organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[3-(1H-Benzimidazol-2-yl)prop­yl]-1H-benzimidazol-3-ium 3,4,5-tri­hy­droxy­benzoate trihydrate

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bInstituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 March 2025; accepted 20 March 2025; online 27 March 2025)

The characterized organic trihydrate title salt, C17H17N4+·C7H5O5·3H2O or (HL)+(Gal)·3H2O, with L = 1,3-bis­(1H-benzimidazol-2-yl)propane (C17H16N4) and HGal = 3,4,5-tri­hydroxy­benzoic acid (gallic acid, C7H6O5), crystallizes with two formulas per asymmetric unit. One-half of the cations in the crystal feature a bent shape, with the central propyl chain having a gauche conformation, and the other half is nearly linear, with a trans propyl chain. Both cations form two independent herringbone layers in the crystal, which allow efficient ππ inter­actions between aromatic rings of the benzimidazole moieties. These layers are parallel to (100), and anions and water mol­ecules of crystallization inter­calate between these cationic planes. All potential donor groups for hydrogen bonding (NH and OH groups) actually form hydrogen bonds, ensuring a good cohesion between layers of cations and anions, stacked along [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title salt was isolated during an exploratory synthetic effort aiming to describe the ability of gallic acid (3,4,5-tri­hydroxy­benzoic acid, HGal) to co-crystallize with imidazole, benzimidazole derivatives and related bases. According to the ΔpKa rule, the formation of true cocrystals rather than salts is quite unpredictable for such acid–base pairs: with pKa ≃ 5.3 for the conjugate acid of benzimidazole and pKa ≃ 4.5 for gallic acid, ΔpKa ≃ 0.8 falls in the grey zone of the ΔpKa rule (Cruz-Cabeza, 2012[Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.]). Indeed cocrystals based on HGal were reported, for example with metronidazole (Zheng et al., 2019[Zheng, K., Li, A., Wu, W., Qian, S., Liu, B. & Pang, Q. (2019). J. Mol. Struct. 1197, 727-735.]) or penciclovir (Yuan et al., 2020[Yuan, Z.-J., Dai, X.-L., Huang, Y.-L., Lu, T.-B. & Chen, J.-M. (2020). Cryst. Growth Des. 20, 4108-4119.]), while a gallate salt was obtained with 2-methyl-benzimidazole (Sosa-Rivadeneyra et al., 2024[Sosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118.]). We also reported recently the structure of a salt cocrystal in which HGal partially transfers protons to a bis-benzimidazole compound (Palacios Rodríguez et al., 2023[Palacios Rodríguez, J. C., Mendoza, A., Sosa Rivadeneyra, M. & Bernès, S. (2023). Acta Cryst. E79, 562-566.]). The herein reported structure is closely related to this salt cocrystal, as it represents the salt part of the salt cocrystal.

The chemical formula of the title compound is (HL)+(Gal)·3H2O where L is 1,3-bis­(1H-benzimidazol-2-yl)propane. The asymmetric unit contains twice this formula (Z′ = 2; Fig. 1[link]), with all mol­ecules placed in general positions. This is probably a consequence of the stabilization of two conformers for the cations HL+. The first independent cation, C1–C17, displays an angular shape, with the central propyl chain having a gauche conformation [C2—C3—C4—C5 = −69.39 (16)°]. The dihedral angle between benzimidazole rings in this cation is 86.50 (2)°. In contrast, the other cation, C18—C34, is nearly planar, with a trans propyl chain [C19—C20—C21—C22 = −177.07 (19)°], and a dihedral angle of 4.55 (6)° between benzimidazole rings. Gallate ions also display different conformations, mainly for the carb­oxy­lic group, which is twisted by 14.34 (4) or 48.75 (5)° with respect to the benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure (asymmetric unit), with displacement ellipsoids at the 30% probability level.

Both cations are arranged in such a way that independent two-dimensional patterns are formed, favouring ππ contacts. Gauche cations form a herringbone pattern, characterized by aromatic rings giving face-to-face inter­actions with separations of 3.608 (1) and 3.674 (1) Å (Fig. 2[link], top). These cations are segregated in planes parallel to (100). Another herringbone plane is formed by trans-conformed cations, which is parallel to the previous one, and displays a more acute stepper angle (Fig. 2[link], bottom). In this plane, short ππ contacts range from 3.580 (1) to 3.646 (1) Å. Gallate anions and water mol­ecules are sandwiched between gauche- and trans-cation layers (Fig. 3[link]). The resulting crystal structure, based on charged supra­molecular planes stacked along the largest unit cell axis, is entirely different from that observed for (HL+·Gal)2·L·(ethyl acetate)2.94, in which the supra­molecular structure is cylindrical and no ππ contacts stabilize the structure (Palacios Rodríguez et al., 2023[Palacios Rodríguez, J. C., Mendoza, A., Sosa Rivadeneyra, M. & Bernès, S. (2023). Acta Cryst. E79, 562-566.]). This could be a direct consequence of the solvent used for crystallization: (HL+·Gal)2·L·(ethyl acetate)2.94 was crystallized from ethyl acetate, a poor donor/acceptor for hydrogen bonding, while the title compound (HL)+(Gal)·3H2O was obtained from a methanol solution. The insertion a water mol­ecules in the structure is attributed to the fact that non-dried methanol was used. Moreover, with such non-controlled experimental conditions, it has been reported that the formation of pharmaceutical cocrystal hydrates can be obtained under conditions of high relative humidity (Karki et al., 2007[Karki, S., Friščić, T., Jones, W. & Motherwell, W. D. S. (2007). Mol. Pharm. 4, 347-354.]).

[Figure 2]
Figure 2
Herringbone arrangements observed for HL+ cations in the crystal, with shortest ππ separations between aromatic rings. The top panel is for cations having a bent shape, due to the gauche conformation of the central propyl chain, and the bottom panel is for linear cations featuring a trans propyl chain. Both projections are nearly normal to [100].
[Figure 3]
Figure 3
The crystal packing, as viewed down crystallographic c axis, emphasizing the layered structure, with alternating cationic and anionic planes. Water mol­ecules are shown using a ball-and-stick representation to emphasize their positions between cationic planes.

The presence of H2O in the herein reported structure is essential for crystal cohesion. Indeed, all NH and OH groups in the crystal behave as donors for hydrogen bonding, forming an extensive three-dimensional network of hydrogen bonds (Table 1[link]). Almost all hydrogen bonds are significant in terms of stabilization energy: 22 of 24 contacts have a D—H⋯A angle greater than 150°, and H⋯A separations range from 1.71 (2) to 2.330 (18) Å. According to the `graph-sets' tool available in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), all ring motifs are of level 3 (or higher) and include between three and ten mol­ecules. The smallest motif, R32(12), involves one cation, one anion and one water mol­ecule, and rings as large as R1010(68) are formed, involving three neighbouring supra­molecular layers in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.818 (18) 2.330 (18) 3.0706 (17) 150.9 (16)
N3—H3⋯O12 0.885 (17) 1.830 (18) 2.6968 (17) 166.0 (16)
N4—H4⋯O6 0.878 (17) 1.884 (18) 2.7290 (15) 160.9 (16)
N5—H5⋯O9 0.87 (2) 2.18 (2) 3.0248 (17) 162.9 (18)
N7—H7A⋯O7ii 0.879 (19) 1.84 (2) 2.7045 (15) 165.7 (18)
N8—H8A⋯O15 0.919 (19) 1.78 (2) 2.676 (2) 165.3 (18)
O3—H3C⋯O8iii 0.90 (2) 1.95 (2) 2.7201 (14) 142.6 (19)
O4—H4C⋯O6 0.93 (2) 2.18 (2) 2.9509 (14) 139.8 (19)
O5—H5A⋯O13 0.92 (2) 1.71 (2) 2.6263 (14) 173 (2)
O8—H8B⋯O2iv 0.87 (2) 1.75 (2) 2.6171 (13) 174 (2)
O9—H9A⋯O14 0.82 (2) 1.81 (2) 2.6193 (15) 168.4 (19)
O10—H10A⋯O13 0.86 (2) 1.83 (2) 2.6808 (13) 168 (2)
O11—H11A⋯O6 0.88 (3) 2.04 (3) 2.9148 (17) 174 (3)
O11—H11B⋯O16v 0.96 (3) 1.91 (3) 2.865 (2) 175 (3)
O12—H12A⋯O1i 0.95 (3) 1.86 (3) 2.7796 (17) 162 (2)
O12—H12B⋯O3vi 0.83 (3) 2.14 (3) 2.9254 (18) 158 (2)
O13—H13A⋯N2 0.923 (19) 1.81 (2) 2.7348 (15) 175.0 (17)
O13—H13B⋯O7ii 0.856 (19) 1.89 (2) 2.7249 (13) 165.5 (18)
O14—H14A⋯O1vii 0.94 (3) 1.96 (3) 2.8608 (18) 160 (2)
O14—H14B⋯O11ii 0.97 (3) 1.85 (3) 2.814 (2) 177 (2)
O15—H15A⋯O2viii 0.77 (5) 2.10 (5) 2.865 (2) 171 (5)
O15—H15B⋯O16 0.86 (5) 1.91 (5) 2.742 (2) 165 (4)
O16—H16A⋯O4ix 0.91 (3) 2.22 (3) 3.0444 (18) 150 (2)
O16—H16B⋯N6 1.01 (3) 1.80 (3) 2.800 (2) 167 (2)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, y+1, z]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, y-1, z]; (viii) [-x, -y+2, -z+1]; (ix) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Synthesis and crystallization

A solution of 1,3-bis­(1H-benzo[d]imidazol-2-yl)propane (L, 12.4 mg, 0.045 mmol) and gallic acid (HGal, 7.6 mg, 0.045 mmol) in 10 ml of methanol was heated at boiling temperature until dissolution of the reactants. After filtration, the solution was left at room temperature for slow evaporation of the solvent, giving brown crystals suitable for single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H17N4+·C7H5O5·3H2O
Mr 500.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.1096 (3), 13.69762 (18), 18.5399 (2)
β (°) 96.4031 (12)
V3) 4822.66 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.66 × 0.49 × 0.12
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.906, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 115888, 14720, 10544
Rint 0.077
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.04
No. of reflections 14720
No. of parameters 722
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

2-[3-(1H-Benzimidazol-2-yl)propyl]-1H-benzimidazol-3-ium 3,4,5-trihydroxybenzoate trihydrate top
Crystal data top
C17H17N4+·C7H5O5·3H2OF(000) = 2112
Mr = 500.50Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.1096 (3) ÅCell parameters from 34690 reflections
b = 13.69762 (18) Åθ = 1.8–32.0°
c = 18.5399 (2) ŵ = 0.11 mm1
β = 96.4031 (12)°T = 296 K
V = 4822.66 (11) Å3Trapezoid, brown
Z = 80.66 × 0.49 × 0.12 mm
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
14720 independent reflections
Radiation source: Sealed X-ray tube10544 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.077
ω scansθmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 2727
Tmin = 0.906, Tmax = 1.000k = 1919
115888 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.6719P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14720 reflectionsΔρmax = 0.54 e Å3
722 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00053 (19)
Primary atom site location: dual
Special details top

Refinement. All O- and N-bonded H atoms were found in difference maps and refined with free coordinates, while C-bonded H atoms were placed in calculated positions. H atoms were refined with calculated isotropic displacement parameters, using Uiso(H) = xUeq(parent atoms), x = 1.5 if the parent atom is O, and x = 1.2 otherwise. No geometric restraints were applied, in order to obtain unbiased dimensions for hydrogen bonds.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.55021 (6)0.85336 (9)0.51878 (6)0.0410 (3)
H10.5912 (10)0.8474 (13)0.5106 (10)0.049*
N20.43524 (6)0.82506 (8)0.51117 (6)0.0372 (2)
N30.52713 (6)0.73150 (9)0.23807 (6)0.0376 (2)
H30.5667 (9)0.7051 (12)0.2585 (9)0.045*
N40.41720 (6)0.77296 (8)0.21795 (6)0.0369 (2)
H40.3718 (9)0.7759 (12)0.2215 (9)0.044*
C10.49459 (7)0.80468 (10)0.48456 (7)0.0354 (3)
C20.50350 (7)0.73891 (11)0.42227 (7)0.0414 (3)
H2A0.5338250.6850330.4394610.050*
H2B0.5269990.7747470.3868000.050*
C30.43522 (8)0.69805 (11)0.38527 (7)0.0414 (3)
H3A0.4016920.7508120.3752100.050*
H3B0.4156910.6524360.4176940.050*
C40.44582 (8)0.64570 (10)0.31390 (7)0.0401 (3)
H4A0.4836270.5985100.3229360.048*
H4B0.4031790.6104610.2966580.048*
C50.46305 (7)0.71502 (10)0.25702 (7)0.0355 (3)
C60.52320 (7)0.80228 (10)0.18440 (7)0.0363 (3)
C70.57440 (8)0.84553 (12)0.14697 (8)0.0472 (3)
H70.6216680.8283650.1557480.057*
C80.55114 (10)0.91515 (12)0.09623 (9)0.0534 (4)
H80.5835270.9454220.0696960.064*
C90.48050 (10)0.94136 (12)0.08362 (8)0.0533 (4)
H90.4672330.9890580.0490860.064*
C100.42940 (9)0.89916 (11)0.12051 (8)0.0465 (3)
H100.3822210.9168290.1118730.056*
C110.45284 (7)0.82876 (10)0.17126 (7)0.0361 (3)
C120.52597 (7)0.91080 (10)0.57163 (7)0.0386 (3)
C130.55887 (9)0.97515 (13)0.62200 (9)0.0538 (4)
H130.6070320.9870160.6252260.065*
C140.51623 (11)1.02099 (13)0.66740 (9)0.0595 (4)
H140.5365471.0641610.7023780.071*
C150.44410 (10)1.00457 (12)0.66236 (8)0.0529 (4)
H150.4173131.0375340.6934920.063*
C160.41135 (8)0.94012 (11)0.61192 (8)0.0439 (3)
H160.3630960.9289620.6085970.053*
C170.45356 (7)0.89261 (10)0.56630 (7)0.0349 (3)
N50.09472 (7)0.38806 (10)0.36023 (8)0.0495 (3)
H50.1403 (11)0.3806 (14)0.3680 (10)0.059*
N60.01011 (7)0.45637 (11)0.36410 (8)0.0521 (3)
N70.10001 (7)0.85178 (10)0.56524 (7)0.0456 (3)
H7A0.1453 (10)0.8453 (13)0.5791 (10)0.055*
N80.00373 (7)0.80897 (10)0.51594 (8)0.0483 (3)
H8A0.0379 (10)0.7772 (14)0.4859 (10)0.058*
C180.06447 (8)0.78607 (11)0.52270 (8)0.0455 (3)
C190.09867 (9)0.70444 (14)0.48780 (12)0.0624 (5)
H19A0.1321650.6740850.5241660.075*
H19B0.1252820.7316270.4509750.075*
C200.05109 (8)0.62524 (12)0.45272 (9)0.0492 (3)
H20A0.0191720.6527900.4136360.059*
H20B0.0232480.5973110.4882260.059*
C210.09585 (10)0.54661 (15)0.42316 (14)0.0730 (6)
H21A0.1258150.5773900.3908500.088*
H21B0.1263810.5193480.4634570.088*
C220.05788 (8)0.46473 (12)0.38334 (9)0.0488 (3)
C230.04746 (8)0.32482 (11)0.32295 (8)0.0448 (3)
C240.05564 (9)0.23748 (13)0.28724 (10)0.0566 (4)
H240.0997550.2095100.2853940.068*
C250.00474 (10)0.19407 (14)0.25462 (11)0.0628 (4)
H250.0014400.1351520.2303060.075*
C260.07055 (10)0.23635 (15)0.25720 (11)0.0656 (5)
H260.1101970.2051010.2343660.079*
C270.07857 (9)0.32305 (15)0.29257 (10)0.0609 (4)
H270.1228700.3505930.2940630.073*
C280.01816 (8)0.36856 (12)0.32624 (8)0.0460 (3)
C290.05361 (7)0.92069 (11)0.58757 (8)0.0439 (3)
C300.06356 (9)1.00275 (13)0.63086 (9)0.0548 (4)
H300.1081051.0215700.6515190.066*
C310.00397 (9)1.05547 (14)0.64194 (10)0.0592 (4)
H310.0084151.1111150.6708360.071*
C320.06267 (9)1.02692 (14)0.61067 (11)0.0597 (4)
H320.1015731.0639050.6196710.072*
C330.07269 (8)0.94611 (13)0.56710 (10)0.0559 (4)
H330.1172240.9278110.5460880.067*
C340.01281 (8)0.89285 (11)0.55594 (8)0.0447 (3)
C350.27578 (7)1.15743 (9)0.54421 (6)0.0327 (2)
C360.26578 (6)1.11098 (9)0.47017 (6)0.0311 (2)
C370.26289 (7)1.16953 (9)0.40831 (7)0.0347 (3)
H370.2690021.2366840.4129100.042*
C380.25090 (7)1.12754 (9)0.33992 (7)0.0347 (3)
C390.24579 (7)1.02643 (9)0.33266 (7)0.0349 (3)
C400.24977 (7)0.96838 (9)0.39459 (7)0.0353 (3)
C410.25794 (7)1.01032 (9)0.46320 (7)0.0341 (3)
H410.2581810.9713220.5042860.041*
O10.32408 (6)1.21949 (8)0.55594 (6)0.0507 (3)
O20.23473 (6)1.13157 (8)0.58882 (5)0.0456 (2)
O30.24418 (7)1.17940 (8)0.27628 (5)0.0503 (3)
H3C0.2437 (11)1.2442 (18)0.2827 (12)0.075*
O40.23704 (7)0.98745 (8)0.26442 (5)0.0509 (3)
H4C0.2448 (11)0.9203 (17)0.2666 (12)0.076*
O50.24291 (7)0.87063 (7)0.38227 (6)0.0525 (3)
H5A0.2628 (11)0.8359 (17)0.4219 (13)0.079*
C420.25350 (6)0.71858 (8)0.17515 (6)0.0291 (2)
C430.25385 (6)0.63616 (8)0.22838 (6)0.0273 (2)
C440.24764 (6)0.54077 (8)0.20308 (6)0.0305 (2)
H440.2424840.5286550.1534150.037*
C450.24910 (7)0.46333 (8)0.25170 (6)0.0310 (2)
C460.25561 (6)0.48180 (8)0.32612 (6)0.0288 (2)
C470.26286 (6)0.57789 (8)0.35153 (6)0.0302 (2)
C480.26155 (6)0.65504 (8)0.30281 (6)0.0305 (2)
H480.2657760.7189370.3196940.037*
O60.27500 (5)0.80143 (6)0.19854 (5)0.0387 (2)
O70.23446 (5)0.70082 (7)0.10908 (5)0.0376 (2)
O80.24400 (6)0.36817 (6)0.23073 (5)0.0468 (3)
H8B0.2433 (11)0.3648 (15)0.1836 (13)0.070*
O90.25344 (5)0.40454 (6)0.37215 (5)0.0369 (2)
H9A0.2689 (10)0.4163 (14)0.4144 (11)0.055*
O100.26956 (6)0.58675 (7)0.42477 (5)0.0461 (3)
H10A0.2798 (11)0.6453 (16)0.4390 (11)0.069*
O110.23828 (10)0.94991 (12)0.08817 (8)0.0787 (4)
H11A0.2465 (16)0.906 (2)0.1228 (18)0.118*
H11B0.2023 (17)0.987 (2)0.1081 (17)0.118*
O120.64430 (7)0.66889 (11)0.31948 (7)0.0594 (3)
H12A0.6632 (13)0.7109 (18)0.3574 (14)0.089*
H12B0.6785 (14)0.6568 (19)0.2968 (14)0.089*
O130.29935 (5)0.75961 (7)0.48875 (5)0.03507 (19)
H13A0.3455 (10)0.7797 (13)0.4988 (10)0.053*
H13B0.2836 (9)0.7643 (13)0.5301 (10)0.053*
O140.31027 (8)0.41737 (10)0.50706 (6)0.0626 (3)
H14A0.3083 (13)0.357 (2)0.5319 (14)0.094*
H14B0.2845 (14)0.461 (2)0.5353 (14)0.094*
O150.11852 (9)0.73643 (15)0.43842 (15)0.1198 (9)
H15A0.147 (2)0.775 (3)0.427 (2)0.180*
H15B0.128 (2)0.681 (3)0.418 (2)0.180*
O160.13294 (8)0.56909 (11)0.35690 (9)0.0709 (4)
H16A0.1558 (15)0.562 (2)0.3116 (16)0.106*
H16B0.0854 (16)0.536 (2)0.3645 (15)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0319 (5)0.0501 (7)0.0416 (6)0.0034 (5)0.0066 (5)0.0024 (5)
N20.0371 (6)0.0425 (6)0.0326 (5)0.0037 (5)0.0058 (4)0.0039 (4)
N30.0360 (6)0.0433 (6)0.0336 (5)0.0031 (5)0.0044 (4)0.0000 (4)
N40.0338 (5)0.0386 (6)0.0379 (5)0.0027 (4)0.0020 (4)0.0025 (4)
C10.0369 (6)0.0383 (6)0.0314 (6)0.0017 (5)0.0050 (5)0.0021 (5)
C20.0419 (7)0.0472 (8)0.0357 (6)0.0017 (6)0.0073 (5)0.0041 (6)
C30.0450 (7)0.0451 (7)0.0353 (6)0.0038 (6)0.0103 (5)0.0035 (5)
C40.0480 (7)0.0376 (7)0.0357 (6)0.0034 (6)0.0091 (5)0.0029 (5)
C50.0378 (6)0.0369 (6)0.0318 (6)0.0028 (5)0.0038 (5)0.0073 (5)
C60.0407 (7)0.0377 (6)0.0309 (6)0.0007 (5)0.0049 (5)0.0039 (5)
C70.0461 (8)0.0524 (8)0.0451 (8)0.0020 (6)0.0140 (6)0.0008 (6)
C80.0675 (10)0.0501 (9)0.0458 (8)0.0057 (8)0.0210 (7)0.0031 (7)
C90.0748 (11)0.0446 (8)0.0405 (7)0.0003 (7)0.0059 (7)0.0060 (6)
C100.0518 (8)0.0433 (7)0.0424 (7)0.0022 (6)0.0032 (6)0.0008 (6)
C110.0397 (7)0.0365 (6)0.0315 (6)0.0025 (5)0.0016 (5)0.0053 (5)
C120.0415 (7)0.0392 (7)0.0350 (6)0.0058 (5)0.0038 (5)0.0022 (5)
C130.0526 (9)0.0544 (9)0.0529 (9)0.0165 (7)0.0005 (7)0.0075 (7)
C140.0825 (12)0.0467 (9)0.0481 (9)0.0158 (8)0.0018 (8)0.0122 (7)
C150.0768 (11)0.0429 (8)0.0408 (7)0.0014 (7)0.0151 (7)0.0046 (6)
C160.0483 (8)0.0458 (8)0.0393 (7)0.0008 (6)0.0119 (6)0.0011 (6)
C170.0396 (6)0.0354 (6)0.0297 (5)0.0029 (5)0.0045 (5)0.0013 (5)
N50.0361 (6)0.0516 (7)0.0598 (8)0.0016 (5)0.0005 (5)0.0060 (6)
N60.0370 (6)0.0601 (8)0.0593 (8)0.0018 (6)0.0062 (5)0.0065 (6)
N70.0347 (6)0.0530 (7)0.0470 (7)0.0068 (5)0.0043 (5)0.0031 (5)
N80.0349 (6)0.0508 (7)0.0576 (8)0.0022 (5)0.0021 (5)0.0050 (6)
C180.0387 (7)0.0486 (8)0.0479 (8)0.0040 (6)0.0006 (6)0.0005 (6)
C190.0428 (8)0.0587 (10)0.0837 (13)0.0053 (7)0.0021 (8)0.0204 (9)
C200.0428 (8)0.0547 (9)0.0499 (8)0.0002 (7)0.0046 (6)0.0064 (7)
C210.0437 (9)0.0670 (12)0.1053 (16)0.0046 (8)0.0051 (9)0.0332 (11)
C220.0392 (7)0.0531 (9)0.0538 (8)0.0011 (6)0.0038 (6)0.0050 (7)
C230.0411 (7)0.0486 (8)0.0444 (7)0.0036 (6)0.0037 (6)0.0028 (6)
C240.0540 (9)0.0527 (9)0.0630 (10)0.0015 (7)0.0057 (8)0.0018 (8)
C250.0681 (11)0.0561 (10)0.0645 (10)0.0119 (9)0.0085 (9)0.0095 (8)
C260.0567 (10)0.0724 (12)0.0672 (11)0.0215 (9)0.0044 (8)0.0088 (9)
C270.0401 (8)0.0767 (12)0.0661 (11)0.0092 (8)0.0072 (7)0.0058 (9)
C280.0393 (7)0.0545 (9)0.0445 (7)0.0052 (6)0.0064 (6)0.0020 (6)
C290.0386 (7)0.0526 (8)0.0399 (7)0.0068 (6)0.0012 (5)0.0013 (6)
C300.0464 (8)0.0643 (10)0.0519 (9)0.0023 (7)0.0023 (7)0.0102 (8)
C310.0571 (10)0.0621 (10)0.0589 (10)0.0063 (8)0.0080 (8)0.0122 (8)
C320.0483 (9)0.0616 (10)0.0710 (11)0.0117 (8)0.0153 (8)0.0025 (9)
C330.0361 (7)0.0602 (10)0.0715 (11)0.0057 (7)0.0062 (7)0.0013 (8)
C340.0379 (7)0.0486 (8)0.0471 (8)0.0030 (6)0.0029 (6)0.0018 (6)
C350.0389 (6)0.0273 (5)0.0310 (5)0.0043 (5)0.0007 (5)0.0023 (4)
C360.0330 (6)0.0290 (5)0.0311 (5)0.0014 (4)0.0029 (4)0.0011 (4)
C370.0420 (7)0.0262 (5)0.0361 (6)0.0002 (5)0.0061 (5)0.0032 (5)
C380.0419 (7)0.0310 (6)0.0315 (6)0.0025 (5)0.0057 (5)0.0070 (5)
C390.0408 (6)0.0325 (6)0.0305 (6)0.0023 (5)0.0002 (5)0.0015 (5)
C400.0441 (7)0.0264 (6)0.0344 (6)0.0013 (5)0.0003 (5)0.0013 (4)
C410.0435 (7)0.0279 (6)0.0304 (6)0.0005 (5)0.0015 (5)0.0047 (4)
O10.0561 (6)0.0516 (6)0.0435 (5)0.0157 (5)0.0018 (5)0.0086 (5)
O20.0578 (6)0.0472 (6)0.0334 (5)0.0042 (5)0.0114 (4)0.0003 (4)
O30.0840 (8)0.0333 (5)0.0340 (5)0.0042 (5)0.0084 (5)0.0103 (4)
O40.0819 (8)0.0373 (5)0.0315 (5)0.0053 (5)0.0029 (5)0.0017 (4)
O50.0904 (8)0.0260 (5)0.0381 (5)0.0017 (5)0.0065 (5)0.0002 (4)
C420.0245 (5)0.0295 (5)0.0332 (5)0.0008 (4)0.0024 (4)0.0047 (4)
C430.0284 (5)0.0253 (5)0.0282 (5)0.0012 (4)0.0027 (4)0.0022 (4)
C440.0369 (6)0.0287 (5)0.0260 (5)0.0013 (4)0.0040 (4)0.0006 (4)
C450.0393 (6)0.0232 (5)0.0309 (5)0.0006 (4)0.0048 (4)0.0020 (4)
C460.0335 (6)0.0247 (5)0.0282 (5)0.0007 (4)0.0043 (4)0.0023 (4)
C470.0371 (6)0.0277 (5)0.0259 (5)0.0030 (4)0.0044 (4)0.0013 (4)
C480.0382 (6)0.0236 (5)0.0297 (5)0.0029 (4)0.0031 (4)0.0014 (4)
O60.0449 (5)0.0267 (4)0.0435 (5)0.0046 (4)0.0004 (4)0.0055 (4)
O70.0393 (5)0.0422 (5)0.0307 (4)0.0077 (4)0.0011 (3)0.0071 (4)
O80.0875 (8)0.0230 (4)0.0298 (4)0.0028 (4)0.0067 (5)0.0031 (3)
O90.0537 (6)0.0272 (4)0.0295 (4)0.0034 (4)0.0033 (4)0.0043 (3)
O100.0817 (8)0.0313 (5)0.0252 (4)0.0098 (5)0.0055 (4)0.0021 (3)
O110.1061 (12)0.0686 (9)0.0664 (9)0.0174 (8)0.0319 (8)0.0241 (7)
O120.0491 (7)0.0839 (9)0.0438 (6)0.0090 (6)0.0017 (5)0.0066 (6)
O130.0400 (5)0.0350 (5)0.0302 (4)0.0022 (4)0.0038 (4)0.0040 (3)
O140.0956 (10)0.0511 (7)0.0407 (6)0.0071 (7)0.0048 (6)0.0052 (5)
O150.0562 (9)0.0945 (13)0.196 (2)0.0233 (8)0.0446 (11)0.0667 (14)
O160.0526 (7)0.0784 (9)0.0787 (9)0.0016 (6)0.0064 (6)0.0155 (7)
Geometric parameters (Å, º) top
N1—C11.3514 (17)C24—C251.377 (3)
N1—C121.3766 (18)C24—H240.9300
N1—H10.818 (18)C25—C261.390 (3)
N2—C11.3162 (17)C25—H250.9300
N2—C171.3942 (16)C26—C271.373 (3)
N3—C51.3304 (17)C26—H260.9300
N3—C61.3852 (17)C27—C281.397 (2)
N3—H30.885 (17)C27—H270.9300
N4—C51.3344 (17)C29—C301.382 (2)
N4—C111.3890 (17)C29—C341.391 (2)
N4—H40.878 (17)C30—C311.383 (2)
C1—C21.4894 (18)C30—H300.9300
C2—C31.512 (2)C31—C321.395 (3)
C2—H2A0.9700C31—H310.9300
C2—H2B0.9700C32—C331.371 (3)
C3—C41.5381 (18)C32—H320.9300
C3—H3A0.9700C33—C341.392 (2)
C3—H3B0.9700C33—H330.9300
C4—C51.4832 (19)C35—O21.2528 (16)
C4—H4A0.9700C35—O11.2558 (16)
C4—H4B0.9700C35—C361.5057 (17)
C6—C111.3876 (19)C36—C411.3914 (17)
C6—C71.393 (2)C36—C371.3955 (17)
C7—C81.378 (2)C37—C381.3879 (18)
C7—H70.9300C37—H370.9300
C8—C91.391 (3)C38—O31.3708 (15)
C8—H80.9300C38—C391.3939 (18)
C9—C101.380 (2)C39—O41.3662 (15)
C9—H90.9300C39—C401.3917 (17)
C10—C111.386 (2)C40—O51.3621 (15)
C10—H100.9300C40—C411.3886 (17)
C12—C131.383 (2)C41—H410.9300
C12—C171.3987 (18)O3—H3C0.90 (2)
C13—C141.385 (3)O4—H4C0.93 (2)
C13—H130.9300O5—H5A0.92 (2)
C14—C151.389 (3)C42—O71.2621 (15)
C14—H140.9300C42—O61.2668 (15)
C15—C161.384 (2)C42—C431.4990 (15)
C15—H150.9300C43—C441.3888 (16)
C16—C171.3934 (19)C43—C481.3956 (16)
C16—H160.9300C44—C451.3903 (16)
N5—C221.360 (2)C44—H440.9300
N5—C231.380 (2)C45—O81.3606 (14)
N5—H50.87 (2)C45—C461.3947 (16)
N6—C221.3135 (19)C46—O91.3630 (14)
N6—C281.392 (2)C46—C471.3996 (16)
N7—C181.332 (2)C47—O101.3550 (14)
N7—C291.3895 (19)C47—C481.3885 (16)
N7—H7A0.879 (19)C48—H480.9300
N8—C181.3326 (19)O8—H8B0.87 (2)
N8—C341.389 (2)O9—H9A0.82 (2)
N8—H8A0.919 (19)O10—H10A0.86 (2)
C18—C191.480 (2)O11—H11A0.88 (3)
C19—C201.515 (2)O11—H11B0.96 (3)
C19—H19A0.9700O12—H12A0.95 (3)
C19—H19B0.9700O12—H12B0.83 (3)
C20—C211.515 (2)O13—H13A0.923 (19)
C20—H20A0.9700O13—H13B0.856 (19)
C20—H20B0.9700O14—H14A0.94 (3)
C21—C221.487 (2)O14—H14B0.97 (3)
C21—H21A0.9700O15—H15A0.77 (5)
C21—H21B0.9700O15—H15B0.86 (5)
C23—C241.385 (2)O16—H16A0.91 (3)
C23—C281.397 (2)O16—H16B1.01 (3)
C1—N1—C12107.86 (11)C20—C21—H21A108.1
C1—N1—H1125.6 (13)C22—C21—H21B108.1
C12—N1—H1126.4 (13)C20—C21—H21B108.1
C1—N2—C17105.01 (11)H21A—C21—H21B107.3
C5—N3—C6109.30 (12)N6—C22—N5112.22 (14)
C5—N3—H3125.9 (11)N6—C22—C21127.87 (15)
C6—N3—H3124.7 (11)N5—C22—C21119.87 (14)
C5—N4—C11109.12 (11)N5—C23—C24132.79 (15)
C5—N4—H4125.5 (11)N5—C23—C28104.44 (14)
C11—N4—H4125.3 (11)C24—C23—C28122.76 (14)
N2—C1—N1112.64 (12)C25—C24—C23116.70 (16)
N2—C1—C2126.63 (12)C25—C24—H24121.6
N1—C1—C2120.70 (12)C23—C24—H24121.6
C1—C2—C3114.09 (11)C24—C25—C26121.48 (18)
C1—C2—H2A108.7C24—C25—H25119.3
C3—C2—H2A108.7C26—C25—H25119.3
C1—C2—H2B108.7C27—C26—C25121.75 (17)
C3—C2—H2B108.7C27—C26—H26119.1
H2A—C2—H2B107.6C25—C26—H26119.1
C2—C3—C4111.90 (11)C26—C27—C28117.95 (17)
C2—C3—H3A109.2C26—C27—H27121.0
C4—C3—H3A109.2C28—C27—H27121.0
C2—C3—H3B109.2N6—C28—C27130.56 (15)
C4—C3—H3B109.2N6—C28—C23110.07 (13)
H3A—C3—H3B107.9C27—C28—C23119.36 (16)
C5—C4—C3111.97 (11)C30—C29—N7132.42 (14)
C5—C4—H4A109.2C30—C29—C34121.87 (14)
C3—C4—H4A109.2N7—C29—C34105.71 (13)
C5—C4—H4B109.2C29—C30—C31116.66 (15)
C3—C4—H4B109.2C29—C30—H30121.7
H4A—C4—H4B107.9C31—C30—H30121.7
N3—C5—N4108.90 (12)C30—C31—C32121.36 (17)
N3—C5—C4125.47 (12)C30—C31—H31119.3
N4—C5—C4125.61 (12)C32—C31—H31119.3
N3—C6—C11106.44 (11)C33—C32—C31122.16 (16)
N3—C6—C7132.10 (13)C33—C32—H32118.9
C11—C6—C7121.46 (13)C31—C32—H32118.9
C8—C7—C6116.32 (15)C32—C33—C34116.59 (15)
C8—C7—H7121.8C32—C33—H33121.7
C6—C7—H7121.8C34—C33—H33121.7
C7—C8—C9121.76 (15)N8—C34—C29106.83 (13)
C7—C8—H8119.1N8—C34—C33131.82 (15)
C9—C8—H8119.1C29—C34—C33121.35 (15)
C10—C9—C8122.38 (15)O2—C35—O1125.40 (12)
C10—C9—H9118.8O2—C35—C36117.21 (11)
C8—C9—H9118.8O1—C35—C36117.39 (11)
C9—C10—C11115.77 (14)C41—C36—C37119.94 (11)
C9—C10—H10122.1C41—C36—C35120.32 (11)
C11—C10—H10122.1C37—C36—C35119.72 (11)
C10—C11—C6122.31 (13)C38—C37—C36120.01 (11)
C10—C11—N4131.45 (13)C38—C37—H37120.0
C6—C11—N4106.24 (11)C36—C37—H37120.0
N1—C12—C13132.94 (14)O3—C38—C37124.17 (11)
N1—C12—C17104.87 (11)O3—C38—C39115.65 (11)
C13—C12—C17122.20 (14)C37—C38—C39120.17 (11)
C12—C13—C14116.43 (15)O4—C39—C40122.04 (12)
C12—C13—H13121.8O4—C39—C38118.54 (11)
C14—C13—H13121.8C40—C39—C38119.42 (11)
C13—C14—C15122.15 (15)O5—C40—C41123.99 (11)
C13—C14—H14118.9O5—C40—C39115.34 (11)
C15—C14—H14118.9C41—C40—C39120.64 (11)
C16—C15—C14121.27 (15)C40—C41—C36119.67 (11)
C16—C15—H15119.4C40—C41—H41120.2
C14—C15—H15119.4C36—C41—H41120.2
C15—C16—C17117.35 (14)C38—O3—H3C113.6 (14)
C15—C16—H16121.3C39—O4—H4C110.0 (14)
C17—C16—H16121.3C40—O5—H5A110.5 (14)
C16—C17—N2129.79 (13)O7—C42—O6123.53 (11)
C16—C17—C12120.59 (13)O7—C42—C43118.25 (10)
N2—C17—C12109.61 (11)O6—C42—C43118.15 (10)
C22—N5—C23108.04 (13)C44—C43—C48120.26 (10)
C22—N5—H5125.5 (13)C44—C43—C42119.49 (10)
C23—N5—H5126.5 (13)C48—C43—C42120.24 (10)
C22—N6—C28105.22 (13)C43—C44—C45120.27 (11)
C18—N7—C29109.59 (12)C43—C44—H44119.9
C18—N7—H7A121.7 (12)C45—C44—H44119.9
C29—N7—H7A128.4 (12)O8—C45—C44123.37 (11)
C18—N8—C34108.88 (13)O8—C45—C46116.88 (10)
C18—N8—H8A124.5 (12)C44—C45—C46119.74 (10)
C34—N8—H8A126.3 (12)O9—C46—C45118.23 (10)
N7—C18—N8108.99 (13)O9—C46—C47121.88 (10)
N7—C18—C19123.26 (14)C45—C46—C47119.88 (10)
N8—C18—C19127.71 (14)O10—C47—C48125.21 (11)
C18—C19—C20117.10 (14)O10—C47—C46114.60 (10)
C18—C19—H19A108.0C48—C47—C46120.19 (10)
C20—C19—H19A108.0C47—C48—C43119.63 (10)
C18—C19—H19B108.0C47—C48—H48120.2
C20—C19—H19B108.0C43—C48—H48120.2
H19A—C19—H19B107.3C45—O8—H8B109.2 (14)
C19—C20—C21109.17 (13)C46—O9—H9A114.3 (13)
C19—C20—H20A109.8C47—O10—H10A112.5 (14)
C21—C20—H20A109.8H11A—O11—H11B99 (2)
C19—C20—H20B109.8H12A—O12—H12B104 (2)
C21—C20—H20B109.8H13A—O13—H13B102.7 (16)
H20A—C20—H20B108.3H14A—O14—H14B103 (2)
C22—C21—C20116.86 (15)H15A—O15—H15B112 (4)
C22—C21—H21A108.1H16A—O16—H16B114 (2)
C17—N2—C1—N10.55 (15)C25—C26—C27—C280.2 (3)
C17—N2—C1—C2177.43 (13)C22—N6—C28—C27179.17 (18)
C12—N1—C1—N20.45 (16)C22—N6—C28—C230.45 (18)
C12—N1—C1—C2177.66 (12)C26—C27—C28—N6178.48 (17)
N2—C1—C2—C33.7 (2)C26—C27—C28—C230.1 (3)
N1—C1—C2—C3174.12 (13)N5—C23—C28—N60.52 (17)
C1—C2—C3—C4170.03 (12)C24—C23—C28—N6178.67 (15)
C2—C3—C4—C569.39 (16)N5—C23—C28—C27179.40 (15)
C6—N3—C5—N40.36 (14)C24—C23—C28—C270.2 (2)
C6—N3—C5—C4178.65 (12)C18—N7—C29—C30179.43 (17)
C11—N4—C5—N30.53 (14)C18—N7—C29—C340.05 (17)
C11—N4—C5—C4178.82 (12)N7—C29—C30—C31179.88 (17)
C3—C4—C5—N3101.02 (15)C34—C29—C30—C310.7 (2)
C3—C4—C5—N476.99 (16)C29—C30—C31—C320.1 (3)
C5—N3—C6—C110.06 (14)C30—C31—C32—C330.5 (3)
C5—N3—C6—C7179.51 (14)C31—C32—C33—C340.6 (3)
N3—C6—C7—C8179.78 (14)C18—N8—C34—C290.21 (18)
C11—C6—C7—C80.4 (2)C18—N8—C34—C33179.73 (17)
C6—C7—C8—C90.6 (2)C30—C29—C34—N8179.40 (15)
C7—C8—C9—C100.5 (3)N7—C29—C34—N80.16 (17)
C8—C9—C10—C110.1 (2)C30—C29—C34—C330.7 (2)
C9—C10—C11—C60.1 (2)N7—C29—C34—C33179.79 (15)
C9—C10—C11—N4179.24 (14)C32—C33—C34—N8179.93 (17)
N3—C6—C11—C10179.59 (12)C32—C33—C34—C290.0 (3)
C7—C6—C11—C100.1 (2)O2—C35—C36—C4147.51 (17)
N3—C6—C11—N40.26 (14)O1—C35—C36—C41133.14 (13)
C7—C6—C11—N4179.27 (12)O2—C35—C36—C37131.13 (13)
C5—N4—C11—C10179.73 (14)O1—C35—C36—C3748.22 (17)
C5—N4—C11—C60.49 (14)C41—C36—C37—C381.20 (19)
C1—N1—C12—C13179.66 (16)C35—C36—C37—C38177.45 (12)
C1—N1—C12—C170.14 (15)C36—C37—C38—O3177.07 (13)
N1—C12—C13—C14179.88 (16)C36—C37—C38—C393.7 (2)
C17—C12—C13—C140.1 (2)O3—C38—C39—O42.09 (19)
C12—C13—C14—C150.8 (3)C37—C38—C39—O4177.18 (12)
C13—C14—C15—C160.8 (3)O3—C38—C39—C40177.97 (12)
C14—C15—C16—C170.2 (2)C37—C38—C39—C402.8 (2)
C15—C16—C17—N2179.85 (14)O4—C39—C40—O51.3 (2)
C15—C16—C17—C120.5 (2)C38—C39—C40—O5178.80 (13)
C1—N2—C17—C16178.96 (14)O4—C39—C40—C41179.33 (13)
C1—N2—C17—C120.45 (14)C38—C39—C40—C410.7 (2)
N1—C12—C17—C16179.28 (13)O5—C40—C41—C36178.87 (13)
C13—C12—C17—C160.5 (2)C39—C40—C41—C363.2 (2)
N1—C12—C17—N20.18 (14)C37—C36—C41—C402.27 (19)
C13—C12—C17—N2179.98 (14)C35—C36—C41—C40179.09 (12)
C29—N7—C18—N80.08 (18)O7—C42—C43—C4413.10 (16)
C29—N7—C18—C19177.95 (16)O6—C42—C43—C44164.16 (11)
C34—N8—C18—N70.18 (18)O7—C42—C43—C48167.98 (11)
C34—N8—C18—C19177.93 (17)O6—C42—C43—C4814.77 (17)
N7—C18—C19—C20168.86 (16)C48—C43—C44—C450.05 (18)
N8—C18—C19—C2013.7 (3)C42—C43—C44—C45178.87 (11)
C18—C19—C20—C21177.53 (18)C43—C44—C45—O8179.34 (12)
C19—C20—C21—C22177.07 (19)C43—C44—C45—C461.12 (18)
C28—N6—C22—N50.20 (19)O8—C45—C46—O92.70 (17)
C28—N6—C22—C21177.97 (19)C44—C45—C46—O9176.87 (11)
C23—N5—C22—N60.1 (2)O8—C45—C46—C47178.41 (11)
C23—N5—C22—C21177.85 (17)C44—C45—C46—C472.02 (18)
C20—C21—C22—N67.4 (3)O9—C46—C47—O101.88 (17)
C20—C21—C22—N5175.00 (17)C45—C46—C47—O10179.27 (11)
C22—N5—C23—C24178.69 (18)O9—C46—C47—C48176.98 (11)
C22—N5—C23—C280.39 (17)C45—C46—C47—C481.87 (18)
N5—C23—C24—C25179.23 (17)O10—C47—C48—C43179.53 (12)
C28—C23—C24—C250.3 (3)C46—C47—C48—C430.81 (18)
C23—C24—C25—C260.3 (3)C44—C43—C48—C470.10 (18)
C24—C25—C26—C270.3 (3)C42—C43—C48—C47179.02 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.818 (18)2.330 (18)3.0706 (17)150.9 (16)
N3—H3···O120.885 (17)1.830 (18)2.6968 (17)166.0 (16)
N4—H4···O60.878 (17)1.884 (18)2.7290 (15)160.9 (16)
N5—H5···O90.87 (2)2.18 (2)3.0248 (17)162.9 (18)
N7—H7A···O7ii0.879 (19)1.84 (2)2.7045 (15)165.7 (18)
N8—H8A···O150.919 (19)1.78 (2)2.676 (2)165.3 (18)
O3—H3C···O8iii0.90 (2)1.95 (2)2.7201 (14)142.6 (19)
O4—H4C···O60.93 (2)2.18 (2)2.9509 (14)139.8 (19)
O5—H5A···O130.92 (2)1.71 (2)2.6263 (14)173 (2)
O8—H8B···O2iv0.87 (2)1.75 (2)2.6171 (13)174 (2)
O9—H9A···O140.82 (2)1.81 (2)2.6193 (15)168.4 (19)
O10—H10A···O130.86 (2)1.83 (2)2.6808 (13)168 (2)
O11—H11A···O60.88 (3)2.04 (3)2.9148 (17)174 (3)
O11—H11B···O16v0.96 (3)1.91 (3)2.865 (2)175 (3)
O12—H12A···O1i0.95 (3)1.86 (3)2.7796 (17)162 (2)
O12—H12B···O3vi0.83 (3)2.14 (3)2.9254 (18)158 (2)
O13—H13A···N20.923 (19)1.81 (2)2.7348 (15)175.0 (17)
O13—H13B···O7ii0.856 (19)1.89 (2)2.7249 (13)165.5 (18)
O14—H14A···O1vii0.94 (3)1.96 (3)2.8608 (18)160 (2)
O14—H14B···O11ii0.97 (3)1.85 (3)2.814 (2)177 (2)
O15—H15A···O2viii0.77 (5)2.10 (5)2.865 (2)171 (5)
O15—H15B···O160.86 (5)1.91 (5)2.742 (2)165 (4)
O16—H16A···O4ix0.91 (3)2.22 (3)3.0444 (18)150 (2)
O16—H16B···N61.01 (3)1.80 (3)2.800 (2)167 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y1, z; (viii) x, y+2, z+1; (ix) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 737995 to José Carlos Palacios Rodríguez).

References

First citationCruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.  CAS Google Scholar
First citationKarki, S., Friščić, T., Jones, W. & Motherwell, W. D. S. (2007). Mol. Pharm. 4, 347–354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalacios Rodríguez, J. C., Mendoza, A., Sosa Rivadeneyra, M. & Bernès, S. (2023). Acta Cryst. E79, 562–566.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Z.-J., Dai, X.-L., Huang, Y.-L., Lu, T.-B. & Chen, J.-M. (2020). Cryst. Growth Des. 20, 4108–4119.  CrossRef CAS Google Scholar
First citationZheng, K., Li, A., Wu, W., Qian, S., Liu, B. & Pang, Q. (2019). J. Mol. Struct. 1197, 727–735.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146