organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-7-yl tert-butyl­acetate

crossmark logo

aLaboratory of Molecular Chemistry and Materials (LC2M), University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Matter, Environmental and Solar Energy Sciences, Research Team: Crystallography and Molecular Physics, University Félix Houphouët-Boigny, 08 BP 582, Abidjan 22, Côte d'Ivoire, cLaboratory of Solid State Physics and Experimental Physics, University of Antananarivo, BP 566, Antananarivo 101, Madagascar, and dCRM2, CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy CEDEX BP 70239, France
*Correspondence e-mail: eric.ziki@gmail.com, sorghobrahima3@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 February 2025; accepted 27 February 2025; online 4 March 2025)

In the title compound, C15H16O4, the dihedral angle between the 2H-chromen-2-one ring system and the tert-butyl­acetate moiety is 72.72 (9)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds, generating C(6) chains and R22(20) loops that are reinforced by weak aromatic ππ stacking inter­actions. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 50.6, 29.1, 8.5 and 6.8%, respectively, to the Hirshfeld surface.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title coumarin derivative, C15H16O4 (I), was synthesized by a research team led by Professor Djandé (LC2M, Ouagadougou, Burkina Faso) as part of the AFRAMED project (Kenfack Tsobnang et al., 2024[Kenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106-109.]). Coumarin-derived compounds exhibit various biological activities, such as anti­cancer (Yadav et al., 2024[Yadav, A. K., Shrestha, R. M. & Yadav, P. N. (2024). Eur. J. Med. Chem. p. 267.]; Rawat et al., 2022[Rawat, A. A. & Reddy, V. B. (2022). Eur. J. Med. Chem. Rep. 5, 100038.]), anti­coagulant (Singh et al., 2019), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]) and anti-glaucoma (Ziki et al., 2023[Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10-33.]) properties.

As shown in Fig. 1[link], the 2H-chromen-2-one moiety formed by atoms C1–C9/O1/O2 in (I) is almost planar with an r.m.s deviation of 0.027 Å and the dihedral angle between this ring system and the plane formed by atoms C10–C12/C14 in the tert-butyl­acetate moiety is 72.72 (9)°. An S(6) ring motif resulting from an intra­molecular C13—H13B⋯O4 hydrogen bond is observed (Table 1[link]). The plane passing through atoms C10–C12/C14 of the tert-butyl­acetate moiety contains the ester function atoms (r.m.s = 0.228 Å), but methyl atoms C13 and C15 atoms are on either side of this plane with deviations of 1.275 (1) and −1.244 (1) Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.50 3.4144 (13) 161
C11—H11B⋯O2ii 0.99 2.52 3.2523 (13) 131
C13—H13B⋯O4 0.98 2.43 3.0924 (14) 124
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, -y, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

In the crystal of (I), mol­ecules are linked by weak hydrogen bonds of the C—H⋯O type. A pair of C11—H11B⋯O2(−x + 2, −y, −z + 1) hydrogen bonds generates a centrosymmetric R22(20) loop, as shown in Fig. 3. The C5—H5⋯O4(x  − 1, y, z) hydrogen bonds form C(6) chains propagating in the [100] direction (Fig. 2[link]). Aromatic ππ stacking inter­actions between the pyrone ring (centroid Cg1) and benzene ring (centroid Cg2) of a symmetry-related (1 − x, −y, 1 − z) mol­ecule reinforce the cohesion of mol­ecules [Cg1⋯Cg2 = 3.5485 (8) with a slippage of 1.042 Å],

[Figure 2]
Figure 2
Part of the crystal of (I) showing the formation of an undulating network along the b axis [C(6) and R22(20) motifs]. Dashed lines indicate hydrogen bonds.

The Hirshfeld surface and two-dimensional fingerprint (FP) plot of (1) (Fig. 3[link]) generated by CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) confirmed the above inter­actions. The fingerprint plots show the different contributions of the atoms in the crystal-to-surface contacts. The most important contributions are H⋯H and H⋯O/O⋯H contacts with 50.6 and 29.1%, respectively (Fig. 3[link]d and 3f). The H⋯C/C⋯H and C⋯C contacts contribute 8.5 and 6.8%, respectively. These values are close to those of 2-oxo-2H-chromen-6-yl 4- tert-butyl­benzoate (Kenfack Tsobnang et al., 2024[Kenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106-109.]).

[Figure 3]
Figure 3
(a), (b) Hirshfeld surface of (I) mapped over dnorm, (c) overall two-dimensional fingerprint plot of and those delineated into contributions from different contacts: (d) H⋯H, (d) H⋯C/C⋯H and (e) H⋯O/O⋯H.

Synthesis and crystallization

To a solution of tert-butyl­acetyl chloride (6.2 mmol, 0.9 ml) in dried diethyl ether (16 ml) was added dried pyridine (4.7 molar equivalents; 2.31 ml) and 7-hy­droxy­coumarin (6.17 mmol, 1.00 g) in small portions over 30 min. The mixture was left under agitation at room temperature for 3 h and then poured into 40 ml of chloro­form. The solution was acidified with dilute hydro­chloric acid (5%) until the pH was 2–3. The organic layer was extracted, washed four times with 25 ml of water to neutrality, dried over MgSO4 and the solvent removed. The resulting crude product was filtered off with suction, washed with petroleum ether and recrystallized from acetone solution as colorless crystals of the title compound. Yield = 79%, m.p. = 368–371 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16O4
Mr 260.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.1599 (9), 7.2029 (11), 15.202 (2)
α, β, γ (°) 98.765 (5), 99.335 (5), 91.228 (5)
V3) 657.05 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture
No. of measured, independent and observed [I > 2σ(I)] reflections 53961, 4064, 3720
Rint 0.050
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.05
No. of reflections 4064
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

2-Oxo-2H-chromen-7-yl tert-butylacetate top
Crystal data top
C15H16O4Z = 2
Mr = 260.28F(000) = 276
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Melting point: 368 K
a = 6.1599 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2029 (11) ÅCell parameters from 4066 reflections
c = 15.202 (2) Åθ = 2.9–30.8°
α = 98.765 (5)°µ = 0.10 mm1
β = 99.335 (5)°T = 100 K
γ = 91.228 (5)°Prism, yellow
V = 657.05 (17) Å30.20 × 0.12 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
3720 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Mirror monochromatorθmax = 30.8°, θmin = 2.9°
φ and ω scanh = 88
53961 measured reflectionsk = 1010
4064 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2223P]
where P = (Fo2 + 2Fc2)/3
4064 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.53573 (12)0.19418 (10)0.29426 (5)0.02062 (16)
O10.88247 (11)0.15470 (10)0.59464 (5)0.01913 (16)
O40.84148 (12)0.38219 (10)0.30532 (5)0.02129 (16)
O21.04542 (14)0.10787 (12)0.72944 (5)0.02755 (18)
C90.51037 (15)0.26016 (12)0.56924 (6)0.01750 (18)
C60.53813 (16)0.22422 (13)0.38729 (6)0.01796 (18)
C50.34391 (15)0.28555 (13)0.41609 (7)0.01937 (18)
H50.2227780.3146750.3740300.023*
C40.33122 (15)0.30309 (13)0.50706 (7)0.01946 (19)
H40.2001340.3445490.5276110.023*
C80.70128 (15)0.20004 (13)0.53717 (6)0.01673 (17)
C70.71880 (15)0.18000 (13)0.44623 (6)0.01781 (18)
H70.8491970.1377450.4253270.021*
C100.70385 (15)0.27069 (13)0.26024 (6)0.01775 (18)
C10.88143 (17)0.15948 (14)0.68557 (6)0.02053 (19)
C30.50766 (17)0.27137 (14)0.66442 (7)0.02070 (19)
H30.3802410.3118030.6882820.025*
C20.68492 (18)0.22481 (14)0.71993 (7)0.0225 (2)
H20.6812870.2349160.7827070.027*
C110.68111 (16)0.19153 (14)0.16148 (6)0.01956 (18)
H11A0.5228720.1862090.1349910.023*
H11B0.7289200.0605330.1564110.023*
C120.80830 (16)0.29648 (14)0.10383 (6)0.02054 (19)
C131.05795 (18)0.29276 (19)0.13479 (8)0.0305 (2)
H13A1.1351760.3606020.0969510.046*
H13B1.0960000.3531750.1979060.046*
H13C1.1020080.1621190.1292660.046*
C150.7374 (2)0.50003 (16)0.10722 (7)0.0284 (2)
H15A0.8200760.5650150.0701050.043*
H15B0.5794420.5002040.0839620.043*
H15C0.7674110.5648550.1697770.043*
C140.74935 (19)0.19270 (17)0.00628 (7)0.0277 (2)
H14A0.8274000.2553040.0331490.041*
H14B0.7929170.0622040.0038710.041*
H14C0.5901760.1944700.0140240.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0191 (3)0.0257 (3)0.0169 (3)0.0023 (3)0.0020 (2)0.0045 (3)
O10.0186 (3)0.0219 (3)0.0171 (3)0.0041 (2)0.0023 (2)0.0040 (2)
O40.0204 (3)0.0241 (3)0.0187 (3)0.0014 (3)0.0019 (2)0.0032 (3)
O20.0274 (4)0.0334 (4)0.0216 (4)0.0057 (3)0.0004 (3)0.0074 (3)
C90.0181 (4)0.0150 (4)0.0201 (4)0.0005 (3)0.0050 (3)0.0028 (3)
C60.0184 (4)0.0182 (4)0.0177 (4)0.0005 (3)0.0030 (3)0.0041 (3)
C50.0156 (4)0.0199 (4)0.0229 (4)0.0003 (3)0.0018 (3)0.0058 (3)
C40.0163 (4)0.0188 (4)0.0244 (4)0.0015 (3)0.0057 (3)0.0042 (3)
C80.0167 (4)0.0155 (4)0.0181 (4)0.0014 (3)0.0026 (3)0.0034 (3)
C70.0175 (4)0.0186 (4)0.0180 (4)0.0023 (3)0.0041 (3)0.0035 (3)
C100.0176 (4)0.0189 (4)0.0176 (4)0.0031 (3)0.0024 (3)0.0054 (3)
C10.0244 (5)0.0197 (4)0.0173 (4)0.0006 (3)0.0024 (3)0.0037 (3)
C30.0222 (4)0.0195 (4)0.0214 (4)0.0010 (3)0.0078 (3)0.0019 (3)
C20.0274 (5)0.0232 (4)0.0174 (4)0.0008 (4)0.0060 (3)0.0021 (3)
C110.0197 (4)0.0213 (4)0.0171 (4)0.0010 (3)0.0020 (3)0.0029 (3)
C120.0202 (4)0.0258 (4)0.0156 (4)0.0012 (3)0.0030 (3)0.0032 (3)
C130.0198 (5)0.0468 (7)0.0245 (5)0.0003 (4)0.0048 (4)0.0032 (4)
C150.0382 (6)0.0250 (5)0.0223 (5)0.0003 (4)0.0024 (4)0.0075 (4)
C140.0294 (5)0.0354 (6)0.0172 (4)0.0008 (4)0.0040 (4)0.0011 (4)
Geometric parameters (Å, º) top
O3—C101.3710 (11)C3—C21.3490 (14)
O3—C61.3953 (11)C3—H30.9500
O1—C11.3785 (11)C2—H20.9500
O1—C81.3791 (11)C11—C121.5339 (14)
O4—C101.2033 (12)C11—H11A0.9900
O2—C11.2151 (12)C11—H11B0.9900
C9—C81.3970 (13)C12—C151.5344 (15)
C9—C41.4044 (13)C12—C131.5355 (15)
C9—C31.4396 (13)C12—C141.5380 (14)
C6—C71.3862 (13)C13—H13A0.9800
C6—C51.3971 (13)C13—H13B0.9800
C5—C41.3845 (13)C13—H13C0.9800
C5—H50.9500C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C8—C71.3900 (13)C15—H15C0.9800
C7—H70.9500C14—H14A0.9800
C10—C111.5054 (13)C14—H14B0.9800
C1—C21.4540 (14)C14—H14C0.9800
C10—O3—C6119.43 (7)C1—C2—H2119.3
C1—O1—C8121.85 (8)C10—C11—C12117.18 (8)
C8—C9—C4118.47 (9)C10—C11—H11A108.0
C8—C9—C3117.80 (9)C12—C11—H11A108.0
C4—C9—C3123.72 (9)C10—C11—H11B108.0
C7—C6—O3120.83 (8)C12—C11—H11B108.0
C7—C6—C5122.58 (9)H11A—C11—H11B107.2
O3—C6—C5116.39 (8)C11—C12—C15110.51 (8)
C4—C5—C6118.78 (9)C11—C12—C13111.12 (8)
C4—C5—H5120.6C15—C12—C13110.36 (9)
C6—C5—H5120.6C11—C12—C14106.66 (8)
C5—C4—C9120.60 (9)C15—C12—C14109.16 (8)
C5—C4—H4119.7C13—C12—C14108.94 (8)
C9—C4—H4119.7C12—C13—H13A109.5
O1—C8—C7116.34 (8)C12—C13—H13B109.5
O1—C8—C9121.32 (8)H13A—C13—H13B109.5
C7—C8—C9122.33 (9)C12—C13—H13C109.5
C6—C7—C8117.24 (8)H13A—C13—H13C109.5
C6—C7—H7121.4H13B—C13—H13C109.5
C8—C7—H7121.4C12—C15—H15A109.5
O4—C10—O3123.07 (9)C12—C15—H15B109.5
O4—C10—C11128.49 (9)H15A—C15—H15B109.5
O3—C10—C11108.45 (8)C12—C15—H15C109.5
O2—C1—O1116.63 (9)H15A—C15—H15C109.5
O2—C1—C2126.14 (9)H15B—C15—H15C109.5
O1—C1—C2117.23 (9)C12—C14—H14A109.5
C2—C3—C9120.42 (9)C12—C14—H14B109.5
C2—C3—H3119.8H14A—C14—H14B109.5
C9—C3—H3119.8C12—C14—H14C109.5
C3—C2—C1121.30 (9)H14A—C14—H14C109.5
C3—C2—H2119.3H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.952.503.4144 (13)161
C11—H11B···O2ii0.992.523.2523 (13)131
C13—H13B···O40.982.433.0924 (14)124
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Université de Lorraine for the X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support of the AFRAMED project.

References

First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106–109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRawat, A. A. & Reddy, V. B. (2022). Eur. J. Med. Chem. Rep. 5, 100038.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, A. K., Shrestha, R. M. & Yadav, P. N. (2024). Eur. J. Med. Chem. p. 267.  Google Scholar
First citationZiki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10–33.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146