organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(2-Hy­dr­oxy­phen­yl)-3-(3-meth­­oxy­phen­yl)prop-2-en-1-one

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, and eDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 18 February 2025; accepted 26 February 2025; online 4 March 2025)

In the title compound, C16H14O3, the phenyl rings are oriented at a dihedral angle of 3.82 (3)° and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O and C—H⋯π hydrogen bonds and aromatic ππ stacking occurs. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (48.2%), H⋯O/O⋯H (20.0%), H⋯C/C⋯H (16.5%) and C⋯C (12.7%) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are open-chain flavonoids, widely recognized as versatile building blocks in organic synthesis, owing to their α,β-unsaturated carbonyl system that facilitates the formation of diverse chemical frameworks (e.g., Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]). As part of our ongoing studies in this area, we now report the synthesis and structure of the title compound, C16H14O3, (I).

The phenyl rings (C2–C7 and C10–C15) are oriented at a dihedral angle of 3.82 (3)° (Fig. 1[link]) and the C2—C1—C8—C9 and C1—C8—C9—C10 torsion angles are −177.00 (9) and −178.67 (9)°, respectively. A short (and presumably strong) intra­molecular O2—H2⋯O1 hydrogen bond occurs (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.96 (2) 1.61 (2) 2.5156 (10) 154.9 (19)
C14—H14⋯O2i 0.95 2.49 3.4220 (13) 167
C16—H16CCg1ii 0.98 2.71 3.5097 (13) 140
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The mol­ecular structure of (I) showing 50% probability ellipsoids. The intra­molecular O—H⋯O hydrogen bond is shown as a dashed line.

In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into infinite chains propagating along the c-axis direction (Fig. 2[link]). Further, there are ππ inter­actions between the almost parallel phenyl rings with centroid-to-centroid distances of 3.7124 (6) Å, where the dihedral angle between the phenyl rings is 3.83 (1)° and the slippage is 1.192 Å. A weak C—H⋯π(ring) inter­action (Table 1[link]) is also observed.

[Figure 2]
Figure 2
The packing diagram of (I) viewed down the b-axis direction. Intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

To confirm and qu­anti­fying the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface analysis (Fig. 3[link]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The overall two-dimensional fingerprint plot, Fig. 4[link]a, and those delineated into H⋯H (48.2% of the surface), H⋯O/O⋯H (20.0%), H⋯C/C⋯H (16.5%), C⋯C (12.7%), C⋯O/O⋯C (2.6%) and O⋯O(0.1%) (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 4[link]bg, respectively.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of (I) plotted over dnorm.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) C⋯O/O⋯C and (g) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Synthesis and crystallization

To a solution of 2-hy­droxy­aceto­phenone (1.36 g, 10 mmol) in ethanol (10 ml) was added 0.1 ml of piperidine as catalyst and the mixture was stirred at room temperature for 0.5 h. Then, 3-meth­oxy­benzaldehyde (1.36 g, 10 mmol) was added to the vigorously stirred reaction mixture and it was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield: 90%, m.p. 359 K). 1H NMR (300 MHz, acetone-d6, p.p.m.): 3.7 (s, 3H, CH3); 6.94 (d, 1H, CH, arom. 3JH—H = 7.8 Hz); 7.2 (s, 1H, arom.), 7.3–7.4 (m, 5H, arom.), 7.6 (d, 1H, CH, 3JH—H = 15.6 HZ); 7.8 (d, 1H, CH, 3JH—H = 15.6 Hz); 7.9 (d, 1H, CH, arom. 3JH—H = 7.7 Hz); 11.3 (s, 1H, OH). 13C NMR (75 MHz, acetone-d6, p.p.m.): 55.1 (CH3); 112.8 (CH, arom.); 115.7 (CH, arom.); 117.4 (CH, arom); 117.6 (CH, arom.); 119.3 (Cquat, arom.); 120.1 (δbCH); 121.1 (CH, arom.); 128.8 (CH, arom.); 129.3 (CH, arom.); 135.7 (Cquat, arom.); 136.2 (CH, arom.); 144.7 (=CH); 159.7 (C—O), 160.8 (C—O); 194.9 (CO).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H14O3
Mr 254.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 10.72243 (10), 10.51268 (9), 22.22491 (18)
β (°) 99.4688 (8)
V3) 2471.09 (4)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14193, 2689, 2527
Rint 0.031
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.06
No. of reflections 2689
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2015), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

(E)-1-(2-Hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H14O3F(000) = 1072
Mr = 254.27Dx = 1.367 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 10.72243 (10) ÅCell parameters from 10243 reflections
b = 10.51268 (9) Åθ = 4.0–79.8°
c = 22.22491 (18) ŵ = 0.76 mm1
β = 99.4688 (8)°T = 100 K
V = 2471.09 (4) Å3Prism, colourless
Z = 80.15 × 0.10 × 0.10 mm
Data collection top
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
diffractometer
2527 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.031
φ and ω scansθmax = 80.0°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1313
Tmin = 0.770, Tmax = 1.000k = 813
14193 measured reflectionsl = 2828
2689 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0493P)2 + 1.7373P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2689 reflectionsΔρmax = 0.26 e Å3
178 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00040 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The OH hydrogen atom was located in a difference Fourier map, and refined freely. The C-bound hydrogen atom positions were geometrically placed (C—H = 0.95–0.98 Å and refined using a riding model by applying the constraint of Uiso = k Ueq (C), where k = 1.5 for methyl H atoms and k = 1.2 for the other C-bound H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38451 (7)0.58069 (7)0.35542 (3)0.02097 (19)
O20.33559 (8)0.41446 (8)0.27352 (3)0.0227 (2)
H20.3655 (18)0.489 (2)0.2965 (9)0.056 (5)*
O30.54949 (8)1.01783 (8)0.60473 (3)0.0223 (2)
C10.34130 (9)0.51250 (10)0.39322 (5)0.0169 (2)
C20.28385 (9)0.38836 (10)0.37447 (5)0.0163 (2)
C30.28323 (10)0.34535 (10)0.31402 (5)0.0178 (2)
C40.22718 (10)0.22920 (11)0.29458 (5)0.0209 (2)
H40.22710.20100.25400.025*
C50.17196 (10)0.15544 (10)0.33442 (5)0.0212 (2)
H50.13380.07670.32100.025*
C60.17186 (10)0.19577 (11)0.39429 (5)0.0203 (2)
H60.13390.14450.42150.024*
C70.22712 (10)0.31026 (10)0.41383 (5)0.0184 (2)
H70.22690.33700.45470.022*
C80.34912 (10)0.55674 (10)0.45654 (5)0.0186 (2)
H80.32060.50310.48590.022*
C90.39600 (10)0.67174 (10)0.47329 (5)0.0176 (2)
H90.42170.72280.44220.021*
C100.41176 (9)0.72683 (10)0.53452 (5)0.0168 (2)
C110.47212 (10)0.84450 (10)0.54386 (5)0.0178 (2)
H110.50110.88580.51070.021*
C120.49052 (10)0.90231 (10)0.60123 (5)0.0180 (2)
C130.44902 (10)0.84144 (11)0.64993 (5)0.0196 (2)
H130.46170.87970.68920.024*
C140.38859 (10)0.72374 (11)0.64062 (5)0.0205 (2)
H140.36050.68220.67390.025*
C150.36886 (10)0.66657 (10)0.58381 (5)0.0187 (2)
H150.32660.58700.57810.022*
C160.56917 (11)1.08037 (11)0.66276 (5)0.0225 (2)
H16A0.60941.16310.65910.034*
H16B0.62391.02790.69260.034*
H16C0.48761.09300.67640.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (4)0.0192 (4)0.0185 (4)0.0042 (3)0.0074 (3)0.0001 (3)
O20.0306 (4)0.0225 (4)0.0164 (4)0.0047 (3)0.0081 (3)0.0007 (3)
O30.0296 (4)0.0177 (4)0.0203 (4)0.0056 (3)0.0059 (3)0.0032 (3)
C10.0165 (5)0.0172 (5)0.0172 (5)0.0016 (4)0.0034 (4)0.0010 (4)
C20.0163 (5)0.0158 (5)0.0168 (5)0.0023 (4)0.0029 (4)0.0002 (4)
C30.0184 (5)0.0187 (5)0.0171 (5)0.0020 (4)0.0048 (4)0.0010 (4)
C40.0244 (5)0.0205 (5)0.0183 (5)0.0005 (4)0.0046 (4)0.0038 (4)
C50.0213 (5)0.0157 (5)0.0268 (5)0.0009 (4)0.0045 (4)0.0032 (4)
C60.0210 (5)0.0173 (5)0.0236 (5)0.0000 (4)0.0066 (4)0.0019 (4)
C70.0207 (5)0.0176 (5)0.0173 (5)0.0012 (4)0.0046 (4)0.0001 (4)
C80.0216 (5)0.0178 (5)0.0168 (5)0.0007 (4)0.0041 (4)0.0012 (4)
C90.0179 (5)0.0179 (5)0.0178 (5)0.0016 (4)0.0053 (4)0.0006 (4)
C100.0169 (5)0.0161 (5)0.0178 (5)0.0022 (4)0.0040 (4)0.0004 (4)
C110.0197 (5)0.0166 (5)0.0179 (5)0.0005 (4)0.0060 (4)0.0011 (4)
C120.0178 (5)0.0154 (5)0.0208 (5)0.0009 (4)0.0029 (4)0.0005 (4)
C130.0227 (5)0.0202 (5)0.0159 (5)0.0013 (4)0.0033 (4)0.0015 (4)
C140.0248 (5)0.0198 (5)0.0179 (5)0.0006 (4)0.0067 (4)0.0028 (4)
C150.0219 (5)0.0148 (5)0.0199 (5)0.0006 (4)0.0052 (4)0.0005 (4)
C160.0255 (5)0.0189 (5)0.0219 (5)0.0019 (4)0.0006 (4)0.0048 (4)
Geometric parameters (Å, º) top
O1—C11.2498 (13)C8—C91.3384 (16)
O2—C31.3489 (13)C8—H80.9500
O2—H20.96 (2)C9—C101.4631 (14)
O3—C121.3654 (13)C9—H90.9500
O3—C161.4321 (13)C10—C111.3957 (15)
C1—C81.4714 (14)C10—C151.4066 (14)
C1—C21.4737 (15)C11—C121.3968 (14)
C2—C71.4087 (14)C11—H110.9500
C2—C31.4165 (14)C12—C131.3921 (15)
C3—C41.3977 (15)C13—C141.3963 (16)
C4—C51.3815 (16)C13—H130.9500
C4—H40.9500C14—C151.3828 (15)
C5—C61.3967 (15)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.3797 (15)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C3—O2—H2102.8 (12)C8—C9—H9116.7
C12—O3—C16117.25 (8)C10—C9—H9116.7
O1—C1—C8119.50 (10)C11—C10—C15119.11 (9)
O1—C1—C2120.12 (9)C11—C10—C9117.96 (9)
C8—C1—C2120.38 (9)C15—C10—C9122.93 (9)
C7—C2—C3117.90 (9)C10—C11—C12120.91 (9)
C7—C2—C1122.93 (9)C10—C11—H11119.5
C3—C2—C1119.16 (9)C12—C11—H11119.5
O2—C3—C4117.98 (9)O3—C12—C13124.67 (10)
O2—C3—C2121.57 (10)O3—C12—C11115.69 (9)
C4—C3—C2120.45 (10)C13—C12—C11119.64 (10)
C5—C4—C3120.00 (10)C12—C13—C14119.47 (10)
C5—C4—H4120.0C12—C13—H13120.3
C3—C4—H4120.0C14—C13—H13120.3
C4—C5—C6120.52 (10)C15—C14—C13121.20 (10)
C4—C5—H5119.7C15—C14—H14119.4
C6—C5—H5119.7C13—C14—H14119.4
C7—C6—C5119.81 (10)C14—C15—C10119.66 (10)
C7—C6—H6120.1C14—C15—H15120.2
C5—C6—H6120.1C10—C15—H15120.2
C6—C7—C2121.33 (10)O3—C16—H16A109.5
C6—C7—H7119.3O3—C16—H16B109.5
C2—C7—H7119.3H16A—C16—H16B109.5
C9—C8—C1120.74 (10)O3—C16—H16C109.5
C9—C8—H8119.6H16A—C16—H16C109.5
C1—C8—H8119.6H16B—C16—H16C109.5
C8—C9—C10126.64 (10)
O1—C1—C2—C7176.32 (10)C2—C1—C8—C9177.00 (9)
C8—C1—C2—C74.13 (15)C1—C8—C9—C10178.67 (9)
O1—C1—C2—C32.66 (15)C8—C9—C10—C11174.88 (10)
C8—C1—C2—C3176.89 (9)C8—C9—C10—C155.16 (17)
C7—C2—C3—O2179.98 (9)C15—C10—C11—C120.19 (15)
C1—C2—C3—O20.99 (15)C9—C10—C11—C12179.85 (9)
C7—C2—C3—C40.32 (15)C16—O3—C12—C130.29 (15)
C1—C2—C3—C4178.71 (9)C16—O3—C12—C11179.57 (9)
O2—C3—C4—C5179.76 (10)C10—C11—C12—O3179.36 (9)
C2—C3—C4—C50.04 (16)C10—C11—C12—C130.50 (16)
C3—C4—C5—C60.18 (17)O3—C12—C13—C14179.34 (10)
C4—C5—C6—C70.11 (17)C11—C12—C13—C140.51 (16)
C5—C6—C7—C20.18 (16)C12—C13—C14—C150.16 (16)
C3—C2—C7—C60.39 (15)C13—C14—C15—C100.86 (16)
C1—C2—C7—C6178.60 (9)C11—C10—C15—C140.86 (15)
O1—C1—C8—C93.45 (16)C9—C10—C15—C14179.18 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.96 (2)1.61 (2)2.5156 (10)154.9 (19)
C14—H14···O2i0.952.493.4220 (13)167
C16—H16C···Cg1ii0.982.713.5097 (13)140
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors' contributions are as follows. Conceptualizations, IGM and TH; methodology, FNN and AYZ; investigation, TH, VNK and IGM; writing (original draft), TH, VNK and IGM; writing (review and editing of the manuscript), TH and IGM; visualization, TH and FSK; funding acquisition, VNK, TH and ANB; resources, TH, VNK and FNN; supervision, FNN and TH.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146