organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-4H,5H,6H,7H,8H,9H,10H,11H-Cyclo­deca­[d][1,2,3]selena­diazole-8-carb­­oxy­lic acid

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 March 2025; accepted 17 March 2025; online 25 March 2025)

The chair-shaped mol­ecules in the title crystal, C11H16N2O2Se, consist of two pairs of enanti­omers with two conformations (ratio 1:3), differing only in the position of two ring carbon atoms. Two mol­ecules are connected via carb­oxy­lic acid hydrogen bridges.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C11H16N2O2Se, was prepared in a project focusing on transannular cyclizations in medium-sized cyclo­alkynes (Detert et al., 1992[Detert, H., Antony-Mayer, C. & Meier, H. (1992). Angew. Chem. 104, 755-757.]; Detert & Schollmeyer, 2021[Detert, H. & Schollmeyer, D. (2021). IUCrData, 6, x210069.]; Krämer et al., 2009[Krämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810-4812.]). The unit cell contains four chair-shaped mol­ecules, two pairs of enanti­omers with different conformations of the octa­methyl­ene chain in an approximate ratio of 1:3 (Fig. 1[link]). The selena­diazole ring is planar to within 0.005 (2) Å; the adjacent carbon atoms are slightly below this plane [C5: −0.029 (2) Å, C12: −0.087 (2) Å]. Torsion angles in the octa­methyl­ene tether of the main conformer are C4—C5—C6—C7: −49.4 (3)°, C5—C6—C7—C8: −76.3 (3)°, C6—C7—C8—C9: 70.8 (4)°, C7—C8—C9—C10: 65.5 (5)°, C8—C9—C10—C11: −150.4 (3)°, C9—C10—C11—C12: 62.8 (3)°, and C10—C11—C12—C13: 49.3 (3)°. Interestingly, the positions of most atoms of both conformers are essentially identical, differing only in C8A and C9A and their attached H atoms. This change provokes a torsion angle C8A—C9A—C10—C11: −71.5 (9)°. Whereas the C9—H9 bond in the main conformer points in the direction of the selena­diazole plane, this is inverted in the minor conformer. In the extended structure, two mol­ecules are connected via H-bridging carb­oxy­lic acids, the distances are O16—H16 = 0.94 (3) Å and O15—H15 = 1.69 (3) Å (Table 1[link], Fig. 2[link]). With an angle of 174 (3)°, the hydrogen bond is slightly bent. The planes of selena­diazole and carb­oxy­lic acid dimer are close to parallel, the dihedral angle being only 7.1 (1)°. The disorder is the consequence of the flexibility of the large ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O15i 0.94 (3) 1.69 (3) 2.630 (2) 174 (3)
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
View of the title compound with displacement ellipsoids drawn at the 50% probability level and the minor component shown with red lines (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 2]
Figure 2
Part of the packing diagram viewed along the a-axis direction. Hydrogen bonds are indicated by dashed lines. Only the major disorder component is shown for clarity (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Synthesis and crystallization

The sample was prepared by G. Krämer (1996[Krämer, G. (1996). PhD Thesis, Mainz, Germany.]) from 6-hy­droxy­methyl­decan-1-ol (Becker & Chappuis, 1979[Becker, K. B. & Chappuis, J. R. (1979). Helv. Chim. Acta, 62, 34-43.]) via Jones oxidation, formation of the semicarbazone and reaction with selenous acid in 44% overall yield, m.p. 418 K. Crystallization by slow evaporation of a solution in methanol/dichlormethane. 1H-NMR (400 MHz, CDCl3): 11.0 (vbs, 1 H), 3.2 (m, 3H), 3.05 (m, 1H), 2.62 (m, 1 H), 2.22 (m, 1 H), 1.90 (m, 3 H), 1.80-1.50 (m, 3H), 1.30 (m, 2 H), 1.03 (m, 1 H). 13C-NMR (100 MHz, CDCl3): 181.6, 159.7, 159.6, 41.5, 29.4, 28.5, 27.4, 25.5, 22.5, 20.0.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms C8 and C9 and their attached H atoms are disordered over two positions [0.759 (8):0.241 (8)].

Table 2
Experimental details

Crystal data
Chemical formula C11H16N2O2Se
Mr 287.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 7.4231 (4), 13.2052 (5), 12.2802 (7)
β (°) 99.725 (4)
V3) 1186.45 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.15
Crystal size (mm) 0.50 × 0.42 × 0.32
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Integration (X-RED32; Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt,])
Tmin, Tmax 0.277, 0.408
No. of measured, independent and observed [I > 2σ(I)] reflections 7535, 2993, 2458
Rint 0.019
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections 2993
No. of parameters 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.62
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt,]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

rac-4H,5H,6H,7H,8H,9H,10H,11H-Cyclodeca[d][1,2,3]selenadiazole-8-carboxylic acid top
Crystal data top
C11H16N2O2SeF(000) = 584
Mr = 287.22Dx = 1.608 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4231 (4) ÅCell parameters from 13455 reflections
b = 13.2052 (5) Åθ = 2.3–33.3°
c = 12.2802 (7) ŵ = 3.15 mm1
β = 99.725 (4)°T = 120 K
V = 1186.45 (10) Å3Block, brown
Z = 40.50 × 0.42 × 0.32 mm
Data collection top
Stoe Stadivari
diffractometer
2993 independent reflections
Radiation source: Axo Mo2458 reflections with I > 2σ(I)
Detector resolution: 13.33 pixels mm-1Rint = 0.019
rotation method, ω scansθmax = 28.5°, θmin = 2.3°
Absorption correction: integration
(X-Red32; Stoe & Cie, 2020)
h = 98
Tmin = 0.277, Tmax = 0.408k = 1711
7535 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4785P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2993 reflectionsΔρmax = 0.61 e Å3
168 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.99 Å, and with Uiso(H) = 1.2 Ueq(C). Hydrogen atom H16 attached to O16 was refined with an isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.42558 (3)0.52341 (2)0.82295 (2)0.03699 (10)
N20.5805 (3)0.61713 (15)0.77083 (18)0.0457 (5)
N30.7176 (3)0.57253 (16)0.74387 (17)0.0414 (5)
C40.7278 (3)0.46859 (17)0.75666 (18)0.0318 (5)
C50.8880 (3)0.4149 (2)0.7219 (2)0.0459 (6)
H5A0.8779200.3413960.7353780.055*
H5B1.0024100.4394000.7675970.055*
C60.8980 (3)0.4323 (2)0.5990 (2)0.0451 (6)
H6A0.9382960.5028950.5901960.054*
H6B0.9932770.3870840.5785660.054*
C70.7242 (3)0.41505 (16)0.51877 (19)0.0330 (5)
H7A0.7380680.4512000.4500440.040*0.759 (8)
H7B0.6262150.4504260.5493130.040*0.759 (8)
H7C0.7371460.4284250.4411440.040*0.241 (8)
H7D0.6188270.4528760.5380690.040*0.241 (8)
C80.6499 (5)0.3088 (2)0.4837 (3)0.0323 (9)0.759 (8)
H8A0.5512740.3159540.4190010.039*0.759 (8)
H8B0.7493170.2688620.4598770.039*0.759 (8)
C90.5750 (5)0.2491 (2)0.5736 (4)0.0253 (8)0.759 (8)
H90.6726830.2457930.6404910.030*0.759 (8)
C8A0.7192 (13)0.2967 (6)0.5470 (10)0.024 (3)0.241 (8)
H8C0.7953350.2586140.5022320.028*0.241 (8)
H8D0.7694740.2855470.6260600.028*0.241 (8)
C9A0.5227 (15)0.2591 (6)0.5220 (11)0.020 (2)0.241 (8)
H9A0.4650690.2790250.4454370.024*0.241 (8)
C100.4030 (3)0.29664 (15)0.60785 (18)0.0300 (4)
H10A0.4058410.3710120.5981360.036*0.759 (8)
H10B0.2924020.2701470.5598870.036*0.759 (8)
H10C0.4193730.3710490.6082450.036*0.241 (8)
H10D0.2762170.2849160.5697390.036*0.241 (8)
C110.3948 (3)0.27181 (16)0.72804 (19)0.0356 (5)
H11A0.3926310.1972550.7362190.043*
H11B0.2784360.2983720.7457910.043*
C120.5532 (4)0.31423 (17)0.8131 (2)0.0377 (5)
H12A0.5250030.3040520.8883000.045*
H12B0.6658760.2757420.8078270.045*
C130.5875 (3)0.42449 (15)0.79660 (17)0.0278 (4)
C140.5316 (3)0.14114 (16)0.5328 (2)0.0326 (5)
O150.3937 (2)0.09629 (11)0.54373 (14)0.0366 (4)
O160.6672 (2)0.09795 (12)0.49285 (14)0.0359 (4)
H160.637 (4)0.029 (2)0.481 (3)0.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03657 (15)0.03565 (14)0.04147 (16)0.00471 (10)0.01446 (10)0.00838 (10)
N20.0629 (15)0.0245 (9)0.0463 (12)0.0081 (10)0.0000 (10)0.0051 (9)
N30.0413 (11)0.0357 (11)0.0465 (12)0.0110 (9)0.0056 (9)0.0039 (9)
C40.0290 (11)0.0375 (12)0.0290 (11)0.0022 (9)0.0057 (8)0.0019 (9)
C50.0291 (12)0.0719 (18)0.0383 (13)0.0079 (12)0.0103 (10)0.0043 (12)
C60.0314 (12)0.0673 (17)0.0408 (13)0.0034 (12)0.0181 (10)0.0060 (13)
C70.0404 (12)0.0226 (9)0.0396 (12)0.0003 (9)0.0170 (10)0.0017 (9)
C80.0418 (19)0.0257 (14)0.031 (2)0.0011 (13)0.0113 (16)0.0014 (13)
C90.0288 (17)0.0209 (13)0.026 (2)0.0001 (12)0.0051 (14)0.0003 (13)
C8A0.026 (5)0.017 (4)0.028 (6)0.005 (3)0.006 (4)0.010 (3)
C9A0.026 (5)0.014 (4)0.018 (5)0.005 (3)0.001 (4)0.002 (4)
C100.0288 (10)0.0206 (9)0.0424 (12)0.0009 (8)0.0115 (9)0.0055 (8)
C110.0414 (13)0.0234 (9)0.0428 (13)0.0089 (9)0.0093 (10)0.0023 (9)
C120.0459 (14)0.0249 (10)0.0408 (13)0.0033 (10)0.0031 (10)0.0002 (9)
C130.0297 (10)0.0250 (9)0.0293 (10)0.0014 (8)0.0062 (8)0.0069 (8)
C140.0360 (12)0.0235 (9)0.0415 (12)0.0014 (9)0.0157 (9)0.0040 (9)
O150.0368 (9)0.0240 (7)0.0526 (10)0.0040 (7)0.0184 (7)0.0080 (7)
O160.0399 (9)0.0220 (7)0.0501 (10)0.0016 (6)0.0203 (7)0.0092 (7)
Geometric parameters (Å, º) top
Se1—C131.840 (2)C9—C101.544 (4)
Se1—N21.874 (2)C9—H91.0000
N2—N31.267 (3)C8A—C9A1.522 (15)
N3—C41.382 (3)C8A—H8C0.9900
C4—C131.355 (3)C8A—H8D0.9900
C4—C51.507 (3)C9A—C141.564 (9)
C5—C61.540 (3)C9A—C101.570 (9)
C5—H5A0.9900C9A—H9A1.0000
C5—H5B0.9900C10—C111.523 (3)
C6—C71.503 (3)C10—H10A0.9900
C6—H6A0.9900C10—H10B0.9900
C6—H6B0.9900C10—H10C0.9900
C7—C81.543 (4)C10—H10D0.9900
C7—C8A1.603 (8)C11—C121.540 (3)
C7—H7A0.9900C11—H11A0.9900
C7—H7B0.9900C11—H11B0.9900
C7—H7C0.9900C12—C131.498 (3)
C7—H7D0.9900C12—H12A0.9900
C8—C91.536 (5)C12—H12B0.9900
C8—H8A0.9900C14—O151.210 (3)
C8—H8B0.9900C14—O161.321 (3)
C9—C141.527 (4)O16—H160.94 (3)
C13—Se1—N287.26 (10)C7—C8A—H8C109.8
N3—N2—Se1110.39 (15)C9A—C8A—H8D109.8
N2—N3—C4117.57 (19)C7—C8A—H8D109.8
C13—C4—N3115.9 (2)H8C—C8A—H8D108.3
C13—C4—C5126.3 (2)C8A—C9A—C14106.4 (8)
N3—C4—C5117.7 (2)C8A—C9A—C10113.1 (9)
C4—C5—C6112.2 (2)C14—C9A—C10106.1 (6)
C4—C5—H5A109.2C8A—C9A—H9A110.3
C6—C5—H5A109.2C14—C9A—H9A110.3
C4—C5—H5B109.2C10—C9A—H9A110.3
C6—C5—H5B109.2C11—C10—C9110.3 (2)
H5A—C5—H5B107.9C11—C10—C9A134.7 (5)
C7—C6—C5116.2 (2)C11—C10—H10A109.6
C7—C6—H6A108.2C9—C10—H10A109.6
C5—C6—H6A108.2C11—C10—H10B109.6
C7—C6—H6B108.2C9—C10—H10B109.6
C5—C6—H6B108.2H10A—C10—H10B108.1
H6A—C6—H6B107.4C11—C10—H10C103.5
C6—C7—C8123.2 (3)C9A—C10—H10C103.5
C6—C7—C8A93.1 (5)C11—C10—H10D103.5
C6—C7—H7A106.5C9A—C10—H10D103.5
C8—C7—H7A106.5H10C—C10—H10D105.3
C6—C7—H7B106.5C10—C11—C12115.33 (19)
C8—C7—H7B106.5C10—C11—H11A108.4
H7A—C7—H7B106.5C12—C11—H11A108.4
C6—C7—H7C113.1C10—C11—H11B108.4
C8A—C7—H7C113.1C12—C11—H11B108.4
C6—C7—H7D113.1H11A—C11—H11B107.5
C8A—C7—H7D113.1C13—C12—C11112.92 (19)
H7C—C7—H7D110.5C13—C12—H12A109.0
C9—C8—C7115.0 (3)C11—C12—H12A109.0
C9—C8—H8A108.5C13—C12—H12B109.0
C7—C8—H8A108.5C11—C12—H12B109.0
C9—C8—H8B108.5H12A—C12—H12B107.8
C7—C8—H8B108.5C4—C13—C12128.7 (2)
H8A—C8—H8B107.5C4—C13—Se1108.86 (16)
C14—C9—C8109.0 (3)C12—C13—Se1122.37 (17)
C14—C9—C10109.3 (2)O15—C14—O16122.81 (19)
C8—C9—C10113.8 (3)O15—C14—C9123.8 (2)
C14—C9—H9108.2O16—C14—C9113.1 (2)
C8—C9—H9108.2O15—C14—C9A118.2 (4)
C10—C9—H9108.2O16—C14—C9A115.0 (4)
C9A—C8A—C7109.3 (8)C14—O16—H16107 (2)
C9A—C8A—H8C109.8
C13—Se1—N2—N30.48 (17)C9—C10—C11—C1262.8 (3)
Se1—N2—N3—C40.2 (3)C9A—C10—C11—C1273.3 (6)
N2—N3—C4—C130.4 (3)C10—C11—C12—C1349.3 (3)
N2—N3—C4—C5178.4 (2)N3—C4—C13—C12175.9 (2)
C13—C4—C5—C6119.0 (3)C5—C4—C13—C121.8 (4)
N3—C4—C5—C658.7 (3)N3—C4—C13—Se10.8 (2)
C4—C5—C6—C749.4 (3)C5—C4—C13—Se1178.56 (18)
C5—C6—C7—C876.3 (3)C11—C12—C13—C4107.2 (3)
C5—C6—C7—C8A64.3 (4)C11—C12—C13—Se169.1 (2)
C6—C7—C8—C970.8 (4)N2—Se1—C13—C40.68 (16)
C7—C8—C9—C14172.2 (3)N2—Se1—C13—C12176.28 (19)
C7—C8—C9—C1065.5 (5)C8—C9—C14—O15136.1 (3)
C6—C7—C8A—C9A154.6 (8)C10—C9—C14—O1511.2 (5)
C7—C8A—C9A—C14171.0 (5)C8—C9—C14—O1649.5 (4)
C7—C8A—C9A—C1072.8 (11)C10—C9—C14—O16174.5 (2)
C14—C9—C10—C1187.5 (3)C8A—C9A—C14—O15162.0 (7)
C8—C9—C10—C11150.4 (3)C10—C9A—C14—O1541.2 (9)
C8A—C9A—C10—C1171.5 (9)C8A—C9A—C14—O1639.9 (11)
C14—C9A—C10—C1144.9 (10)C10—C9A—C14—O16160.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O15i0.94 (3)1.69 (3)2.630 (2)174 (3)
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBecker, K. B. & Chappuis, J. R. (1979). Helv. Chim. Acta, 62, 34–43.  CrossRef CAS Google Scholar
First citationDetert, H., Antony–Mayer, C. & Meier, H. (1992). Angew. Chem. 104, 755–757.  CrossRef CAS Google Scholar
First citationDetert, H. & Schollmeyer, D. (2021). IUCrData, 6, x210069.  Google Scholar
First citationKrämer, G. (1996). PhD Thesis, Mainz, Germany.  Google Scholar
First citationKrämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810–4812.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt,  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146