C8—C91.388 (2)
C3—C41.491 (2)C8—H80.9500
C4—C91.393 (2)C9—H90.9500
C2—C1—Cl1110.12 (11)C5—C4—C3118.39 (13)
C2—C1—H1A109.6C6—C5—C4120.52 (14)
Cl1—C1—H1A109.6C6—C5—H5119.7
C2—C1—H1B109.6C4—C5—H5119.7
Cl1—C1—H1B109.6C5—C6—C7120.13 (14)
H1A—C1—H1B108.2C5—C6—H6119.9
C3—C2—C1110.81 (12)C7—C6—H6119.9
C3—C2—H2A109.5C8—C7—C6120.13 (15)
C1—C2—H2A109.5C8—C7—H7119.9
C3—C2—H2B109.5C6—C7—H7119.9
C1—C2—H2B109.5C7—C8—C9119.92 (15)
H2A—C2—H2B108.1C7—C8—H8120.0
O1—C3—C4120.39 (14)C9—C8—H8120.0
O1—C3—C2120.58 (14)C8—C9—C4120.33 (14)
C4—C3—C2119.03 (12)C8—C9—H9119.8
C9—C4—C5118.96 (14)C4—C9—H9119.8
C9—C4—C3122.65 (13)
Cl1—C1—C2—C3178.09 (10)C3—C4—C5—C6179.35 (13)
C1—C2—C3—O16.21 (19)C4—C5—C6—C70.1 (2)
C1—C2—C3—C4174.28 (12)C5—C6—C7—C80.1 (2)
O1—C3—C4—C9174.35 (14)C6—C7—C8—C90.3 (2)
C2—C3—C4—C95.2 (2)C7—C8—C9—C40.4 (2)
O1—C3—C4—C55.2 (2)C5—C4—C9—C80.4 (2)
C2—C3—C4—C5175.26 (12)C3—C4—C9—C8179.21 (13)
C9—C4—C5—C60.2 (2)
 

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, B., Jin, F., Wang, T., Yuan, X. & Han, W. (2017). Angew. Chem. Int. Ed. 56, 12712–12717.  CrossRef CAS Google Scholar
First citationPetzold, D., Singh, P., Almqvist, F. & König, B. (2019). Angew. Chem. Int. Ed. 58, 8577–8580.  CrossRef CAS Google Scholar
First citationSartori, G. & Maggi, R. (2006). Chem. Rev. 106, 1077–1104.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals, 5, 466–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationSonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals, 6, 66.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146