metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[(2-meth­­oxy­phen­yl)di­phenyl­phosphane-κP](nitrito-κ2O,O′)silver(I)

crossmark logo

aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@up.ac.za

(Received 19 February 2025; accepted 28 February 2025; online 27 March 2025)

The mol­ecular structure of the title AgI complex, [Ag(NO2)(C19H17OP)2], is described, where a distorted tetra­hedral coordination environment for the AgI atom is apparent within a O2P2 donor set as the nitrito anion coordinates in a bidentate mode. A fairly large angle for P—Ag—P [129.126 (16)°] is noted. The O—Ag—O chelate angle is = 50.38 (6)° and the P—Ag—O angles lie in the range 99.51 (5) to 118.45 (6)°. In the crystal, C—H⋯O inter­actions are evident.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Phosphane-containing silver(I) complexes remain an important class of compounds studied mainly for their potent anti­microbial, anti­bacterial and anti­cancer activity (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]). To this end, studies of their mol­ecular structures by means of single-crystal X-ray diffraction remain important (Malan et al., 2022[Malan, F. P., Potgieter, K. & Meijboom, R. (2022). IUCrData, 7, x221045.]) in order to establish possible structure–activity relationships.

Fig. 1[link] shows the mol­ecular structure of the title compound and Table 1[link] lists key geometric parameters. The AgI complex crystallizes in the monoclinic space group C2/c, Z = 8 with one complete mol­ecule featuring in the asymmetric unit. The distorted tetra­hedral geometry exhibited by the central silver cation comprises a bidentate nitrito ligand, which forms an acute chelate angle of O1—Ag1—O2 = 50.38 (6)°, and two diphen­yl(2-meth­oxy­phen­yl)phosphane ligands, which subtend a wide angle, i.e. P1—Ag1—P2 = 129.126 (16)°. The ipso-aryl carbon atoms of each of the phosphine ligands overlap in a near-eclipsed fashion when viewed along the P1–Ag1–P2 plane, as indicated by the C1—P1—P2—C20 and C7—P1—P2—C32 torsion angles of −9.50 (8) and −11.27 (14)°, respectively. The C7H7O aryl groups from each phosphane ligand are adjacent with the oxygen atoms of the OMe groups facing one another, but do not overlap when viewed down the P1–Ag1–P2 plane. The plane defined by atoms P1, Ag1 and P2 inter­cepts the plane defined by the Ag1, O1 and O2 atoms in a near-perpendicular fashion at an angle of 84.13 (6)°. All other bond lengths and angles correlate well with related compounds (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]).

Table 1
Selected geometric parameters (Å, °)

Ag1—O1 2.3931 (16) Ag1—P1 2.4283 (4)
Ag1—O2 2.4927 (17) Ag1—P2 2.4136 (4)
       
O1—Ag1—P1 112.41 (6) O2—Ag1—P1 99.51 (5)
O1—Ag1—P2 118.45 (6) O2—Ag1—P2 111.52 (5)
O1—Ag1—O2 50.38 (6) P1—Ag1—P2 129.126 (16)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

In the crystal, individual complexes pack in three-dimensions as layers of isolated complexes connected via weak C—H⋯O hydrogen-bonding inter­actions, Table 2[link]. These layers pack as alternating phenyl- and oxygen-rich layers, creating alternating hydro­phobic and hydro­philic environments, respectively. A view of the packing with the observed C—H⋯O inter­actions is shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.87 (1) 2.00 (1) 2.8634 (18) 173 (2)
C17—H17⋯O2ii 0.95 2.37 3.225 (3) 149
C38—H38C⋯O1iii 0.98 2.45 2.936 (3) 110
Symmetry codes: (i) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing diagram viewed in perspective along the b axis. Hydrogen-bonding inter­actions are indicated by means of red dotted lines.

Synthesis and crystallization

A 1 mmol solution of silver nitrite was prepared in aceto­nitrile (10 ml) and added to a solution of diphenyl-2-meth­oxy­phenyl­phosphine (2 mmol) in aceto­nitrile (10 ml). The solution was stirred at 80°C, removed from the heat and left to slowly cool and crystallize.

Refinement

For full experimental details including crystal data, data collection and structure refinement details, refer to Table 3[link]. The maximum and minimum residual electron density peaks are located 0.86 and 0.61 Å, respectively, from the Ag1 atom

Table 3
Experimental details

Crystal data
Chemical formula [Ag(NO2)(C19H17OP)2]
Mr 738.47
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 22.6427 (3), 15.6971 (2), 20.1469 (3)
β (°) 106.080 (2)
V3) 6880.55 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.31 × 0.27 × 0.22
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.038, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 56728, 9287, 7975
Rint 0.036
(sin θ/λ)max−1) 0.727
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.07
No. of reflections 9287
No. of parameters 417
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −0.93
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Bis[(2-methoxyphenyl)diphenylphosphane-κP](nitrito-κ2O,O')silver(I) top
Crystal data top
[Ag(NO2)(C19H17OP)2]F(000) = 3016
Mr = 738.47Dx = 1.420 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.6427 (3) ÅCell parameters from 36798 reflections
b = 15.6971 (2) Åθ = 2.8–31.3°
c = 20.1469 (3) ŵ = 0.72 mm1
β = 106.080 (2)°T = 150 K
V = 6880.55 (18) Å3Block, colourless
Z = 80.31 × 0.27 × 0.22 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
9287 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source7975 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 31.1°, θmin = 2.6°
ω scansh = 3231
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1921
Tmin = 0.038, Tmax = 1.000l = 2826
56728 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0351P)2 + 8.2387P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
9287 reflectionsΔρmax = 1.69 e Å3
417 parametersΔρmin = 0.93 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.73700 (2)0.56462 (2)0.38969 (2)0.02206 (5)
P10.65137 (2)0.47508 (3)0.39633 (2)0.01960 (9)
P20.84579 (2)0.54168 (3)0.43873 (2)0.02195 (9)
O30.67728 (7)0.53424 (9)0.53680 (7)0.0338 (3)
O40.83502 (7)0.69983 (10)0.49956 (8)0.0400 (3)
O20.71068 (10)0.58520 (12)0.26215 (9)0.0567 (5)
O10.70419 (10)0.69047 (11)0.32257 (9)0.0568 (5)
C180.67471 (8)0.44718 (11)0.53731 (10)0.0251 (4)
C130.66033 (8)0.40809 (11)0.47215 (9)0.0230 (3)
C260.86925 (8)0.49997 (11)0.52714 (9)0.0244 (3)
C10.64164 (8)0.39815 (11)0.32640 (9)0.0238 (3)
C200.87211 (8)0.46280 (11)0.38685 (9)0.0227 (3)
C170.68459 (9)0.39840 (14)0.59698 (10)0.0322 (4)
H170.69440.42520.64100.039*
N10.69803 (10)0.66201 (13)0.26371 (10)0.0453 (5)
C320.89811 (8)0.63093 (11)0.44337 (9)0.0239 (3)
C70.57573 (8)0.52308 (11)0.38389 (9)0.0236 (3)
C160.68000 (10)0.31062 (14)0.59185 (12)0.0380 (5)
H160.68670.27730.63260.046*
C270.83098 (9)0.44130 (12)0.54679 (11)0.0318 (4)
H270.79360.42440.51460.038*
C340.98944 (9)0.69799 (13)0.42789 (11)0.0338 (4)
H341.02430.69650.41040.041*
C140.65625 (10)0.31942 (12)0.46864 (11)0.0321 (4)
H140.64680.29200.42490.038*
C250.91678 (8)0.40200 (12)0.41489 (10)0.0279 (4)
H250.93630.40170.46310.033*
C350.97823 (10)0.76861 (13)0.46359 (12)0.0393 (5)
H351.00620.81510.47130.047*
C330.94915 (8)0.62915 (12)0.41780 (10)0.0275 (4)
H330.95660.58050.39320.033*
C280.84699 (11)0.40731 (15)0.61304 (12)0.0413 (5)
H280.82100.36650.62560.050*
C230.90500 (10)0.34138 (14)0.30238 (11)0.0364 (4)
H230.91590.29960.27370.044*
C370.88670 (9)0.70369 (12)0.47768 (10)0.0295 (4)
C360.92706 (10)0.77295 (13)0.48830 (11)0.0366 (5)
H360.91950.82220.51210.044*
C290.90059 (11)0.43267 (15)0.66074 (12)0.0420 (5)
H290.91140.40950.70610.050*
C210.84448 (10)0.46245 (14)0.31582 (11)0.0358 (4)
H210.81400.50370.29590.043*
C240.93294 (10)0.34175 (13)0.37256 (11)0.0344 (4)
H240.96350.30040.39210.041*
C20.69423 (9)0.36501 (14)0.31357 (11)0.0357 (5)
H20.73340.38350.34070.043*
C310.92311 (9)0.52493 (13)0.57568 (11)0.0329 (4)
H310.94960.56490.56310.039*
C100.46111 (10)0.60076 (16)0.36229 (12)0.0425 (5)
H100.42170.62650.35390.051*
C150.66583 (11)0.27086 (14)0.52812 (12)0.0417 (5)
H150.66270.21050.52510.050*
C40.63425 (12)0.27957 (15)0.22160 (12)0.0452 (6)
H40.63150.23960.18540.054*
C190.69918 (13)0.57647 (16)0.60203 (12)0.0484 (6)
H19A0.70340.63760.59440.073*
H19B0.73920.55290.62710.073*
H19C0.66990.56790.62920.073*
C300.93856 (10)0.49199 (15)0.64233 (11)0.0402 (5)
H300.97510.51010.67520.048*
C110.50465 (10)0.63502 (16)0.33463 (12)0.0420 (5)
H110.49570.68590.30830.050*
C30.69051 (11)0.30542 (15)0.26173 (12)0.0406 (5)
H30.72700.28260.25410.049*
C80.53234 (10)0.49021 (15)0.41353 (15)0.0477 (6)
H80.54170.44080.44180.057*
C220.86113 (11)0.40218 (16)0.27396 (11)0.0428 (5)
H220.84230.40270.22560.051*
C120.56175 (9)0.59634 (14)0.34460 (11)0.0332 (4)
H120.59120.62030.32440.040*
C380.82967 (13)0.75616 (16)0.55317 (14)0.0510 (6)
H38A0.82680.81500.53630.076*
H38B0.86590.75020.59300.076*
H38C0.79260.74190.56700.076*
C90.47504 (11)0.52905 (17)0.40224 (17)0.0562 (7)
H90.44540.50560.42240.067*
C60.58518 (10)0.37091 (18)0.28587 (14)0.0539 (7)
H60.54850.39280.29360.065*
C50.58173 (12)0.3116 (2)0.23378 (16)0.0690 (10)
H50.54270.29310.20630.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01771 (7)0.02421 (7)0.02355 (7)0.00003 (4)0.00456 (5)0.00047 (5)
P10.01714 (19)0.0214 (2)0.0201 (2)0.00046 (15)0.00497 (16)0.00116 (15)
P20.01636 (19)0.0242 (2)0.0244 (2)0.00045 (15)0.00414 (16)0.00035 (16)
O30.0460 (8)0.0288 (7)0.0254 (7)0.0012 (6)0.0078 (6)0.0070 (5)
O40.0390 (8)0.0365 (8)0.0483 (9)0.0034 (6)0.0184 (7)0.0163 (7)
O20.0876 (15)0.0510 (10)0.0287 (8)0.0137 (10)0.0113 (9)0.0040 (7)
O10.1013 (15)0.0368 (9)0.0415 (10)0.0125 (9)0.0353 (10)0.0088 (7)
C180.0219 (8)0.0288 (9)0.0257 (9)0.0007 (6)0.0085 (7)0.0002 (7)
C130.0210 (8)0.0252 (8)0.0236 (8)0.0008 (6)0.0074 (6)0.0009 (7)
C260.0220 (8)0.0271 (9)0.0246 (9)0.0034 (6)0.0073 (7)0.0000 (7)
C10.0237 (8)0.0262 (9)0.0204 (8)0.0004 (6)0.0041 (7)0.0016 (6)
C200.0174 (7)0.0239 (8)0.0270 (9)0.0015 (6)0.0064 (6)0.0006 (7)
C170.0273 (9)0.0458 (11)0.0249 (9)0.0030 (8)0.0096 (7)0.0026 (8)
N10.0539 (12)0.0497 (12)0.0360 (11)0.0107 (9)0.0188 (9)0.0153 (9)
C320.0195 (8)0.0236 (8)0.0255 (9)0.0009 (6)0.0011 (7)0.0042 (7)
C70.0181 (8)0.0262 (9)0.0262 (9)0.0001 (6)0.0060 (7)0.0046 (7)
C160.0393 (11)0.0434 (12)0.0343 (11)0.0055 (9)0.0150 (9)0.0152 (9)
C270.0268 (9)0.0325 (10)0.0371 (11)0.0003 (7)0.0108 (8)0.0023 (8)
C340.0252 (9)0.0364 (10)0.0376 (11)0.0045 (7)0.0050 (8)0.0125 (8)
C140.0405 (11)0.0254 (9)0.0323 (10)0.0024 (8)0.0135 (8)0.0001 (7)
C250.0269 (9)0.0254 (9)0.0283 (9)0.0014 (7)0.0024 (7)0.0015 (7)
C350.0402 (11)0.0315 (10)0.0409 (12)0.0139 (8)0.0022 (9)0.0082 (9)
C330.0216 (8)0.0277 (9)0.0307 (10)0.0006 (6)0.0031 (7)0.0074 (7)
C280.0398 (12)0.0451 (12)0.0438 (13)0.0035 (9)0.0195 (10)0.0119 (10)
C230.0358 (11)0.0361 (11)0.0375 (11)0.0034 (8)0.0107 (9)0.0086 (9)
C370.0285 (9)0.0288 (9)0.0287 (10)0.0007 (7)0.0036 (7)0.0008 (7)
C360.0446 (12)0.0258 (9)0.0360 (11)0.0058 (8)0.0054 (9)0.0010 (8)
C290.0481 (13)0.0514 (13)0.0292 (11)0.0116 (10)0.0155 (10)0.0096 (9)
C210.0320 (10)0.0457 (12)0.0278 (10)0.0148 (9)0.0051 (8)0.0016 (8)
C240.0341 (10)0.0271 (9)0.0390 (11)0.0073 (8)0.0051 (8)0.0005 (8)
C20.0251 (9)0.0408 (11)0.0384 (11)0.0032 (8)0.0044 (8)0.0145 (9)
C310.0290 (10)0.0385 (11)0.0292 (10)0.0022 (8)0.0047 (8)0.0011 (8)
C100.0251 (10)0.0562 (14)0.0463 (13)0.0119 (9)0.0101 (9)0.0068 (11)
C150.0572 (14)0.0280 (10)0.0435 (13)0.0013 (9)0.0200 (11)0.0098 (9)
C40.0517 (14)0.0453 (13)0.0349 (12)0.0017 (10)0.0059 (10)0.0187 (10)
C190.0617 (16)0.0452 (13)0.0339 (12)0.0027 (11)0.0061 (11)0.0173 (10)
C300.0372 (11)0.0517 (13)0.0279 (10)0.0031 (9)0.0027 (9)0.0009 (9)
C110.0353 (11)0.0538 (13)0.0372 (12)0.0201 (10)0.0105 (9)0.0092 (10)
C30.0404 (11)0.0422 (12)0.0401 (12)0.0078 (9)0.0129 (10)0.0113 (9)
C80.0327 (11)0.0376 (12)0.0807 (19)0.0031 (9)0.0288 (12)0.0167 (11)
C220.0419 (12)0.0582 (14)0.0259 (10)0.0143 (10)0.0053 (9)0.0039 (9)
C120.0278 (9)0.0426 (11)0.0313 (10)0.0093 (8)0.0117 (8)0.0064 (8)
C380.0599 (16)0.0471 (14)0.0502 (15)0.0016 (11)0.0223 (12)0.0179 (11)
C90.0295 (11)0.0558 (15)0.093 (2)0.0031 (10)0.0330 (13)0.0108 (14)
C60.0234 (10)0.0749 (17)0.0563 (15)0.0024 (10)0.0006 (10)0.0378 (13)
C50.0369 (13)0.092 (2)0.0661 (18)0.0001 (13)0.0062 (12)0.0520 (17)
Geometric parameters (Å, º) top
Ag1—O12.3931 (16)C35—C361.384 (3)
Ag1—O22.4927 (17)C33—H330.9500
Ag1—P12.4283 (4)C28—H280.9500
Ag1—P22.4136 (4)C28—C291.382 (3)
P1—C131.8190 (18)C23—H230.9500
P1—C11.8220 (18)C23—C241.380 (3)
P1—C71.8238 (17)C23—C221.382 (3)
P2—C261.8328 (19)C37—C361.398 (3)
P2—C201.8237 (18)C36—H360.9500
P2—C321.8204 (18)C29—H290.9500
O3—C181.368 (2)C29—C301.386 (3)
O3—C191.432 (2)C21—H210.9500
O4—C371.361 (2)C21—C221.387 (3)
O4—C381.427 (3)C24—H240.9500
O2—N11.242 (3)C2—H20.9500
O1—N11.238 (3)C2—C31.387 (3)
C18—C131.403 (3)C31—H310.9500
C18—C171.390 (3)C31—C301.390 (3)
C13—C141.395 (3)C10—H100.9500
C26—C271.395 (3)C10—C111.370 (3)
C26—C311.392 (3)C10—C91.369 (4)
C1—C21.388 (3)C15—H150.9500
C1—C61.380 (3)C4—H40.9500
C20—C251.392 (2)C4—C31.368 (3)
C20—C211.394 (3)C4—C51.375 (4)
C17—H170.9500C19—H19A0.9800
C17—C161.383 (3)C19—H19B0.9800
C32—C331.390 (3)C19—H19C0.9800
C32—C371.396 (3)C30—H300.9500
C7—C81.383 (3)C11—H110.9500
C7—C121.382 (3)C11—C121.392 (3)
C16—H160.9500C3—H30.9500
C16—C151.383 (3)C8—H80.9500
C27—H270.9500C8—C91.394 (3)
C27—C281.389 (3)C22—H220.9500
C34—H340.9500C12—H120.9500
C34—C351.383 (3)C38—H38A0.9800
C34—C331.392 (3)C38—H38B0.9800
C14—H140.9500C38—H38C0.9800
C14—C151.386 (3)C9—H90.9500
C25—H250.9500C6—H60.9500
C25—C241.389 (3)C6—C51.388 (3)
C35—H350.9500C5—H50.9500
O1—Ag1—P1112.41 (6)C24—C23—C22119.64 (19)
O1—Ag1—P2118.45 (6)C22—C23—H23120.2
O1—Ag1—O250.38 (6)O4—C37—C32114.68 (16)
O2—Ag1—P199.51 (5)O4—C37—C36124.68 (19)
O2—Ag1—P2111.52 (5)C32—C37—C36120.63 (19)
P1—Ag1—P2129.126 (16)C35—C36—C37118.9 (2)
C13—P1—Ag1118.42 (6)C35—C36—H36120.5
C13—P1—C1103.16 (8)C37—C36—H36120.5
C13—P1—C7103.67 (8)C28—C29—H29120.1
C1—P1—Ag1105.57 (6)C28—C29—C30119.9 (2)
C1—P1—C7105.05 (8)C30—C29—H29120.1
C7—P1—Ag1119.15 (6)C20—C21—H21119.8
C26—P2—Ag1116.06 (6)C22—C21—C20120.43 (19)
C20—P2—Ag1108.97 (6)C22—C21—H21119.8
C20—P2—C26105.17 (8)C25—C24—H24119.7
C32—P2—Ag1118.82 (6)C23—C24—C25120.53 (18)
C32—P2—C26102.46 (8)C23—C24—H24119.7
C32—P2—C20103.93 (8)C1—C2—H2119.4
C18—O3—C19117.40 (17)C3—C2—C1121.11 (19)
C37—O4—C38118.59 (18)C3—C2—H2119.4
N1—O2—Ag195.21 (13)C26—C31—H31119.6
N1—O1—Ag1100.27 (13)C30—C31—C26120.74 (19)
O3—C18—C13115.42 (16)C30—C31—H31119.6
O3—C18—C17124.04 (17)C11—C10—H10120.4
C17—C18—C13120.54 (17)C9—C10—H10120.4
C18—C13—P1118.41 (13)C9—C10—C11119.17 (19)
C14—C13—P1122.93 (14)C16—C15—C14119.7 (2)
C14—C13—C18118.60 (17)C16—C15—H15120.2
C27—C26—P2118.43 (14)C14—C15—H15120.2
C31—C26—P2122.95 (15)C3—C4—H4120.1
C31—C26—C27118.61 (18)C3—C4—C5119.7 (2)
C2—C1—P1117.79 (14)C5—C4—H4120.1
C6—C1—P1123.82 (15)O3—C19—H19A109.5
C6—C1—C2118.40 (18)O3—C19—H19B109.5
C25—C20—P2123.31 (14)O3—C19—H19C109.5
C25—C20—C21118.88 (17)H19A—C19—H19B109.5
C21—C20—P2117.78 (14)H19A—C19—H19C109.5
C18—C17—H17120.2H19B—C19—H19C109.5
C16—C17—C18119.55 (19)C29—C30—C31120.0 (2)
C16—C17—H17120.2C29—C30—H30120.0
O1—N1—O2114.14 (18)C31—C30—H30120.0
C33—C32—P2124.17 (14)C10—C11—H11119.5
C33—C32—C37119.15 (17)C10—C11—C12121.0 (2)
C37—C32—P2116.63 (14)C12—C11—H11119.5
C8—C7—P1122.60 (15)C2—C3—H3120.1
C12—C7—P1118.68 (14)C4—C3—C2119.8 (2)
C12—C7—C8118.70 (17)C4—C3—H3120.1
C17—C16—H16119.6C7—C8—H8119.8
C15—C16—C17120.81 (19)C7—C8—C9120.4 (2)
C15—C16—H16119.6C9—C8—H8119.8
C26—C27—H27119.7C23—C22—C21120.3 (2)
C28—C27—C26120.6 (2)C23—C22—H22119.9
C28—C27—H27119.7C21—C22—H22119.9
C35—C34—H34120.3C7—C12—C11120.12 (19)
C35—C34—C33119.40 (19)C7—C12—H12119.9
C33—C34—H34120.3C11—C12—H12119.9
C13—C14—H14119.6O4—C38—H38A109.5
C15—C14—C13120.83 (19)O4—C38—H38B109.5
C15—C14—H14119.6O4—C38—H38C109.5
C20—C25—H25119.9H38A—C38—H38B109.5
C24—C25—C20120.22 (18)H38A—C38—H38C109.5
C24—C25—H25119.9H38B—C38—H38C109.5
C34—C35—H35119.4C10—C9—C8120.5 (2)
C34—C35—C36121.28 (18)C10—C9—H9119.7
C36—C35—H35119.4C8—C9—H9119.7
C32—C33—C34120.58 (19)C1—C6—H6119.9
C32—C33—H33119.7C1—C6—C5120.2 (2)
C34—C33—H33119.7C5—C6—H6119.9
C27—C28—H28119.9C4—C5—C6120.7 (2)
C29—C28—C27120.2 (2)C4—C5—H5119.7
C29—C28—H28119.9C6—C5—H5119.7
C24—C23—H23120.2
Ag1—P1—C13—C1857.99 (15)C1—C2—C3—C41.1 (4)
Ag1—P1—C13—C14119.05 (15)C1—C6—C5—C40.3 (5)
Ag1—P1—C1—C239.46 (17)C20—P2—C26—C2784.40 (16)
Ag1—P1—C1—C6140.8 (2)C20—P2—C26—C3196.36 (17)
Ag1—P1—C7—C8152.19 (17)C20—P2—C32—C336.09 (17)
Ag1—P1—C7—C1226.26 (18)C20—P2—C32—C37176.78 (14)
Ag1—P2—C26—C2736.10 (16)C20—C25—C24—C230.0 (3)
Ag1—P2—C26—C31143.14 (14)C20—C21—C22—C230.5 (4)
Ag1—P2—C20—C25143.42 (14)C17—C18—C13—P1177.25 (14)
Ag1—P2—C20—C2134.67 (17)C17—C18—C13—C140.1 (3)
Ag1—P2—C32—C33127.34 (14)C17—C16—C15—C140.2 (3)
Ag1—P2—C32—C3755.53 (16)C32—P2—C26—C27167.22 (15)
Ag1—O2—N1—O10.4 (2)C32—P2—C26—C3112.02 (18)
Ag1—O1—N1—O20.5 (2)C32—P2—C20—C2588.96 (16)
P1—C13—C14—C15177.41 (17)C32—P2—C20—C2192.95 (16)
P1—C1—C2—C3179.24 (18)C32—C37—C36—C350.7 (3)
P1—C1—C6—C5179.6 (3)C7—P1—C13—C1876.55 (15)
P1—C7—C8—C9179.8 (2)C7—P1—C13—C14106.40 (16)
P1—C7—C12—C11179.40 (17)C7—P1—C1—C2166.23 (16)
P2—C26—C27—C28179.45 (16)C7—P1—C1—C614.0 (2)
P2—C26—C31—C30179.38 (16)C7—C8—C9—C100.7 (5)
P2—C20—C25—C24177.53 (15)C27—C26—C31—C300.1 (3)
P2—C20—C21—C22177.89 (18)C27—C28—C29—C300.2 (3)
P2—C32—C33—C34175.26 (14)C34—C35—C36—C371.0 (3)
P2—C32—C37—O43.9 (2)C25—C20—C21—C220.3 (3)
P2—C32—C37—C36175.20 (15)C35—C34—C33—C320.1 (3)
O3—C18—C13—P13.5 (2)C33—C32—C37—O4178.77 (17)
O3—C18—C13—C14179.31 (17)C33—C32—C37—C362.1 (3)
O3—C18—C17—C16179.00 (18)C33—C34—C35—C361.3 (3)
O4—C37—C36—C35179.74 (19)C28—C29—C30—C310.9 (3)
C18—C13—C14—C150.4 (3)C37—C32—C33—C341.8 (3)
C18—C17—C16—C150.1 (3)C21—C20—C25—C240.5 (3)
C13—P1—C1—C285.46 (17)C24—C23—C22—C211.1 (4)
C13—P1—C1—C694.3 (2)C2—C1—C6—C50.1 (4)
C13—P1—C7—C818.1 (2)C31—C26—C27—C281.3 (3)
C13—P1—C7—C12160.40 (16)C10—C11—C12—C71.2 (4)
C13—C18—C17—C160.2 (3)C19—O3—C18—C13172.44 (18)
C13—C14—C15—C160.4 (3)C19—O3—C18—C178.4 (3)
C26—P2—C20—C2518.35 (17)C11—C10—C9—C81.3 (4)
C26—P2—C20—C21159.74 (16)C3—C4—C5—C60.9 (5)
C26—P2—C32—C33103.24 (16)C8—C7—C12—C110.9 (3)
C26—P2—C32—C3773.90 (15)C22—C23—C24—C250.8 (3)
C26—C27—C28—C291.3 (3)C12—C7—C8—C91.8 (4)
C26—C31—C30—C291.0 (3)C38—O4—C37—C32159.7 (2)
C1—P1—C13—C18174.09 (14)C38—O4—C37—C3619.4 (3)
C1—P1—C13—C142.95 (18)C9—C10—C11—C122.3 (4)
C1—P1—C7—C889.9 (2)C6—C1—C2—C30.5 (3)
C1—P1—C7—C1291.66 (17)C5—C4—C3—C21.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.87 (1)2.00 (1)2.8634 (18)173 (2)
C17—H17···O2ii0.952.373.225 (3)149
C38—H38C···O1iii0.982.452.936 (3)110
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x, y+1, z+1/2; (iii) x+3/2, y+3/2, z+1.
 

Acknowledgements

We would like to acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalan, F. P., Potgieter, K. & Meijboom, R. (2022). IUCrData, 7, x221045.  Google Scholar
First citationPotgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146