metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(azido-κN)bis­­(quinolin-8-amine-κ2N,N′)iron(II) monohydrate

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: fatima.setifi@univ-setif.dz, hreuter@uos.de

Edited by M. Zeller, Purdue University, USA (Received 3 March 2025; accepted 15 March 2025; online 19 March 2025)

In the hydrated title complex, [Fe(N3)2(AQ)2]·H2O (AQ is 8-amino­quinoline, C9H9N2), the FeII ion is coordinated in a distorted octa­hedral manner by two neutral, chelating AQ ligands and two anionic, monodentate azide (N3) ions in a syn,cis-configuration. From the two AQ ligands, the pyridyl N atoms are opposite to each other and the amino groups trans to the azide ligands. Distortion results from different Fe—N bond lengths [2.112 (2)–2.231 (2) Å] and 〈(N—Fe—N)cis [75.25 (6)–99.91 (7)°] and 〈(N—Fe—N)trans [159.98 (7)–170.62 (7)°] bond angles. The water mol­ecule acts as the acceptor of hydrogen bonds with the NH2 groups of both AQ-ligands in one and the same mol­ecule, and as donor to the γ-N and α-N atoms of the azido ligands of two adjacent iron complexes. In addition, both terminal N atoms of the azido ligands are involved in hydrogen bonds with NH2 groups in neighboring iron complexes, so that the hydrogen-bonding pattern leads to a rod-like arrangement of the mol­ecules in the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pseudohalide compounds derived from transition-metal ions are of great inter­est from the perspective of their magnetic properties, rich mol­ecular architectures and for their topologies (Setifi, Ghazzali et al., 2016[Setifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244-248.], Setifi et al., 2018[Setifi, Z., Geiger, D. K., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018). J. Mol. Struct. 1173, 697-706.], 2022[Setifi, Z., Setifi, F., Benmansour, S., Liu, X., Mague, J. T., Gómez-García, C. J., Konieczny, P. & Reedijk, J. (2022). Dalton Trans. 51, 5617-5623.]; Merabet et al., 2022[Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740-4747.]). One of the pseudohalide ligands that has received much attention in the last decade is the azide [N3] ion, partly due to its ability to produce a wide variety of coordination compounds with different nuclearities ranging from simple mononuclear to polynuclear species (Escuer & Aromi, 2006[Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721-4736.]; Benamara et al., 2021[Benamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry 7, 50.]; Merabet et al., 2023[Merabet, L., Setifi, Z., Ferjani, H., Geiger, D. K., Glidewell, C., Kanmazalp, S. D., Setifi, F. & Kaboub, L. (2023). J. Chem. Crystallogr. 53, 209-216.]).

Up to now, mononuclear, octa­hedral iron(II) bis-azido complexes with bidentate Lewis bases LBNN having the general composition FeII(LBNN)2(N3)2, are only known for LBNN = 1,10-phenanthroline (Miao et al. 2006[Miao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170-m2172.]), 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (Setifi et al. 2021[Setifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155.]), and quinolin-8-amine (Setifi, Moon et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]). Very recently, this class of compounds was expanded by hydrates with the monohydrate Fe(LBNN)2(N3)2·H2O where LBNN = 2,2-di­pyridyl­amine (Setifi et al., 2024[Setifi, F., Setifi, Z., Reuter, H., Al-Douh, M. H. & Addala, A. (2024). IUCrData, 9, x241116.]).

Here we report on the monohydrate of the quinolin-8-amine complex, [Fe(N3)2(AQ)2]·H2O, revealing for the first time that hydrated as well as unhydrated forms of a specific azido iron(II) complex may exist and that the azido ligands in such complexes may have different orientations relative to each other. The compound was prepared under solvothermal conditions and its structure is described.

The title compound crystallizes in the ortho­rhom­bic space group Pbcn with eight formula units in the unit cell. The asymmetric unit therefore consists of one iron(II) complex and one water mol­ecule both with all atoms in general positions (Fig. 1[link]). The overall composition of the complex corresponds to FeII(N3)2(AQ)2 with two neutral, chelating Lewis base mol­ecules AQ = 8-amino­quinoline, and two monodentate azide ions, N3, in a cis position. From the two AQ ligands, the pyridyl N atoms are trans and the two amino groups cis to each other.

[Figure 1]
Figure 1
Displacement ellipsoid plot of the asymmetric unit of the title compound FeII(LBNN)2(N3)2·H2O (LBNN = AQ) showing the atom numbering. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all atoms are drawn with displacement ellipsoids at the 40% probability level.

The FeII atom exhibits as usually a slightly distorted octa­hedral {FeN6} coordination (Table 1[link], Fig. 2[link]). In contrast to the unhydrated compound (Setifi, Moon et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]), the two azido ligands have a syn orientation with an angle between them of 54.6 (6)°. A similar orientation was previously found in the tri­azane complex. Distortion results from different Fe—N bond lengths [d(Fe—Nazido) = 2.112 (2)/2.142 (2) Å, < d(Fe—NAQ) = 2.177 (2)–2.231 (2) Å] and different bond angles [〈(NAmine—Fe—NQuinoline)cis = 75.25 (6)/76.06 (7)°, 〈(NAmine—Fe—NAzide)cis = 91.37 (7)/87.40 (8)°, 〈(NQuinoline—Fe—NAzide)cis = 92.83 (8)–99.91 (7)°, 〈(N—Fe—N)trans = 170.62 (7)/159.98 (7)/168.94 (8)°].

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.142 (2) Fe1—N4 2.112 (2)
N1—N2 1.159 (3) N4—N5 1.202 (2)
N2—N3 1.166 (3) N5—N6 1.156 (3)
       
N1—N2—N3 177.3 (3) N4—N5—N6 179.2 (2)
N2—N1—Fe1 157.4 (2) N5—N4—Fe1 122.3 (2)
[Figure 2]
Figure 2
The {FeN6} octa­hedron in polyhedral representation, showing the syn orientation of both azido ligands. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all atoms are drawn with displacement ellipsoids at the 40% probability level. The position of the carbon atoms attached to the nitro­gen atoms of the ligands are indicated as shortened sticks.

Both azido ligands are slightly bent [177.3 (3)/179.2 (2)°] with N—N bond lengths [1.159 (3)–1.202 (2) Å] typical for formal N=N double bonds with the longer one to the metal-coordinating N atom. They are different to some extend because of different coordination modes: in the first azido ligand (N1–N3) the metal-coordinated nitro­gen atom is additionally involved in a hydrogen bond (Table 2[link]) to a hydrogen atom of the water mol­ecule and the terminal nitro­gen atom in a hydrogen bond to a NH2 group of AQ(B), while in the second azido ligand (N4–N6) the terminal nitro­gen atom N6 is involved in two hydrogen bonds, one to a hydrogen atom of a the water mol­ecule and second one to the hydrogen atom of a NH2 group of AQ(A) (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.96 1.88 2.838 (3) 175
O1—H2⋯N3ii 0.96 1.85 2.807 (3) 174
N2A—H11⋯N6ii 0.89 2.17 3.052 (3) 170
N2A—H12⋯O1 0.89 2.28 3.086 (3) 151
N2B—H21⋯N3iii 0.89 2.35 3.206 (3) 160
N2B—H22⋯O1 0.89 2.17 3.037 (2) 164
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, y+1, z].
[Figure 3]
Figure 3
Displacement ellipsoid plot showing the two azido ligands in the iron(II) complex of the title compound in detail, with selected bond lengths (Å), hydrogen bonds [dashed, shortened sticks, d(DA) in Å, O—H⋯N = red, N—H⋯N = blue] and dative bonds (shortened sticks) to the central iron atom. With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all atoms are drawn with displacement ellipsoids at the 40% probability level.

N—C and C—C bond lengths and angles in the quinoline ring systems of the two ligands (labeled with suffixes A and B; Fig. 4[link]) are comparable to those of the pure AQ mol­ecule (van Meervelt et al., 1997[Van Meervelt, L., Goethals, M., Leroux, N. & Zeegers-Huyskens, Th. (1997). J. Phys. Org. Chem. 10, 680-686.]) or the AQ mol­ecules in the unhydrated FeII complex (Setifi, Moon et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]) as are the bond lengths and angles of the attached NH2 groups. Both amine groups act as hydrogen donors in hydrogen bonds to the oxygen atom O1 of the water mol­ecule and to the terminal nitro­gen atoms of the azide ligands: N2A to the N6 atom of the second azide ion and N2B to N3 of the first one. The water mol­ecule also acts as a hydrogen donor in hydrogen bonds to the terminal nitro­gen atom N3 of the first azide ligand and to the iron coordinated nitro­gen atom N4 of the second one. Numerical details of the hydrogen bonds are summarized in Table 2[link] and visualized in Fig. 5[link].

[Figure 4]
Figure 4
Displacement ellipsoid plot models showing the two 8-amino­quinoline ligand mol­ecules in the iron(II) complex of the title compound in detail, with selected bond lengths (Å), bond angles (°), and hydrogen bonds (O—H⋯N as red, N—H⋯N as blue dashed lines). With the exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all atoms are drawn with displacement ellipsoids at the 40% probability level.
[Figure 5]
Figure 5
Space-filling model of one [FeII(N3)2(AQ)2] complex mol­ecule and a water mol­ecule visualizing the hydrogen-bonding scheme (dashed lines). Atoms are drawn as single-colored or truncated, two-colored spheres according to their van der Waals radii and cut-offs based on the inter­section of the two spheres with cut-off faces showing the color of the inter­penetrating atom. Atom colors and van der Waals radii (Å) are as follows: H = white/1.10, C = gray/1.70, N = blue/1.55, O = red/1.52/ and Fe = orange/2.00.

In the crystal, the complex mol­ecules are arranged in columns parallel to the b-axis via Nazide⋯H—O hydrogen bonds while the O⋯H2—N hydrogen bonds act as bridges between the two amine groups of one and the same Fe(N3)2(AQ)2-mol­ecule (Fig. 6[link]).

[Figure 6]
Figure 6
Stick model of the crystal packing down the crystallographic b axis. Color code: N = blue, H = white, C = gray, O = red, Fe = orange. O⋯H2—N hydrogen bonds between the two amine groups of each mol­ecule are shown with red dashed lines. The O—H⋯NAzide hydrogen bonds linking the mol­ecules into columns parallel to the b axis are omitted for clarity.

Synthesis and crystallization

The title compound was prepared solvothermally from a mixture of iron(II) bis­(tetra­fluoro­borate) hexa­hydrate (34 mg, 0.1 mmol), 8-amino­quinoline (29 mg, 0.2 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water/ethanol (4:1 v/v, 25 ml). This mixture was sealed in a Teflon-lined autoclave and held at 400 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product in form of red plates (yield 36%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(N3)2(C9H8N2)2]·H2O
Mr 446.27
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 293
a, b, c (Å) 32.5164 (15), 8.8531 (5), 13.5952 (6)
V3) 3913.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.27 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.789, 0.913
No. of measured, independent and observed [I > 2σ(I)] reflections 20186, 5690, 3470
Rint 0.050
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 0.93
No. of reflections 5690
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.46
Computer programs: APEX2 and SAINT-Plus (Bruker, 2019[Bruker (2019). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Bis(azido-κN)bis(quinolin-8-amine-κ2N,N')iron(II) monohydrate top
Crystal data top
[Fe(N3)2(C9H8N2)2]·H2ODx = 1.515 Mg m3
Mr = 446.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5258 reflections
a = 32.5164 (15) Åθ = 2.4–28.5°
b = 8.8531 (5) ŵ = 0.81 mm1
c = 13.5952 (6) ÅT = 293 K
V = 3913.7 (3) Å3Plate, red
Z = 80.27 × 0.11 × 0.05 mm
F(000) = 1840
Data collection top
Bruker APEXII CCD
diffractometer
5690 independent reflections
Radiation source: sealed X-ray tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 4545
Tmin = 0.789, Tmax = 0.913k = 128
20186 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
5690 reflectionsΔρmax = 0.50 e Å3
273 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of all H atoms were clearly identified in difference Fourier syntheses. Those of the organic ligands were refined with calculated positions (–CH– = 0.93 Å, –NH2– = 0.89 Å) and isotropic displacement parameters depending on the equivalent isotropic temperature factor of the parent atoms. The position of the H atom of the water molecule were refined with fixed O—H distances of 0.96 Å and a bond angle of 104.95° before they were fixed and allowed to ride on the parent O atom with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.38035 (2)0.21817 (4)0.56455 (2)0.02331 (9)
O10.35856 (5)0.4514 (2)0.82039 (12)0.0403 (4)
H10.36630.54640.84900.046 (8)*
H20.35730.38220.87470.080 (11)*
N10.38357 (7)0.0156 (3)0.52450 (17)0.0498 (6)
N20.37150 (5)0.1342 (2)0.50298 (13)0.0265 (4)
N30.36072 (7)0.2560 (2)0.48292 (19)0.0475 (6)
N40.38371 (6)0.2776 (2)0.41435 (13)0.0298 (4)
N50.40034 (5)0.1988 (2)0.35437 (13)0.0259 (4)
N60.41626 (6)0.1243 (2)0.29588 (15)0.0382 (5)
N1A0.31339 (5)0.2393 (2)0.57831 (13)0.0268 (4)
C1A0.28792 (7)0.3007 (3)0.51410 (17)0.0325 (5)
H1A0.29890.35670.46260.039*
C2A0.24486 (7)0.2857 (3)0.51992 (18)0.0383 (6)
H2A0.22800.33380.47440.046*
C3A0.22820 (7)0.2004 (3)0.59249 (18)0.0363 (6)
H3A0.19980.18760.59600.044*
C4A0.25394 (7)0.1311 (3)0.66260 (16)0.0301 (5)
C5A0.23947 (7)0.0367 (3)0.73857 (18)0.0374 (6)
H5A0.21150.01780.74480.045*
C6A0.26660 (8)0.0267 (3)0.80300 (19)0.0401 (6)
H6A0.25700.09230.85120.048*
C7A0.30896 (7)0.0055 (3)0.79768 (17)0.0333 (5)
H7A0.32680.03670.84340.040*
C8A0.32400 (6)0.0983 (2)0.72585 (15)0.0258 (5)
C9A0.29669 (6)0.1584 (2)0.65421 (15)0.0243 (5)
N2A0.36646 (5)0.1420 (2)0.71743 (13)0.0271 (4)
H110.38250.06400.73280.033*
H120.37180.21660.75950.033*
N1B0.44530 (5)0.2273 (2)0.60288 (14)0.0283 (4)
C1B0.47090 (7)0.1127 (3)0.60427 (19)0.0395 (6)
H1B0.46020.01580.59730.047*
C2B0.51386 (7)0.1293 (3)0.61585 (19)0.0441 (7)
H2B0.53080.04460.61810.053*
C3B0.53032 (7)0.2701 (3)0.62365 (18)0.0380 (6)
H3B0.55860.28250.62970.046*
C4B0.50415 (7)0.3966 (3)0.62245 (15)0.0298 (5)
C5B0.51836 (7)0.5466 (3)0.62898 (17)0.0377 (6)
H5B0.54640.56560.63380.045*
C6B0.49145 (8)0.6632 (3)0.62832 (17)0.0392 (6)
H6B0.50130.76170.63190.047*
C7B0.44891 (7)0.6373 (3)0.62234 (16)0.0302 (5)
H7B0.43080.71870.62300.036*
C8B0.43379 (6)0.4934 (3)0.61555 (14)0.0238 (5)
C9B0.46122 (6)0.3697 (3)0.61423 (14)0.0236 (5)
N2B0.39027 (5)0.4594 (2)0.61037 (13)0.0251 (4)
H210.37820.52070.56720.030*
H220.37880.47490.66890.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02297 (14)0.02148 (16)0.02548 (15)0.00273 (14)0.00115 (13)0.00175 (15)
O10.0536 (11)0.0335 (10)0.0338 (10)0.0087 (8)0.0002 (8)0.0067 (9)
N10.0737 (16)0.0235 (12)0.0521 (14)0.0043 (12)0.0006 (12)0.0056 (11)
N20.0255 (9)0.0261 (12)0.0279 (10)0.0029 (8)0.0000 (7)0.0004 (9)
N30.0475 (13)0.0320 (14)0.0631 (16)0.0089 (11)0.0041 (12)0.0109 (12)
N40.0368 (10)0.0269 (10)0.0257 (10)0.0016 (9)0.0013 (8)0.0001 (9)
N50.0241 (9)0.0263 (11)0.0273 (10)0.0077 (8)0.0012 (8)0.0022 (9)
N60.0432 (12)0.0336 (13)0.0377 (12)0.0038 (10)0.0089 (9)0.0066 (10)
N1A0.0256 (9)0.0272 (11)0.0276 (10)0.0035 (8)0.0023 (7)0.0017 (8)
C1A0.0333 (12)0.0334 (15)0.0308 (12)0.0009 (11)0.0029 (10)0.0028 (11)
C2A0.0309 (12)0.0454 (16)0.0386 (13)0.0035 (12)0.0093 (10)0.0010 (13)
C3A0.0225 (11)0.0443 (17)0.0420 (14)0.0027 (11)0.0023 (9)0.0069 (13)
C4A0.0279 (11)0.0295 (14)0.0328 (12)0.0033 (10)0.0015 (10)0.0077 (11)
C5A0.0322 (13)0.0398 (17)0.0401 (14)0.0115 (12)0.0090 (11)0.0048 (12)
C6A0.0456 (14)0.0380 (17)0.0369 (14)0.0093 (12)0.0102 (12)0.0035 (13)
C7A0.0385 (13)0.0283 (13)0.0332 (13)0.0006 (11)0.0025 (10)0.0028 (12)
C8A0.0291 (11)0.0220 (12)0.0263 (11)0.0025 (9)0.0018 (9)0.0045 (10)
C9A0.0266 (11)0.0195 (11)0.0269 (11)0.0031 (9)0.0005 (9)0.0031 (10)
N2A0.0273 (9)0.0244 (11)0.0295 (10)0.0010 (8)0.0048 (7)0.0021 (9)
N1B0.0283 (9)0.0254 (10)0.0312 (10)0.0048 (9)0.0004 (8)0.0008 (9)
C1B0.0365 (14)0.0353 (16)0.0467 (15)0.0071 (12)0.0001 (11)0.0025 (13)
C2B0.0319 (14)0.0491 (19)0.0513 (16)0.0178 (13)0.0006 (12)0.0036 (15)
C3B0.0214 (11)0.0588 (18)0.0337 (13)0.0030 (12)0.0001 (9)0.0034 (13)
C4B0.0250 (11)0.0462 (16)0.0183 (11)0.0046 (11)0.0018 (8)0.0017 (11)
C5B0.0281 (12)0.0561 (18)0.0288 (13)0.0189 (12)0.0016 (10)0.0007 (12)
C6B0.0449 (15)0.0380 (15)0.0349 (14)0.0177 (13)0.0025 (11)0.0014 (12)
C7B0.0382 (13)0.0256 (13)0.0268 (12)0.0056 (11)0.0002 (9)0.0026 (11)
C8B0.0258 (11)0.0287 (12)0.0170 (10)0.0054 (9)0.0011 (8)0.0012 (9)
C9B0.0236 (10)0.0299 (13)0.0174 (10)0.0044 (10)0.0009 (8)0.0002 (10)
N2B0.0230 (9)0.0261 (11)0.0260 (10)0.0005 (8)0.0006 (7)0.0005 (8)
Geometric parameters (Å, º) top
Fe1—N12.142 (2)C7A—C8A1.367 (3)
Fe1—N1B2.177 (2)C7A—H7A0.9300
Fe1—N1A2.193 (2)C8A—C9A1.421 (3)
Fe1—N2A2.231 (2)C8A—N2A1.438 (3)
Fe1—N2B2.248 (2)N2A—H110.8900
O1—H10.9600N2A—H120.8900
O1—H20.9600N1B—C1B1.313 (3)
N1—N21.159 (3)N1B—C9B1.372 (3)
N2—N31.166 (3)C1B—C2B1.413 (3)
Fe1—N42.112 (2)C1B—H1B0.9300
N4—N51.202 (2)C2B—C3B1.361 (4)
N5—N61.156 (3)C2B—H2B0.9300
N1A—C1A1.321 (3)C3B—C4B1.407 (3)
N1A—C9A1.368 (3)C3B—H3B0.9300
C1A—C2A1.409 (3)C4B—C5B1.409 (3)
C1A—H1A0.9300C4B—C9B1.421 (3)
C2A—C3A1.356 (3)C5B—C6B1.353 (4)
C2A—H2A0.9300C5B—H5B0.9300
C3A—C4A1.409 (3)C6B—C7B1.405 (3)
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.409 (3)C7B—C8B1.369 (3)
C4A—C9A1.415 (3)C7B—H7B0.9300
C5A—C6A1.364 (3)C8B—C9B1.412 (3)
C5A—H5A0.9300C8B—N2B1.449 (2)
C6A—C7A1.409 (3)N2B—H210.8900
C6A—H6A0.9300N2B—H220.8900
N4—Fe1—N189.57 (8)C9A—C8A—N2A116.40 (19)
N4—Fe1—N1B99.91 (7)N1A—C9A—C4A122.67 (19)
N1—Fe1—N1B92.82 (8)N1A—C9A—C8A117.69 (18)
N4—Fe1—N1A96.47 (7)C4A—C9A—C8A119.6 (2)
N1—Fe1—N1A98.77 (8)C8A—N2A—Fe1110.46 (12)
N1B—Fe1—N1A159.98 (7)C8A—N2A—H11109.6
N4—Fe1—N2A170.62 (7)Fe1—N2A—H11109.6
N1—Fe1—N2A87.41 (8)C8A—N2A—H12109.6
N1B—Fe1—N2A89.12 (7)Fe1—N2A—H12109.6
N1A—Fe1—N2A75.25 (6)H11—N2A—H12108.1
N4—Fe1—N2B91.37 (7)C1B—N1B—C9B118.0 (2)
N1—Fe1—N2B168.84 (8)C1B—N1B—Fe1126.16 (17)
N1B—Fe1—N2B76.06 (7)C9B—N1B—Fe1115.29 (14)
N1A—Fe1—N2B92.18 (6)N1B—C1B—C2B123.2 (3)
N2A—Fe1—N2B93.32 (7)N1B—C1B—H1B118.4
H1—O1—H2105.0C2B—C1B—H1B118.4
N1—N2—N3177.3 (3)C3B—C2B—C1B119.5 (2)
N2—N1—Fe1157.4 (2)C3B—C2B—H2B120.2
N4—N5—N6179.2 (2)C1B—C2B—H2B120.2
N5—N4—Fe1122.3 (2)C2B—C3B—C4B119.4 (2)
C1A—N1A—C9A117.74 (19)C2B—C3B—H3B120.3
C1A—N1A—Fe1126.96 (16)C4B—C3B—H3B120.3
C9A—N1A—Fe1114.43 (13)C3B—C4B—C5B123.5 (2)
N1A—C1A—C2A123.2 (2)C3B—C4B—C9B117.5 (2)
N1A—C1A—H1A118.4C5B—C4B—C9B119.0 (2)
C2A—C1A—H1A118.4C6B—C5B—C4B120.4 (2)
C3A—C2A—C1A119.4 (2)C6B—C5B—H5B119.8
C3A—C2A—H2A120.3C4B—C5B—H5B119.8
C1A—C2A—H2A120.3C5B—C6B—C7B120.9 (2)
C2A—C3A—C4A119.8 (2)C5B—C6B—H6B119.6
C2A—C3A—H3A120.1C7B—C6B—H6B119.6
C4A—C3A—H3A120.1C8B—C7B—C6B120.6 (2)
C5A—C4A—C3A123.7 (2)C8B—C7B—H7B119.7
C5A—C4A—C9A119.2 (2)C6B—C7B—H7B119.7
C3A—C4A—C9A117.0 (2)C7B—C8B—C9B119.7 (2)
C6A—C5A—C4A119.9 (2)C7B—C8B—N2B123.2 (2)
C6A—C5A—H5A120.0C9B—C8B—N2B117.08 (19)
C4A—C5A—H5A120.0N1B—C9B—C8B118.40 (18)
C5A—C6A—C7A121.1 (2)N1B—C9B—C4B122.3 (2)
C5A—C6A—H6A119.5C8B—C9B—C4B119.3 (2)
C7A—C6A—H6A119.5C8B—N2B—Fe1110.56 (13)
C8A—C7A—C6A120.6 (2)C8B—N2B—H21109.5
C8A—C7A—H7A119.7Fe1—N2B—H21109.5
C6A—C7A—H7A119.7C8B—N2B—H22109.5
C7A—C8A—C9A119.4 (2)Fe1—N2B—H22109.5
C7A—C8A—N2A124.2 (2)H21—N2B—H22108.1
C9A—N1A—C1A—C2A0.6 (3)C9B—N1B—C1B—C2B0.6 (4)
Fe1—N1A—C1A—C2A168.09 (18)Fe1—N1B—C1B—C2B170.49 (18)
N1A—C1A—C2A—C3A2.2 (4)N1B—C1B—C2B—C3B1.7 (4)
C1A—C2A—C3A—C4A1.6 (4)C1B—C2B—C3B—C4B1.5 (4)
C2A—C3A—C4A—C5A177.9 (2)C2B—C3B—C4B—C5B179.3 (2)
C2A—C3A—C4A—C9A1.5 (3)C2B—C3B—C4B—C9B0.8 (3)
C3A—C4A—C5A—C6A179.5 (2)C3B—C4B—C5B—C6B179.4 (2)
C9A—C4A—C5A—C6A0.1 (3)C9B—C4B—C5B—C6B0.6 (3)
C4A—C5A—C6A—C7A2.8 (4)C4B—C5B—C6B—C7B0.8 (4)
C5A—C6A—C7A—C8A1.8 (4)C5B—C6B—C7B—C8B1.0 (3)
C6A—C7A—C8A—C9A2.1 (3)C6B—C7B—C8B—C9B0.2 (3)
C6A—C7A—C8A—N2A177.4 (2)C6B—C7B—C8B—N2B179.2 (2)
C1A—N1A—C9A—C4A4.0 (3)C1B—N1B—C9B—C8B178.3 (2)
Fe1—N1A—C9A—C4A166.08 (17)Fe1—N1B—C9B—C8B9.6 (2)
C1A—N1A—C9A—C8A177.1 (2)C1B—N1B—C9B—C4B3.1 (3)
Fe1—N1A—C9A—C8A12.9 (2)Fe1—N1B—C9B—C4B168.97 (15)
C5A—C4A—C9A—N1A175.0 (2)C7B—C8B—C9B—N1B177.09 (19)
C3A—C4A—C9A—N1A4.5 (3)N2B—C8B—C9B—N1B3.4 (3)
C5A—C4A—C9A—C8A3.9 (3)C7B—C8B—C9B—C4B1.6 (3)
C3A—C4A—C9A—C8A176.6 (2)N2B—C8B—C9B—C4B177.91 (17)
C7A—C8A—C9A—N1A174.1 (2)C3B—C4B—C9B—N1B3.2 (3)
N2A—C8A—C9A—N1A6.4 (3)C5B—C4B—C9B—N1B176.8 (2)
C7A—C8A—C9A—C4A4.9 (3)C3B—C4B—C9B—C8B178.22 (19)
N2A—C8A—C9A—C4A174.59 (19)C5B—C4B—C9B—C8B1.7 (3)
C7A—C8A—N2A—Fe1158.94 (18)C7B—C8B—N2B—Fe1166.65 (17)
C9A—C8A—N2A—Fe121.6 (2)C9B—C8B—N2B—Fe113.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.961.882.838 (3)175
O1—H2···N3ii0.961.852.807 (3)174
N2A—H11···N6ii0.892.173.052 (3)170
N2A—H12···O10.892.283.086 (3)151
N2B—H21···N3iii0.892.353.206 (3)160
N2B—H22···O10.892.173.037 (2)164
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

Le plateau CRISTAL de l'Université d'Angers is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du développement Technologique), and the PRFU project (grant No. B00L01UN190120230003).

References

First citationBenamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry 7, 50.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2019). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEscuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerabet, L., Setifi, Z., Ferjani, H., Geiger, D. K., Glidewell, C., Kanmazalp, S. D., Setifi, F. & Kaboub, L. (2023). J. Chem. Crystallogr. 53, 209–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiao, Z.-X., Shao, M., Liu, H.-J. & Li, M.-X. (2006). Acta Cryst. E62, m2170–m2172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Setifi, Z., Reuter, H., Al-Douh, M. H. & Addala, A. (2024). IUCrData, 9, x241116.  Google Scholar
First citationSetifi, Z., Geiger, D. K., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018). J. Mol. Struct. 1173, 697–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Benmansour, S., Liu, X., Mague, J. T., Gómez-García, C. J., Konieczny, P. & Reedijk, J. (2022). Dalton Trans. 51, 5617–5623.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSetifi, Z., Setifi, F., Glidewell, C., Gil, D. M., Kletskov, A. V., Echeverria, V. & Mirzaei, M. (2021). J. Mol. Struct. 1235, 130155.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Meervelt, L., Goethals, M., Leroux, N. & Zeegers-Huyskens, Th. (1997). J. Phys. Org. Chem. 10, 680–686.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146