

organic compounds
(E)-1-(2-Hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, and eDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et
In the title compound, C16H14O3, the phenyl rings are oriented at a dihedral angle of 3.82 (3)° and an intramolecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O and C—H⋯π hydrogen bonds and aromatic π–π stacking occurs. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (48.2%), H⋯O/O⋯H (20.0%), H⋯C/C⋯H (16.5%) and C⋯C (12.7%) interactions.
Keywords: crystal structure; carboxylate; hydrogen bond.
CCDC reference: 2427472
![[Scheme 3D1]](hb4506scheme3D1.gif)
![[Scheme 1]](hb4506scheme1.gif)
Structure description
α,β-unsaturated carbonyl system that facilitates the formation of diverse chemical frameworks (e.g., Khalilov et al., 2022). As part of our ongoing studies in this area, we now report the synthesis and structure of the title compound, C16H14O3, (I).
The phenyl rings (C2–C7 and C10–C15) are oriented at a dihedral angle of 3.82 (3)° (Fig. 1) and the C2—C1—C8—C9 and C1—C8—C9—C10 torsion angles are −177.00 (9) and −178.67 (9)°, respectively. A short (and presumably strong) intramolecular O2—H2⋯O1 hydrogen bond occurs (Table 1
).
|
![]() | Figure 1 The molecular structure of (I) showing 50% probability ellipsoids. The intramolecular O—H⋯O hydrogen bond is shown as a dashed line. |
In the crystal, weak C—H⋯O hydrogen bonds link the molecules into infinite chains propagating along the c-axis direction (Fig. 2). Further, there are π–π interactions between the almost parallel phenyl rings with centroid-to-centroid distances of 3.7124 (6) Å, where the dihedral angle between the phenyl rings is 3.83 (1)° and the slippage is 1.192 Å. A weak C—H⋯π(ring) interaction (Table 1
) is also observed.
![]() | Figure 2 The packing diagram of (I) viewed down the b-axis direction. Intramolecular O—H⋯O and intermolecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity. |
To confirm and quantifying the intermolecular interactions in the crystal of (I), a Hirshfeld surface analysis (Fig. 3) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021
). The overall two-dimensional fingerprint plot, Fig. 4
a, and those delineated into H⋯H (48.2% of the surface), H⋯O/O⋯H (20.0%), H⋯C/C⋯H (16.5%), C⋯C (12.7%), C⋯O/O⋯C (2.6%) and O⋯O(0.1%) (McKinnon et al., 2007
) are illustrated in Fig. 4
b–g, respectively.
![]() | Figure 3 View of the three-dimensional Hirshfeld surface of (I) plotted over dnorm. |
![]() | Figure 4 The full two-dimensional fingerprint plots for (I), showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) C⋯O/O⋯C and (g) O⋯O interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
Synthesis and crystallization
To a solution of 2-hydroxyacetophenone (1.36 g, 10 mmol) in ethanol (10 ml) was added 0.1 ml of piperidine as catalyst and the mixture was stirred at room temperature for 0.5 h. Then, 3-methoxybenzaldehyde (1.36 g, 10 mmol) was added to the vigorously stirred reaction mixture and it was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield: 90%, m.p. 359 K). 1H NMR (300 MHz, acetone-d6, p.p.m.): 3.7 (s, 3H, CH3); 6.94 (d, 1H, CH, arom. 3JH—H = 7.8 Hz); 7.2 (s, 1H, arom.), 7.3–7.4 (m, 5H, arom.), 7.6 (d, 1H, CH, 3JH—H = 15.6 HZ); 7.8 (d, 1H, CH, 3JH—H = 15.6 Hz); 7.9 (d, 1H, CH, arom. 3JH—H = 7.7 Hz); 11.3 (s, 1H, OH). 13C NMR (75 MHz, acetone-d6, p.p.m.): 55.1 (CH3); 112.8 (CH, arom.); 115.7 (CH, arom.); 117.4 (CH, arom); 117.6 (CH, arom.); 119.3 (Cquat, arom.); 120.1 (δbCH); 121.1 (CH, arom.); 128.8 (CH, arom.); 129.3 (CH, arom.); 135.7 (Cquat, arom.); 136.2 (CH, arom.); 144.7 (=CH); 159.7 (C—O), 160.8 (C—O); 194.9 (CO).
Refinement
Crystal data, data collection and structure .
|
Structural data
CCDC reference: 2427472
https://doi.org/10.1107/S2414314625001828/hb4506sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625001828/hb4506Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625001828/hb4506Isup3.cml
C16H14O3 | F(000) = 1072 |
Mr = 254.27 | Dx = 1.367 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 10.72243 (10) Å | Cell parameters from 10243 reflections |
b = 10.51268 (9) Å | θ = 4.0–79.8° |
c = 22.22491 (18) Å | µ = 0.76 mm−1 |
β = 99.4688 (8)° | T = 100 K |
V = 2471.09 (4) Å3 | Prism, colourless |
Z = 8 | 0.15 × 0.10 × 0.10 mm |
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer | 2527 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.031 |
φ and ω scans | θmax = 80.0°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −13→13 |
Tmin = 0.770, Tmax = 1.000 | k = −8→13 |
14193 measured reflections | l = −28→28 |
2689 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0493P)2 + 1.7373P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2689 reflections | Δρmax = 0.26 e Å−3 |
178 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.00040 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The OH hydrogen atom was located in a difference Fourier map, and refined freely. The C-bound hydrogen atom positions were geometrically placed (C—H = 0.95–0.98 Å and refined using a riding model by applying the constraint of Uiso = k Ueq (C), where k = 1.5 for methyl H atoms and k = 1.2 for the other C-bound H atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38451 (7) | 0.58069 (7) | 0.35542 (3) | 0.02097 (19) | |
O2 | 0.33559 (8) | 0.41446 (8) | 0.27352 (3) | 0.0227 (2) | |
H2 | 0.3655 (18) | 0.489 (2) | 0.2965 (9) | 0.056 (5)* | |
O3 | 0.54949 (8) | 1.01783 (8) | 0.60473 (3) | 0.0223 (2) | |
C1 | 0.34130 (9) | 0.51250 (10) | 0.39322 (5) | 0.0169 (2) | |
C2 | 0.28385 (9) | 0.38836 (10) | 0.37447 (5) | 0.0163 (2) | |
C3 | 0.28323 (10) | 0.34535 (10) | 0.31402 (5) | 0.0178 (2) | |
C4 | 0.22718 (10) | 0.22920 (11) | 0.29458 (5) | 0.0209 (2) | |
H4 | 0.2271 | 0.2010 | 0.2540 | 0.025* | |
C5 | 0.17196 (10) | 0.15544 (10) | 0.33442 (5) | 0.0212 (2) | |
H5 | 0.1338 | 0.0767 | 0.3210 | 0.025* | |
C6 | 0.17186 (10) | 0.19577 (11) | 0.39429 (5) | 0.0203 (2) | |
H6 | 0.1339 | 0.1445 | 0.4215 | 0.024* | |
C7 | 0.22712 (10) | 0.31026 (10) | 0.41383 (5) | 0.0184 (2) | |
H7 | 0.2269 | 0.3370 | 0.4547 | 0.022* | |
C8 | 0.34912 (10) | 0.55674 (10) | 0.45654 (5) | 0.0186 (2) | |
H8 | 0.3206 | 0.5031 | 0.4859 | 0.022* | |
C9 | 0.39600 (10) | 0.67174 (10) | 0.47329 (5) | 0.0176 (2) | |
H9 | 0.4217 | 0.7228 | 0.4422 | 0.021* | |
C10 | 0.41176 (9) | 0.72683 (10) | 0.53452 (5) | 0.0168 (2) | |
C11 | 0.47212 (10) | 0.84450 (10) | 0.54386 (5) | 0.0178 (2) | |
H11 | 0.5011 | 0.8858 | 0.5107 | 0.021* | |
C12 | 0.49052 (10) | 0.90231 (10) | 0.60123 (5) | 0.0180 (2) | |
C13 | 0.44902 (10) | 0.84144 (11) | 0.64993 (5) | 0.0196 (2) | |
H13 | 0.4617 | 0.8797 | 0.6892 | 0.024* | |
C14 | 0.38859 (10) | 0.72374 (11) | 0.64062 (5) | 0.0205 (2) | |
H14 | 0.3605 | 0.6822 | 0.6739 | 0.025* | |
C15 | 0.36886 (10) | 0.66657 (10) | 0.58381 (5) | 0.0187 (2) | |
H15 | 0.3266 | 0.5870 | 0.5781 | 0.022* | |
C16 | 0.56917 (11) | 1.08037 (11) | 0.66276 (5) | 0.0225 (2) | |
H16A | 0.6094 | 1.1631 | 0.6591 | 0.034* | |
H16B | 0.6239 | 1.0279 | 0.6926 | 0.034* | |
H16C | 0.4876 | 1.0930 | 0.6764 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0264 (4) | 0.0192 (4) | 0.0185 (4) | −0.0042 (3) | 0.0074 (3) | 0.0001 (3) |
O2 | 0.0306 (4) | 0.0225 (4) | 0.0164 (4) | −0.0047 (3) | 0.0081 (3) | −0.0007 (3) |
O3 | 0.0296 (4) | 0.0177 (4) | 0.0203 (4) | −0.0056 (3) | 0.0059 (3) | −0.0032 (3) |
C1 | 0.0165 (5) | 0.0172 (5) | 0.0172 (5) | 0.0016 (4) | 0.0034 (4) | 0.0010 (4) |
C2 | 0.0163 (5) | 0.0158 (5) | 0.0168 (5) | 0.0023 (4) | 0.0029 (4) | −0.0002 (4) |
C3 | 0.0184 (5) | 0.0187 (5) | 0.0171 (5) | 0.0020 (4) | 0.0048 (4) | 0.0010 (4) |
C4 | 0.0244 (5) | 0.0205 (5) | 0.0183 (5) | 0.0005 (4) | 0.0046 (4) | −0.0038 (4) |
C5 | 0.0213 (5) | 0.0157 (5) | 0.0268 (5) | −0.0009 (4) | 0.0045 (4) | −0.0032 (4) |
C6 | 0.0210 (5) | 0.0173 (5) | 0.0236 (5) | 0.0000 (4) | 0.0066 (4) | 0.0019 (4) |
C7 | 0.0207 (5) | 0.0176 (5) | 0.0173 (5) | 0.0012 (4) | 0.0046 (4) | 0.0001 (4) |
C8 | 0.0216 (5) | 0.0178 (5) | 0.0168 (5) | 0.0007 (4) | 0.0041 (4) | 0.0012 (4) |
C9 | 0.0179 (5) | 0.0179 (5) | 0.0178 (5) | 0.0016 (4) | 0.0053 (4) | 0.0006 (4) |
C10 | 0.0169 (5) | 0.0161 (5) | 0.0178 (5) | 0.0022 (4) | 0.0040 (4) | 0.0004 (4) |
C11 | 0.0197 (5) | 0.0166 (5) | 0.0179 (5) | 0.0005 (4) | 0.0060 (4) | 0.0011 (4) |
C12 | 0.0178 (5) | 0.0154 (5) | 0.0208 (5) | 0.0009 (4) | 0.0029 (4) | −0.0005 (4) |
C13 | 0.0227 (5) | 0.0202 (5) | 0.0159 (5) | 0.0013 (4) | 0.0033 (4) | −0.0015 (4) |
C14 | 0.0248 (5) | 0.0198 (5) | 0.0179 (5) | 0.0006 (4) | 0.0067 (4) | 0.0028 (4) |
C15 | 0.0219 (5) | 0.0148 (5) | 0.0199 (5) | −0.0006 (4) | 0.0052 (4) | 0.0005 (4) |
C16 | 0.0255 (5) | 0.0189 (5) | 0.0219 (5) | −0.0019 (4) | 0.0006 (4) | −0.0048 (4) |
O1—C1 | 1.2498 (13) | C8—C9 | 1.3384 (16) |
O2—C3 | 1.3489 (13) | C8—H8 | 0.9500 |
O2—H2 | 0.96 (2) | C9—C10 | 1.4631 (14) |
O3—C12 | 1.3654 (13) | C9—H9 | 0.9500 |
O3—C16 | 1.4321 (13) | C10—C11 | 1.3957 (15) |
C1—C8 | 1.4714 (14) | C10—C15 | 1.4066 (14) |
C1—C2 | 1.4737 (15) | C11—C12 | 1.3968 (14) |
C2—C7 | 1.4087 (14) | C11—H11 | 0.9500 |
C2—C3 | 1.4165 (14) | C12—C13 | 1.3921 (15) |
C3—C4 | 1.3977 (15) | C13—C14 | 1.3963 (16) |
C4—C5 | 1.3815 (16) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.3828 (15) |
C5—C6 | 1.3967 (15) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C6—C7 | 1.3797 (15) | C16—H16A | 0.9800 |
C6—H6 | 0.9500 | C16—H16B | 0.9800 |
C7—H7 | 0.9500 | C16—H16C | 0.9800 |
C3—O2—H2 | 102.8 (12) | C8—C9—H9 | 116.7 |
C12—O3—C16 | 117.25 (8) | C10—C9—H9 | 116.7 |
O1—C1—C8 | 119.50 (10) | C11—C10—C15 | 119.11 (9) |
O1—C1—C2 | 120.12 (9) | C11—C10—C9 | 117.96 (9) |
C8—C1—C2 | 120.38 (9) | C15—C10—C9 | 122.93 (9) |
C7—C2—C3 | 117.90 (9) | C10—C11—C12 | 120.91 (9) |
C7—C2—C1 | 122.93 (9) | C10—C11—H11 | 119.5 |
C3—C2—C1 | 119.16 (9) | C12—C11—H11 | 119.5 |
O2—C3—C4 | 117.98 (9) | O3—C12—C13 | 124.67 (10) |
O2—C3—C2 | 121.57 (10) | O3—C12—C11 | 115.69 (9) |
C4—C3—C2 | 120.45 (10) | C13—C12—C11 | 119.64 (10) |
C5—C4—C3 | 120.00 (10) | C12—C13—C14 | 119.47 (10) |
C5—C4—H4 | 120.0 | C12—C13—H13 | 120.3 |
C3—C4—H4 | 120.0 | C14—C13—H13 | 120.3 |
C4—C5—C6 | 120.52 (10) | C15—C14—C13 | 121.20 (10) |
C4—C5—H5 | 119.7 | C15—C14—H14 | 119.4 |
C6—C5—H5 | 119.7 | C13—C14—H14 | 119.4 |
C7—C6—C5 | 119.81 (10) | C14—C15—C10 | 119.66 (10) |
C7—C6—H6 | 120.1 | C14—C15—H15 | 120.2 |
C5—C6—H6 | 120.1 | C10—C15—H15 | 120.2 |
C6—C7—C2 | 121.33 (10) | O3—C16—H16A | 109.5 |
C6—C7—H7 | 119.3 | O3—C16—H16B | 109.5 |
C2—C7—H7 | 119.3 | H16A—C16—H16B | 109.5 |
C9—C8—C1 | 120.74 (10) | O3—C16—H16C | 109.5 |
C9—C8—H8 | 119.6 | H16A—C16—H16C | 109.5 |
C1—C8—H8 | 119.6 | H16B—C16—H16C | 109.5 |
C8—C9—C10 | 126.64 (10) | ||
O1—C1—C2—C7 | −176.32 (10) | C2—C1—C8—C9 | −177.00 (9) |
C8—C1—C2—C7 | 4.13 (15) | C1—C8—C9—C10 | −178.67 (9) |
O1—C1—C2—C3 | 2.66 (15) | C8—C9—C10—C11 | 174.88 (10) |
C8—C1—C2—C3 | −176.89 (9) | C8—C9—C10—C15 | −5.16 (17) |
C7—C2—C3—O2 | −179.98 (9) | C15—C10—C11—C12 | 0.19 (15) |
C1—C2—C3—O2 | 0.99 (15) | C9—C10—C11—C12 | −179.85 (9) |
C7—C2—C3—C4 | 0.32 (15) | C16—O3—C12—C13 | −0.29 (15) |
C1—C2—C3—C4 | −178.71 (9) | C16—O3—C12—C11 | 179.57 (9) |
O2—C3—C4—C5 | −179.76 (10) | C10—C11—C12—O3 | −179.36 (9) |
C2—C3—C4—C5 | −0.04 (16) | C10—C11—C12—C13 | 0.50 (16) |
C3—C4—C5—C6 | −0.18 (17) | O3—C12—C13—C14 | 179.34 (10) |
C4—C5—C6—C7 | 0.11 (17) | C11—C12—C13—C14 | −0.51 (16) |
C5—C6—C7—C2 | 0.18 (16) | C12—C13—C14—C15 | −0.16 (16) |
C3—C2—C7—C6 | −0.39 (15) | C13—C14—C15—C10 | 0.86 (16) |
C1—C2—C7—C6 | 178.60 (9) | C11—C10—C15—C14 | −0.86 (15) |
O1—C1—C8—C9 | 3.45 (16) | C9—C10—C15—C14 | 179.18 (10) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.96 (2) | 1.61 (2) | 2.5156 (10) | 154.9 (19) |
C14—H14···O2i | 0.95 | 2.49 | 3.4220 (13) | 167 |
C16—H16C···Cg1ii | 0.98 | 2.71 | 3.5097 (13) | 140 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1/2, −y+1/2, −z. |
Acknowledgements
The authors' contributions are as follows. Conceptualizations, IGM and TH; methodology, FNN and AYZ; investigation, TH, VNK and IGM; writing (original draft), TH, VNK and IGM; writing (review and editing of the manuscript), TH and IGM; visualization, TH and FSK; funding acquisition, VNK, TH and ANB; resources, TH, VNK and FNN; supervision, FNN and TH.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.