

organic compounds
2-Methyl-4-thiocyanatoaniline
aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@mandela.ac.za
The title compound, C8H8N2S, is a rhodanided derivative of ortho-toluidine. Classical hydrogen bonds of the N—H⋯N type, as well as C—H⋯N contacts, connect molecules of the title compound into a three-dimensional network in the crystal structure.
Keywords: crystal structure; rhodanided derivative; hydrogen bonds.
CCDC reference: 2429624
![[Scheme 3D1]](bt4165scheme3D1.gif)
![[Scheme 1]](bt4165scheme1.gif)
Structure description
Aniline and its derivatives are valuable starting materials in synthetic organic chemistry and have found ample use in industrial processes, as is apparent in the historic establishment of the artificial dye and, subsequently, pharmaceutical industry (Griess, 1879; Bopp et al., 1891
). As an activated aromatic system, a large number of reactions is available for further functionalization of the phenyl group as well as the ipso-substitution of the amine functionality itself (Becker et al., 2000
; Sandmeyer, 1884
), which allows for tailoring the physicochemical and spectroscopic properties of the target molecules over a seemingly endless range. One particularly intriguing substituent on a phenyl moiety is the rhodanide (thiocyanate) group as its cumulated double-bonding system allows for a number of fundamental follow-up reactions. In a continuation of our ongoing interest in structural aspects of aromatic such as halogenated anilines (Betz & Klüfers, 2008
; Betz, 2015
; Hosten & Betz, 2021a
,b
), anilines bearing protic (Betz & Gerber, 2011
; Betz, Klüfers & Mayer, 2008
; Betz et al., 2011a
) or sulfur-based (Betz et al., 2011b
) or organic substituents (Islor et al., 2013
; Hosten & Betz, 2021c
), we set out to explore the influence of a rhodanide group attached to the aromatic core of an aniline derivative. Structural information about organic thiocyanates is still comparatively scant, however, the molecular and crystal structures have been published for derivatives bearing the SF5 group (Okazaki et al., 2014
), an acetyl substituent (Kalaramna & Goswami, 2021
), azo functionalities (Kakati & Chaudhuri, 1968
; Aldoshin et al., 1977
; Sanjib et al., 2004
) or several methoxy groups (Ghosh et al., 2019
). Most intriguing in connection with our present study is structural information about two aniline derivatives bearing a thiocyanate group (See & Zhao, 2018
; Isakov et al., 1977
). Slightly more structural information is apparent for aromatic isothiocyanated compounds such as, e.g., the family of trifluoromethyl benzene derivatives (Hasija et al., 2023
; Mandal et al., 2023
).
The title compound is a derivative of ortho-toluidine bearing a rhodanide group in para-position to the amino group. The latter is bonded to the phenyl moiety via its sulfur atom. The thiocyanate group is tilted out of plane of the aromatic moiety to an almost perpendicular position with the pertaining C7—S1—C1—C2 torsion angle measuring 86.6 (2)°. The C—S bond length of 1.692 (3) Å is in good agreement with other pertaining bond lengths in aromatic thiocyanates whose molecular and have been determined on grounds of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Allen, 2002). Intracyclic C—C—C angles span a narrow range of only 118.4 (2)–121.6 (2)° with the smallest angle found on the carbon atom bearing the methyl group and the largest angle on the carbon atom in between the carbon atoms bearing the rhodanide and the methyl group, respectively (Fig. 1
).
![]() | Figure 1 The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level). |
In the crystal, classical hydrogen bonds of the N—H⋯N type are observed next to C—H⋯N contacts (Table 1) whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them. While the classical hydrogen bonds are established only by one of the two hydrogen atoms of the amino functionality as donor and the SCN group nitrogen atom as acceptor, the C—H⋯N contacts are supported by one of the hydrogen atoms of the methyl group as well as the hydrogen atom on the carbon atom next to the amino group. The acceptor nitrogen for the latter type of interactions is, invariably, the nitrogen atom of the rhodanide group, thus denoting the latter atom as a threefold acceptor. In terms of graph-set analysis (Etter et al., 1990
; Bernstein et al., 1995
), the descriptor for the classical hydrogen bonds is C11(9) on the unary level while the C—H⋯N contacts necessitate a C11(7) C11(8) on the same level. Overall, these interactions connect the molecules to a three-dimensional network in the While π-stacking is not a prominent feature in the of the title compound as the shortest distance between two centers of gravity was measured at 4.4380 (16) Å, it is worthwhile pointing out the short distance between the π systems as well as the sulfur atoms in neighbouring molecules as the S⋯Cg distance of only about 3.43 Å is comparable to the range that has been debated in the literature as an energetic minimum for the system benzene–hydrogen sulfide as well as in connection with pertaining metrical data obtained from the Protein Data Bank (Ringer et al., 2007
) (Fig. 2
).
|
![]() | Figure 2 Intermolecular contacts, viewed approximately along [110]. |
Synthesis and crystallization
The compound was obtained following a standard procedure by reacting ortho-toluidine with KSCN and bromine in acetic acid (Becker et al., 2000). Crystals suitable for the diffraction study were obtained upon free evaporation of the reaction mixture after workup at room temperature.
Refinement
Crystal data, data collection and structure .
|
Structural data
CCDC reference: 2429624
https://doi.org/10.1107/S2414314625002160/bt4165sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625002160/bt4165Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314625002160/bt4165Isup3.cml
C8H8N2S | Dx = 1.351 Mg m−3 |
Mr = 164.22 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9369 reflections |
a = 4.4380 (2) Å | θ = 2.3–28.2° |
b = 10.5115 (4) Å | µ = 0.33 mm−1 |
c = 17.3105 (6) Å | T = 200 K |
V = 807.54 (6) Å3 | Rod, brown |
Z = 4 | 0.52 × 0.20 × 0.20 mm |
F(000) = 344 |
Bruker APEXII CCD diffractometer | 1757 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.3° |
Tmin = 0.673, Tmax = 0.746 | h = −5→5 |
26844 measured reflections | k = −12→14 |
1996 independent reflections | l = −23→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0132P)2 + 0.3653P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1996 reflections | Δρmax = 0.26 e Å−3 |
109 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 628 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The carbon-bound aromatic H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2015)], with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.06454 (16) | 0.57399 (7) | 0.80755 (4) | 0.0388 (2) | |
N1 | 0.3355 (6) | 0.5337 (2) | 0.93268 (14) | 0.0486 (7) | |
N2 | 0.7653 (6) | 0.6435 (3) | 0.54134 (14) | 0.0391 (6) | |
C1 | 0.1997 (6) | 0.5930 (3) | 0.73078 (13) | 0.0286 (6) | |
C2 | 0.3097 (5) | 0.4881 (2) | 0.69152 (15) | 0.0282 (5) | |
H2 | 0.250656 | 0.405369 | 0.707623 | 0.034* | |
C3 | 0.5039 (6) | 0.5008 (2) | 0.62927 (13) | 0.0274 (6) | |
C4 | 0.5861 (6) | 0.6245 (2) | 0.60565 (13) | 0.0286 (5) | |
C5 | 0.4736 (7) | 0.7295 (2) | 0.64576 (15) | 0.0336 (6) | |
H5 | 0.530092 | 0.812751 | 0.630098 | 0.040* | |
C6 | 0.2820 (6) | 0.7142 (2) | 0.70775 (15) | 0.0317 (6) | |
H6 | 0.206848 | 0.786480 | 0.734497 | 0.038* | |
C7 | 0.1766 (7) | 0.5506 (3) | 0.88190 (15) | 0.0325 (6) | |
C8 | 0.6234 (7) | 0.3849 (2) | 0.58817 (15) | 0.0379 (7) | |
H8A | 0.557026 | 0.386128 | 0.534182 | 0.057* | |
H8B | 0.546710 | 0.308023 | 0.613493 | 0.057* | |
H8C | 0.844074 | 0.385071 | 0.590133 | 0.057* | |
H2A | 0.863 (7) | 0.717 (3) | 0.5391 (15) | 0.035 (8)* | |
H2B | 0.871 (8) | 0.582 (3) | 0.5241 (18) | 0.056 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0252 (3) | 0.0540 (4) | 0.0371 (3) | −0.0004 (4) | 0.0033 (3) | 0.0012 (3) |
N1 | 0.0567 (18) | 0.0541 (17) | 0.0351 (13) | 0.0112 (13) | 0.0007 (13) | 0.0003 (12) |
N2 | 0.0423 (16) | 0.0395 (15) | 0.0354 (13) | −0.0051 (14) | 0.0050 (12) | 0.0018 (12) |
C1 | 0.0215 (12) | 0.0395 (15) | 0.0248 (11) | 0.0005 (12) | −0.0015 (10) | 0.0024 (11) |
C2 | 0.0255 (12) | 0.0279 (12) | 0.0312 (12) | −0.0029 (10) | −0.0081 (12) | 0.0039 (11) |
C3 | 0.0271 (15) | 0.0290 (13) | 0.0260 (12) | 0.0010 (11) | −0.0064 (10) | 0.0010 (10) |
C4 | 0.0266 (13) | 0.0355 (13) | 0.0237 (11) | −0.0002 (12) | −0.0063 (11) | 0.0038 (10) |
C5 | 0.0386 (17) | 0.0264 (13) | 0.0359 (14) | −0.0046 (12) | −0.0050 (13) | 0.0048 (11) |
C6 | 0.0316 (14) | 0.0302 (13) | 0.0334 (14) | 0.0045 (12) | −0.0046 (12) | −0.0018 (11) |
C7 | 0.0358 (15) | 0.0305 (14) | 0.0312 (13) | 0.0041 (12) | 0.0092 (12) | −0.0012 (11) |
C8 | 0.0453 (18) | 0.0353 (15) | 0.0331 (14) | 0.0059 (13) | −0.0039 (13) | −0.0021 (11) |
S1—C7 | 1.692 (3) | C3—C4 | 1.411 (3) |
S1—C1 | 1.784 (3) | C3—C8 | 1.508 (4) |
N1—C7 | 1.141 (4) | C4—C5 | 1.396 (4) |
N2—C4 | 1.383 (3) | C5—C6 | 1.379 (4) |
N2—H2A | 0.89 (3) | C5—H5 | 0.9500 |
N2—H2B | 0.85 (4) | C6—H6 | 0.9500 |
C1—C6 | 1.384 (4) | C8—H8A | 0.9800 |
C1—C2 | 1.384 (4) | C8—H8B | 0.9800 |
C2—C3 | 1.387 (4) | C8—H8C | 0.9800 |
C2—H2 | 0.9500 | ||
C7—S1—C1 | 99.62 (12) | C5—C4—C3 | 119.5 (2) |
C4—N2—H2A | 116.2 (18) | C6—C5—C4 | 121.0 (2) |
C4—N2—H2B | 119 (2) | C6—C5—H5 | 119.5 |
H2A—N2—H2B | 112 (3) | C4—C5—H5 | 119.5 |
C6—C1—C2 | 119.9 (2) | C5—C6—C1 | 119.6 (2) |
C6—C1—S1 | 119.4 (2) | C5—C6—H6 | 120.2 |
C2—C1—S1 | 120.6 (2) | C1—C6—H6 | 120.2 |
C1—C2—C3 | 121.6 (2) | N1—C7—S1 | 178.8 (3) |
C1—C2—H2 | 119.2 | C3—C8—H8A | 109.5 |
C3—C2—H2 | 119.2 | C3—C8—H8B | 109.5 |
C2—C3—C4 | 118.4 (2) | H8A—C8—H8B | 109.5 |
C2—C3—C8 | 120.5 (2) | C3—C8—H8C | 109.5 |
C4—C3—C8 | 121.2 (2) | H8A—C8—H8C | 109.5 |
N2—C4—C5 | 119.5 (2) | H8B—C8—H8C | 109.5 |
N2—C4—C3 | 121.0 (2) | ||
C7—S1—C1—C6 | −96.9 (2) | C2—C3—C4—C5 | 0.8 (4) |
C7—S1—C1—C2 | 86.6 (2) | C8—C3—C4—C5 | −179.2 (2) |
C6—C1—C2—C3 | 0.4 (4) | N2—C4—C5—C6 | 176.7 (3) |
S1—C1—C2—C3 | 176.84 (18) | C3—C4—C5—C6 | −0.4 (4) |
C1—C2—C3—C4 | −0.8 (4) | C4—C5—C6—C1 | 0.1 (4) |
C1—C2—C3—C8 | 179.2 (2) | C2—C1—C6—C5 | −0.1 (4) |
C2—C3—C4—N2 | −176.3 (2) | S1—C1—C6—C5 | −176.5 (2) |
C8—C3—C4—N2 | 3.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···N1i | 0.98 | 2.61 | 3.482 (4) | 148 |
C5—H5···N1ii | 0.95 | 2.63 | 3.576 (3) | 172 |
N2—H2B···N1iii | 0.85 (4) | 2.38 (4) | 3.185 (4) | 157 (3) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+3/2, −y+1, z−1/2. |
References
Aldoshin, S. M., D'yachenko, O. A. & Atovmyan, L. O. (1977). J. Struct. Chem. 18, 1042. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betz, R. (2015). Crystallogr. Rep. 60, 1049–1052. Web of Science CSD CrossRef CAS Google Scholar
Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2008). Acta Cryst. E64, o2242. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bopp, A., von Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006–1078. CrossRef Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, I., Khamrai, J., Savateev, A., Shlapakov, N., Antonietti, M. & König, B. (2019). Science, 365, 360–366. CrossRef CAS PubMed Google Scholar
Griess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426–428. CrossRef Google Scholar
Hasija, A., Thompson, A. J., Singh, L., Mangalampalli, K. S. R. N., McMurtrie, J. C., Bhattacharjee, M., Clegg, J. K. & Chopra, D. (2023). Small, 19, 2206169. CrossRef Google Scholar
Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329–331. Web of Science CSD CrossRef CAS Google Scholar
Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475–477. Web of Science CSD CrossRef CAS Google Scholar
Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 293–295. CrossRef CAS Google Scholar
Isakov, I. V., Rider, E. E. & Zvonkova, Z. V. (1977). Crystallogr. Rep. 22, 1086–?. Google Scholar
Islor, A., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217–218. CrossRef CAS Google Scholar
Kakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645–1652. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kalaramna, P. & Goswami, A. (2021). Eur. J. Org. Chem. pp. 5359–5366. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mandal, K., Hasija, A., Shukla, R., Hathwar, V. R. & Chopra, D. (2023). Phys. Chem. Chem. Phys. 25, 19427–19434. CrossRef CAS PubMed Google Scholar
Okazaki, T., Laali, K. K., Bunge, S. D. & Adas, S. K. (2014). Eur. J. Org. Chem. pp. 1630–1644. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223. Web of Science CrossRef PubMed CAS Google Scholar
Sandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633–1635. CrossRef Google Scholar
Sanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, o179–o180. Web of Science CSD CrossRef IUCr Journals Google Scholar
See, J. Y. & Zhao, Y. (2018). Org. Lett. 20, 7433–7436. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.