organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl-4-thio­cyanato­aniline

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@mandela.ac.za

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 March 2025; accepted 7 March 2025; online 14 March 2025)

The title compound, C8H8N2S, is a rhodanided derivative of ortho-toluidine. Classical hydrogen bonds of the N—H⋯N type, as well as C—H⋯N contacts, connect mol­ecules of the title compound into a three-dimensional network in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aniline and its derivatives are valuable starting materials in synthetic organic chemistry and have found ample use in industrial processes, as is apparent in the historic establishment of the artificial dye and, subsequently, pharmaceutical industry (Griess, 1879[Griess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426-428.]; Bopp et al., 1891[Bopp, A., von Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006-1078.]). As an activated aromatic system, a large number of reactions is available for further functionalization of the phenyl group as well as the ipso-substitution of the amine functionality itself (Becker et al., 2000[Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum - Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.]; Sandmeyer, 1884[Sandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633-1635.]), which allows for tailoring the physicochemical and spectroscopic properties of the target mol­ecules over a seemingly endless range. One particularly intriguing substituent on a phenyl moiety is the rhodanide (thio­cyanate) group as its cumulated double-bonding system allows for a number of fundamental follow-up reactions. In a continuation of our ongoing inter­est in structural aspects of aromatic amines such as halogenated anilines (Betz & Klüfers, 2008[Betz, R. & Klüfers, P. (2008). Acta Cryst. E64, o2242.]; Betz, 2015[Betz, R. (2015). Crystallogr. Rep. 60, 1049-1052.]; Hosten & Betz, 2021a[Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329-331.],b[Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475-477.]), anilines bearing protic (Betz & Gerber, 2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359.]; Betz, Klüfers & Mayer, 2008[Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501.]; Betz et al., 2011a[Betz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118.]) or sulfur-based (Betz et al., 2011b[Betz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489.]) or organic substituents (Islor et al., 2013[Islor, A., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217-218.]; Hosten & Betz, 2021c[Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 293-295.]), we set out to explore the influence of a rhodanide group attached to the aromatic core of an aniline derivative. Structural information about organic thio­cyanates is still comparatively scant, however, the mol­ecular and crystal structures have been published for derivatives bearing the SF5 group (Okazaki et al., 2014[Okazaki, T., Laali, K. K., Bunge, S. D. & Adas, S. K. (2014). Eur. J. Org. Chem. pp. 1630-1644.]), an acetyl substituent (Kalaramna & Goswami, 2021[Kalaramna, P. & Goswami, A. (2021). Eur. J. Org. Chem. pp. 5359-5366.]), azo functionalities (Kakati & Chaudhuri, 1968[Kakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645-1652.]; Aldoshin et al., 1977[Aldoshin, S. M., D'yachenko, O. A. & Atovmyan, L. O. (1977). J. Struct. Chem. 18, 1042.]; Sanjib et al., 2004[Sanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, o179-o180.]) or several meth­oxy groups (Ghosh et al., 2019[Ghosh, I., Khamrai, J., Savateev, A., Shlapakov, N., Antonietti, M. & König, B. (2019). Science, 365, 360-366.]). Most intriguing in connection with our present study is structural information about two aniline derivatives bearing a thio­cyanate group (See & Zhao, 2018[See, J. Y. & Zhao, Y. (2018). Org. Lett. 20, 7433-7436.]; Isakov et al., 1977[Isakov, I. V., Rider, E. E. & Zvonkova, Z. V. (1977). Crystallogr. Rep. 22, 1086-?.]). Slightly more structural information is apparent for aromatic iso­thio­cyanated compounds such as, e.g., the family of tri­fluoro­methyl benzene derivatives (Hasija et al., 2023[Hasija, A., Thompson, A. J., Singh, L., Mangalampalli, K. S. R. N., McMurtrie, J. C., Bhattacharjee, M., Clegg, J. K. & Chopra, D. (2023). Small, 19, 2206169.]; Mandal et al., 2023[Mandal, K., Hasija, A., Shukla, R., Hathwar, V. R. & Chopra, D. (2023). Phys. Chem. Chem. Phys. 25, 19427-19434.]).

The title compound is a derivative of ortho-toluidine bearing a rhodanide group in para-position to the amino group. The latter is bonded to the phenyl moiety via its sulfur atom. The thio­cyanate group is tilted out of plane of the aromatic moiety to an almost perpendicular position with the pertaining C7—S1—C1—C2 torsion angle measuring 86.6 (2)°. The C—S bond length of 1.692 (3) Å is in good agreement with other pertaining bond lengths in aromatic thio­cyanates whose mol­ecular and crystal structure have been determined on grounds of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Intra­cyclic C—C—C angles span a narrow range of only 118.4 (2)–121.6 (2)° with the smallest angle found on the carbon atom bearing the methyl group and the largest angle on the carbon atom in between the carbon atoms bearing the rhodanide and the methyl group, respectively (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).

In the crystal, classical hydrogen bonds of the N—H⋯N type are observed next to C—H⋯N contacts (Table 1[link]) whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them. While the classical hydrogen bonds are established only by one of the two hydrogen atoms of the amino functionality as donor and the SCN group nitro­gen atom as acceptor, the C—H⋯N contacts are supported by one of the hydrogen atoms of the methyl group as well as the hydrogen atom on the carbon atom next to the amino group. The acceptor nitro­gen for the latter type of inter­actions is, invariably, the nitro­gen atom of the rhodanide group, thus denoting the latter atom as a threefold acceptor. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for the classical hydrogen bonds is C11(9) on the unary level while the C—H⋯N contacts necessitate a C11(7) C11(8) on the same level. Overall, these inter­actions connect the mol­ecules to a three-dimensional network in the crystal structure. While π-stacking is not a prominent feature in the crystal structure of the title compound as the shortest distance between two centers of gravity was measured at 4.4380 (16) Å, it is worthwhile pointing out the short distance between the π systems as well as the sulfur atoms in neighbouring mol­ecules as the S⋯Cg distance of only about 3.43 Å is comparable to the range that has been debated in the literature as an energetic minimum for the system benzene–hydrogen sulfide as well as in connection with pertaining metrical data obtained from the Protein Data Bank (Ringer et al., 2007[Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216-2223.]) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N1i 0.98 2.61 3.482 (4) 148
C5—H5⋯N1ii 0.95 2.63 3.576 (3) 172
N2—H2B⋯N1iii 0.85 (4) 2.38 (4) 3.185 (4) 157 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular contacts, viewed approximately along [110].

Synthesis and crystallization

The compound was obtained following a standard procedure by reacting ortho-toluidine with KSCN and bromine in acetic acid (Becker et al., 2000[Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum - Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.]). Crystals suitable for the diffraction study were obtained upon free evaporation of the reaction mixture after workup at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H8N2S
Mr 164.22
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 4.4380 (2), 10.5115 (4), 17.3105 (6)
V3) 807.54 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.52 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26844, 1996, 1757
Rint 0.062
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.075, 1.16
No. of reflections 1996
No. of parameters 109
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.23
Absolute structure Flack x determined using 628 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

2-Methyl-4-thiocyanatoaniline top
Crystal data top
C8H8N2SDx = 1.351 Mg m3
Mr = 164.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9369 reflections
a = 4.4380 (2) Åθ = 2.3–28.2°
b = 10.5115 (4) ŵ = 0.33 mm1
c = 17.3105 (6) ÅT = 200 K
V = 807.54 (6) Å3Rod, brown
Z = 40.52 × 0.20 × 0.20 mm
F(000) = 344
Data collection top
Bruker APEXII CCD
diffractometer
1757 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.3°
Tmin = 0.673, Tmax = 0.746h = 55
26844 measured reflectionsk = 1214
1996 independent reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0132P)2 + 0.3653P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
1996 reflectionsΔρmax = 0.26 e Å3
109 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack x determined using 628 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound aromatic H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The H atoms of the methyl group were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2015)], with U(H) set to 1.5Ueq(C).

Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06454 (16)0.57399 (7)0.80755 (4)0.0388 (2)
N10.3355 (6)0.5337 (2)0.93268 (14)0.0486 (7)
N20.7653 (6)0.6435 (3)0.54134 (14)0.0391 (6)
C10.1997 (6)0.5930 (3)0.73078 (13)0.0286 (6)
C20.3097 (5)0.4881 (2)0.69152 (15)0.0282 (5)
H20.2506560.4053690.7076230.034*
C30.5039 (6)0.5008 (2)0.62927 (13)0.0274 (6)
C40.5861 (6)0.6245 (2)0.60565 (13)0.0286 (5)
C50.4736 (7)0.7295 (2)0.64576 (15)0.0336 (6)
H50.5300920.8127510.6300980.040*
C60.2820 (6)0.7142 (2)0.70775 (15)0.0317 (6)
H60.2068480.7864800.7344970.038*
C70.1766 (7)0.5506 (3)0.88190 (15)0.0325 (6)
C80.6234 (7)0.3849 (2)0.58817 (15)0.0379 (7)
H8A0.5570260.3861280.5341820.057*
H8B0.5467100.3080230.6134930.057*
H8C0.8440740.3850710.5901330.057*
H2A0.863 (7)0.717 (3)0.5391 (15)0.035 (8)*
H2B0.871 (8)0.582 (3)0.5241 (18)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0252 (3)0.0540 (4)0.0371 (3)0.0004 (4)0.0033 (3)0.0012 (3)
N10.0567 (18)0.0541 (17)0.0351 (13)0.0112 (13)0.0007 (13)0.0003 (12)
N20.0423 (16)0.0395 (15)0.0354 (13)0.0051 (14)0.0050 (12)0.0018 (12)
C10.0215 (12)0.0395 (15)0.0248 (11)0.0005 (12)0.0015 (10)0.0024 (11)
C20.0255 (12)0.0279 (12)0.0312 (12)0.0029 (10)0.0081 (12)0.0039 (11)
C30.0271 (15)0.0290 (13)0.0260 (12)0.0010 (11)0.0064 (10)0.0010 (10)
C40.0266 (13)0.0355 (13)0.0237 (11)0.0002 (12)0.0063 (11)0.0038 (10)
C50.0386 (17)0.0264 (13)0.0359 (14)0.0046 (12)0.0050 (13)0.0048 (11)
C60.0316 (14)0.0302 (13)0.0334 (14)0.0045 (12)0.0046 (12)0.0018 (11)
C70.0358 (15)0.0305 (14)0.0312 (13)0.0041 (12)0.0092 (12)0.0012 (11)
C80.0453 (18)0.0353 (15)0.0331 (14)0.0059 (13)0.0039 (13)0.0021 (11)
Geometric parameters (Å, º) top
S1—C71.692 (3)C3—C41.411 (3)
S1—C11.784 (3)C3—C81.508 (4)
N1—C71.141 (4)C4—C51.396 (4)
N2—C41.383 (3)C5—C61.379 (4)
N2—H2A0.89 (3)C5—H50.9500
N2—H2B0.85 (4)C6—H60.9500
C1—C61.384 (4)C8—H8A0.9800
C1—C21.384 (4)C8—H8B0.9800
C2—C31.387 (4)C8—H8C0.9800
C2—H20.9500
C7—S1—C199.62 (12)C5—C4—C3119.5 (2)
C4—N2—H2A116.2 (18)C6—C5—C4121.0 (2)
C4—N2—H2B119 (2)C6—C5—H5119.5
H2A—N2—H2B112 (3)C4—C5—H5119.5
C6—C1—C2119.9 (2)C5—C6—C1119.6 (2)
C6—C1—S1119.4 (2)C5—C6—H6120.2
C2—C1—S1120.6 (2)C1—C6—H6120.2
C1—C2—C3121.6 (2)N1—C7—S1178.8 (3)
C1—C2—H2119.2C3—C8—H8A109.5
C3—C2—H2119.2C3—C8—H8B109.5
C2—C3—C4118.4 (2)H8A—C8—H8B109.5
C2—C3—C8120.5 (2)C3—C8—H8C109.5
C4—C3—C8121.2 (2)H8A—C8—H8C109.5
N2—C4—C5119.5 (2)H8B—C8—H8C109.5
N2—C4—C3121.0 (2)
C7—S1—C1—C696.9 (2)C2—C3—C4—C50.8 (4)
C7—S1—C1—C286.6 (2)C8—C3—C4—C5179.2 (2)
C6—C1—C2—C30.4 (4)N2—C4—C5—C6176.7 (3)
S1—C1—C2—C3176.84 (18)C3—C4—C5—C60.4 (4)
C1—C2—C3—C40.8 (4)C4—C5—C6—C10.1 (4)
C1—C2—C3—C8179.2 (2)C2—C1—C6—C50.1 (4)
C2—C3—C4—N2176.3 (2)S1—C1—C6—C5176.5 (2)
C8—C3—C4—N23.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.982.613.482 (4)148
C5—H5···N1ii0.952.633.576 (3)172
N2—H2B···N1iii0.85 (4)2.38 (4)3.185 (4)157 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+3/2, y+1, z1/2.
 

References

First citationAldoshin, S. M., D'yachenko, O. A. & Atovmyan, L. O. (1977). J. Struct. Chem. 18, 1042.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. (2015). Crystallogr. Rep. 60, 1049–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2008). Acta Cryst. E64, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBopp, A., von Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006–1078.  CrossRef Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, I., Khamrai, J., Savateev, A., Shlapakov, N., Antonietti, M. & König, B. (2019). Science, 365, 360–366.  CrossRef CAS PubMed Google Scholar
First citationGriess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426–428.  CrossRef Google Scholar
First citationHasija, A., Thompson, A. J., Singh, L., Mangalampalli, K. S. R. N., McMurtrie, J. C., Bhattacharjee, M., Clegg, J. K. & Chopra, D. (2023). Small, 19, 2206169.  CrossRef Google Scholar
First citationHosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationHosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationHosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 293–295.  CrossRef CAS Google Scholar
First citationIsakov, I. V., Rider, E. E. & Zvonkova, Z. V. (1977). Crystallogr. Rep. 22, 1086–?.  Google Scholar
First citationIslor, A., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217–218.  CrossRef CAS Google Scholar
First citationKakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645–1652.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKalaramna, P. & Goswami, A. (2021). Eur. J. Org. Chem. pp. 5359–5366.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, K., Hasija, A., Shukla, R., Hathwar, V. R. & Chopra, D. (2023). Phys. Chem. Chem. Phys. 25, 19427–19434.  CrossRef CAS PubMed Google Scholar
First citationOkazaki, T., Laali, K. K., Bunge, S. D. & Adas, S. K. (2014). Eur. J. Org. Chem. pp. 1630–1644.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRinger, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633–1635.  CrossRef Google Scholar
First citationSanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, o179–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSee, J. Y. & Zhao, Y. (2018). Org. Lett. 20, 7433–7436.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146