organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-[(4-But­­oxy­phen­yl)methyl­ene]bis­­(3-hy­dr­oxy-5,5-di­methyl­cyclo­hex-2-en-1-one)

crossmark logo

aDepartment of Chemistry, Government College of Engineering, Tirunelveli-627 007, Tamilnadu, India, bDepartment of Physics, Government College of Engineering, Tirunelveli-627 007, Tamilnadu, India, cDepartment of Chemistry (Science and Humanities), Dr. N. G. P. Institute of Technology, Coimbatore-641 048, Tamil Nadu, India, dDepartment of Chemistry, Periyar Government Arts College, Cuddalore-607 001., Tamil Nadu, India, and eDepartment of Physics, Government College of Engineering, Salem-636 011, Tamilnadu, India
*Correspondence e-mail: babusuresh1982@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 February 2025; accepted 25 February 2025; online 28 February 2025)

In the title compound, C27H36O5, the dihedral angles between the planes of the benzene ring and the cyclo­hexenone rings are 60.87 (10) and 65.04 (10)°, while the dihedral angle between the mean planes of the two cyclo­hexenone rings is 39.33 (10)°. Each cyclo­hexenone ring has a carbon atom bonded to two methyl groups, which acts as the flap atom, resulting in an envelope conformation. The opposite orientation of the hy­droxy and carbonyl oxygen atoms allows for the formation of two intra­molecular O—H⋯O hydrogen bonds and C—H⋯π (ring) inter­actions also help to establish the molecular conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Xanthene derivatives possess biological properties such as anti­viral, anti­bacterial (Dimmock et al., 1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]) and anti-inflammatory (Dimmock et al., 1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]; Cottam et al., 1996[Cottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2-9.]) activities and are therefore used in medicine. Xanthene is present in organic compounds that are widely used as synthetic dyes (Hilderbrand et al., 2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]), in laser technologies (Pohlers et al., 1997[Pohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222-3230.]) and in fluorescent materials used for visualization of biomolecules (Knight & Stephens, 1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-687.]; Khan & Sekar, 2023[Khan, Z. & Sekar, N. (2023). Dyes Pigments, 208, 110735.]; Majumdar et al., 2022[Majumdar, D., Philip, J. E., Tüzün, B., Frontera, A., Gomila, R. M., Roy, S. & Bankura, K. (2022). J. Inorg. Organomet. Polym. 32, 4320-4339.]; Lakhrissi et al., 2022[Lakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.]).

In the title compound (Fig. 1[link]), the bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles are close to those reported for similar compounds (for examples, see: Sureshbabu & Sughanya, 2012[Sureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.], 2013[Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o1690-o1691.]; Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875-o2876.]; Khalilov et al., 2023[Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 436-440.]; Steiger et al., 2020[Steiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125-131.]). In the cyclo­hexenone ring, C1—C6 and C8—C13 are double bonds, as indicated by the bond lengths [1.380 (2) and 1.374 (2) Å, respectively]. The observed carbonyl bond lengths [C5—O1 = 1.270 (2) and C9—O3 = 1.268 (2) Å] are also normal. Cyclo­hexenone rings A (C1–C6) and B (C8–C13) are not planar with total puckering amplitudes Q(T) of 0.466 (2) Å (for A) and 0.472 (2) Å (for B). Atoms C3 and C11 act as the flap atoms in the envelope conformations of cyclo­hexenone rings A and B, deviating from the mean planes of the rings by 0.325 (2) and 0.327 (2) Å, respectively. The observed conformations can be described by the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), which yield values of φ = 122.3 (3)° and θ = 63.5 (2)° for ring A and φ = 186.8 (3)° and θ = 63.5 (2)° for ring B. Ring A and B make dihedral angles of 60.87 (10) and 65.04 (10)°, respectively, with the benzene ring. The dihedral angle between the mean planes of the cyclo­hexenone rings is 39.33 (10)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme and intra­molecular O—H⋯O hydrogen bonds as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

The structure features two intra­molecular O—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]). The relatively short H⋯A distances and the near-linear D—H⋯A angles suggest that these are strong hydrogen bonds. An inter­molecular C10—H10Bπ(C18–C22) inter­action is also observed (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.92 (2) 1.66 (2) 2.566 (2) 166 (3)
O4—H4⋯O1 0.94 (3) 1.72 (3) 2.655 (2) 171 (3)
C10—H10BCg1i 0.97 3.11 3.773 (2) 127
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A view of the packing in the crystal structure, showing the O—H⋯O hydrogen bonds and C—H⋯π inter­actions as dashed lines.

Synthesis and crystallization

The title compound was prepared in a single stage as previously described (Horning & Horning, 1946[Horning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95-99.]; Kaupp et al. 2003[Kaupp, G., Reza Naimi-Jamal, M. & Schmeyers, J. (2003). Tetrahedron, 59, 3753-3760.]). A mixture consisting of 4-but­oxy­benzaldehyde (0.712 g, 4 mmol), 5,5-di­methyl­cyclo­hexane-1,3-dione (1.12 g, 8 mmol) and 15 ml of ethanol was heated at 343 K for approximately 5 minutes. The reaction mixture was allowed to cool to room temperature and the resulting title compound was filtered and dried. Colourless crystal were obtained by crystallization from ethanol solution at room temperature, m.p. 401 K, yield 1.65 g (3.75 mmol, 94%).

Refinement

Crystal data, data collection, and refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H36O5
Mr 440.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.3372 (14), 11.3286 (15), 12.4559 (16)
α, β, γ (°) 105.428 (7), 114.185 (7), 97.344 (8)
V3) 1235.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker kappa APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.] )
Tmin, Tmax 0.904, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 29655, 6476, 3194
Rint 0.084
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.02
No. of reflections 6476
No. of parameters 303
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

2,2'-[(4-Butoxyphenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) top
Crystal data top
C27H36O5F(000) = 476
Mr = 440.56Dx = 1.184 Mg m3
Triclinic, P1Melting point: 401 K
a = 10.3372 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3286 (15) ÅCell parameters from 4681 reflections
c = 12.4559 (16) Åθ = 2.2–23.3°
α = 105.428 (7)°µ = 0.08 mm1
β = 114.185 (7)°T = 296 K
γ = 97.344 (8)°BLOCK, colourless
V = 1235.3 (3) Å30.20 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker kappa APEXII
diffractometer
6476 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω and φ scanθmax = 28.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015 )
h = 1414
Tmin = 0.904, Tmax = 0.983k = 1515
29655 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1871P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.19 e Å3
6476 reflectionsΔρmin = 0.15 e Å3
303 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.109 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were identified from difference in electron density peaks and subsequently treated as riding atoms with d(Csp2 —H) = 0.93 Å, d(Cmethyl—H) = 0.96 Å, d(Cmethylene—H) = 0.97 Å, d(Cmethine—H) = 0.98 Å, d(O—H) = 0.82 Å, and Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9540 (2)0.64151 (17)0.87672 (17)0.0410 (4)
C21.1067 (2)0.63643 (19)0.95588 (18)0.0522 (5)
H2A1.1637700.6432540.9113600.063*
H2B1.1010530.5539390.9653370.063*
C31.1885 (2)0.73860 (18)1.08581 (17)0.0474 (5)
C41.0844 (2)0.74257 (19)1.14393 (17)0.0497 (5)
H4A1.0748480.6675971.1666730.060*
H4B1.1281420.8162831.2207300.060*
C50.9334 (2)0.74828 (18)1.06066 (17)0.0442 (5)
C60.87642 (19)0.70583 (16)0.92811 (16)0.0367 (4)
C70.73019 (18)0.72894 (16)0.85046 (15)0.0361 (4)
H70.7191360.7958910.9119930.043*
C80.59514 (19)0.61938 (17)0.80092 (16)0.0372 (4)
C90.5451 (2)0.51703 (17)0.68598 (16)0.0390 (4)
C100.4007 (2)0.42026 (19)0.62870 (18)0.0485 (5)
H10A0.4194500.3423680.6422540.058*
H10B0.3530680.4019030.5386520.058*
C110.2941 (2)0.45827 (19)0.67898 (19)0.0521 (5)
C120.3821 (2)0.5133 (2)0.82193 (19)0.0552 (6)
H12A0.3207670.5493490.8558280.066*
H12B0.4058580.4446670.8526790.066*
C130.5216 (2)0.61327 (18)0.87035 (18)0.0444 (5)
C141.2354 (2)0.86802 (19)1.0768 (2)0.0582 (6)
H14A1.2969290.8629351.0362090.087*
H14B1.2889900.9310571.1597360.087*
H14C1.1495200.8911561.0287900.087*
C151.3263 (2)0.7069 (2)1.1670 (2)0.0706 (7)
H15A1.2990160.6258701.1735800.106*
H15B1.3759050.7712081.2493960.106*
H15C1.3908730.7037231.1292990.106*
C160.2257 (2)0.5560 (2)0.6272 (2)0.0746 (7)
H16A0.3020380.6313120.6539080.112*
H16B0.1575090.5772840.6581490.112*
H16C0.1748730.5207700.5369700.112*
C170.1702 (3)0.3414 (2)0.6390 (2)0.0774 (7)
H17A0.1041200.3658680.6714390.116*
H17B0.2111930.2795500.6715250.116*
H17C0.1173970.3054520.5488770.116*
C180.72888 (19)0.78827 (16)0.75292 (15)0.0361 (4)
C190.8561 (2)0.84862 (18)0.75624 (18)0.0461 (5)
H190.9463900.8449510.8138610.055*
C200.8535 (2)0.91443 (19)0.67650 (18)0.0486 (5)
H200.9409700.9528480.6800250.058*
C210.7207 (2)0.92277 (17)0.59181 (17)0.0415 (4)
C220.5921 (2)0.86339 (18)0.58710 (17)0.0447 (5)
H220.5019220.8679470.5302170.054*
C230.5972 (2)0.79769 (17)0.66614 (17)0.0427 (5)
H230.5094720.7581520.6613800.051*
C240.8338 (2)1.0409 (2)0.50532 (19)0.0535 (5)
H24A0.8826000.9759760.4882030.064*
H24B0.9018901.1071370.5850820.064*
C250.7873 (2)1.0956 (2)0.40203 (19)0.0562 (6)
H25A0.8746101.1435730.4056290.067*
H25B0.7306901.1543250.4167250.067*
C260.6965 (3)0.9969 (3)0.2723 (2)0.0763 (7)
H26A0.7486890.9331220.2609410.092*
H26B0.6043850.9550280.2659160.092*
C270.6634 (4)1.0494 (3)0.1690 (2)0.1080 (11)
H27A0.6056401.1082460.1758820.162*
H27B0.6094450.9812670.0893070.162*
H27C0.7539381.0925670.1754430.162*
O10.85854 (16)0.78933 (15)1.11437 (12)0.0619 (4)
O20.90380 (16)0.58030 (14)0.75734 (12)0.0548 (4)
O30.62230 (14)0.50085 (12)0.62903 (11)0.0487 (4)
O40.56851 (17)0.69215 (15)0.98548 (13)0.0604 (4)
O50.70516 (14)0.98724 (14)0.51060 (13)0.0573 (4)
H20.803 (2)0.565 (3)0.712 (2)0.120 (11)*
H40.670 (2)0.733 (3)1.027 (3)0.167 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (10)0.0388 (10)0.0392 (11)0.0100 (9)0.0156 (9)0.0119 (9)
C20.0432 (11)0.0483 (12)0.0561 (13)0.0174 (10)0.0167 (10)0.0131 (10)
C30.0404 (11)0.0472 (12)0.0458 (11)0.0103 (9)0.0112 (9)0.0185 (9)
C40.0477 (12)0.0509 (12)0.0389 (11)0.0065 (10)0.0108 (9)0.0167 (9)
C50.0458 (11)0.0427 (11)0.0396 (11)0.0077 (9)0.0179 (9)0.0130 (9)
C60.0368 (10)0.0368 (10)0.0360 (10)0.0098 (8)0.0166 (8)0.0128 (8)
C70.0376 (10)0.0362 (10)0.0361 (9)0.0113 (8)0.0186 (8)0.0118 (8)
C80.0364 (10)0.0402 (10)0.0375 (10)0.0114 (8)0.0179 (8)0.0157 (8)
C90.0399 (10)0.0424 (11)0.0387 (10)0.0151 (9)0.0169 (9)0.0203 (9)
C100.0467 (12)0.0465 (11)0.0432 (11)0.0066 (9)0.0152 (9)0.0141 (9)
C110.0420 (11)0.0540 (13)0.0588 (13)0.0075 (10)0.0222 (10)0.0224 (11)
C120.0503 (12)0.0594 (13)0.0610 (13)0.0085 (11)0.0335 (11)0.0192 (11)
C130.0427 (11)0.0465 (11)0.0455 (11)0.0123 (9)0.0224 (9)0.0152 (9)
C140.0535 (13)0.0541 (13)0.0596 (13)0.0060 (11)0.0206 (11)0.0218 (11)
C150.0518 (14)0.0765 (16)0.0712 (15)0.0216 (12)0.0114 (12)0.0337 (13)
C160.0481 (13)0.0781 (17)0.0953 (18)0.0214 (13)0.0246 (13)0.0393 (15)
C170.0583 (15)0.0719 (16)0.0874 (18)0.0091 (13)0.0331 (14)0.0201 (14)
C180.0346 (10)0.0358 (10)0.0381 (10)0.0098 (8)0.0166 (8)0.0135 (8)
C190.0347 (10)0.0563 (12)0.0515 (12)0.0145 (9)0.0175 (9)0.0281 (10)
C200.0375 (11)0.0590 (13)0.0595 (12)0.0122 (10)0.0259 (10)0.0311 (11)
C210.0425 (11)0.0449 (11)0.0464 (11)0.0148 (9)0.0238 (9)0.0235 (9)
C220.0347 (10)0.0528 (12)0.0494 (11)0.0139 (9)0.0173 (9)0.0249 (10)
C230.0355 (10)0.0475 (11)0.0528 (11)0.0118 (9)0.0230 (9)0.0247 (9)
C240.0457 (12)0.0632 (13)0.0572 (12)0.0085 (10)0.0265 (10)0.0281 (11)
C250.0545 (13)0.0630 (14)0.0597 (13)0.0095 (11)0.0300 (11)0.0316 (12)
C260.0772 (17)0.0818 (17)0.0590 (15)0.0070 (14)0.0231 (13)0.0290 (13)
C270.124 (3)0.133 (3)0.0605 (16)0.028 (2)0.0300 (17)0.0471 (18)
O10.0568 (9)0.0804 (11)0.0435 (8)0.0159 (8)0.0266 (7)0.0101 (7)
O20.0475 (9)0.0647 (9)0.0419 (8)0.0189 (8)0.0187 (7)0.0051 (7)
O30.0485 (8)0.0567 (9)0.0406 (7)0.0150 (7)0.0227 (6)0.0131 (6)
O40.0600 (10)0.0686 (10)0.0498 (9)0.0072 (8)0.0345 (8)0.0070 (8)
O50.0462 (8)0.0777 (10)0.0729 (10)0.0231 (7)0.0334 (7)0.0513 (8)
Geometric parameters (Å, º) top
C1—O21.299 (2)C15—H15A0.9600
C1—C61.380 (2)C15—H15B0.9600
C1—C21.498 (3)C15—H15C0.9600
C2—C31.518 (3)C16—H16A0.9600
C2—H2A0.9700C16—H16B0.9600
C2—H2B0.9700C16—H16C0.9600
C3—C41.522 (3)C17—H17A0.9600
C3—C151.525 (3)C17—H17B0.9600
C3—C141.532 (3)C17—H17C0.9600
C4—C51.500 (3)C18—C191.382 (2)
C4—H4A0.9700C18—C231.387 (2)
C4—H4B0.9700C19—C201.386 (2)
C5—O11.270 (2)C19—H190.9300
C5—C61.419 (2)C20—C211.381 (3)
C6—C71.526 (2)C20—H200.9300
C7—C81.521 (2)C21—O51.368 (2)
C7—C181.533 (2)C21—C221.382 (2)
C7—H70.9800C22—C231.372 (2)
C8—C131.374 (2)C22—H220.9300
C8—C91.421 (2)C23—H230.9300
C9—O31.268 (2)C24—O51.424 (2)
C9—C101.494 (3)C24—C251.504 (3)
C10—C111.528 (3)C24—H24A0.9700
C10—H10A0.9700C24—H24B0.9700
C10—H10B0.9700C25—C261.507 (3)
C11—C121.524 (3)C25—H25A0.9700
C11—C171.528 (3)C25—H25B0.9700
C11—C161.533 (3)C26—C271.491 (3)
C12—C131.494 (3)C26—H26A0.9700
C12—H12A0.9700C26—H26B0.9700
C12—H12B0.9700C27—H27A0.9600
C13—O41.314 (2)C27—H27B0.9600
C14—H14A0.9600C27—H27C0.9600
C14—H14B0.9600O2—H20.927 (17)
C14—H14C0.9600O4—H40.942 (18)
O2—C1—C6124.27 (17)H14B—C14—H14C109.5
O2—C1—C2113.58 (16)C3—C15—H15A109.5
C6—C1—C2122.16 (16)C3—C15—H15B109.5
C1—C2—C3115.21 (16)H15A—C15—H15B109.5
C1—C2—H2A108.5C3—C15—H15C109.5
C3—C2—H2A108.5H15A—C15—H15C109.5
C1—C2—H2B108.5H15B—C15—H15C109.5
C3—C2—H2B108.5C11—C16—H16A109.5
H2A—C2—H2B107.5C11—C16—H16B109.5
C2—C3—C4107.34 (16)H16A—C16—H16B109.5
C2—C3—C15110.27 (17)C11—C16—H16C109.5
C4—C3—C15110.01 (17)H16A—C16—H16C109.5
C2—C3—C14110.52 (17)H16B—C16—H16C109.5
C4—C3—C14110.38 (17)C11—C17—H17A109.5
C15—C3—C14108.32 (17)C11—C17—H17B109.5
C5—C4—C3114.71 (15)H17A—C17—H17B109.5
C5—C4—H4A108.6C11—C17—H17C109.5
C3—C4—H4A108.6H17A—C17—H17C109.5
C5—C4—H4B108.6H17B—C17—H17C109.5
C3—C4—H4B108.6C19—C18—C23116.65 (16)
H4A—C4—H4B107.6C19—C18—C7122.81 (15)
O1—C5—C6122.08 (17)C23—C18—C7120.03 (15)
O1—C5—C4116.78 (16)C18—C19—C20122.14 (17)
C6—C5—C4121.10 (17)C18—C19—H19118.9
C1—C6—C5117.87 (16)C20—C19—H19118.9
C1—C6—C7123.85 (15)C21—C20—C19119.76 (17)
C5—C6—C7118.23 (15)C21—C20—H20120.1
C8—C7—C6114.91 (14)C19—C20—H20120.1
C8—C7—C18113.69 (14)O5—C21—C20124.82 (16)
C6—C7—C18115.36 (14)O5—C21—C22116.12 (16)
C8—C7—H7103.6C20—C21—C22119.05 (17)
C6—C7—H7103.6C23—C22—C21120.18 (17)
C18—C7—H7103.6C23—C22—H22119.9
C13—C8—C9117.57 (17)C21—C22—H22119.9
C13—C8—C7120.39 (16)C22—C23—C18122.21 (17)
C9—C8—C7121.95 (15)C22—C23—H23118.9
O3—C9—C8121.85 (17)C18—C23—H23118.9
O3—C9—C10116.66 (16)O5—C24—C25107.97 (16)
C8—C9—C10121.46 (16)O5—C24—H24A110.1
C9—C10—C11115.37 (16)C25—C24—H24A110.1
C9—C10—H10A108.4O5—C24—H24B110.1
C11—C10—H10A108.4C25—C24—H24B110.1
C9—C10—H10B108.4H24A—C24—H24B108.4
C11—C10—H10B108.4C24—C25—C26113.79 (19)
H10A—C10—H10B107.5C24—C25—H25A108.8
C12—C11—C10107.03 (16)C26—C25—H25A108.8
C12—C11—C17109.85 (17)C24—C25—H25B108.8
C10—C11—C17109.92 (18)C26—C25—H25B108.8
C12—C11—C16110.96 (18)H25A—C25—H25B107.7
C10—C11—C16110.65 (18)C27—C26—C25113.9 (2)
C17—C11—C16108.43 (18)C27—C26—H26A108.8
C13—C12—C11114.12 (16)C25—C26—H26A108.8
C13—C12—H12A108.7C27—C26—H26B108.8
C11—C12—H12A108.7C25—C26—H26B108.8
C13—C12—H12B108.7H26A—C26—H26B107.7
C11—C12—H12B108.7C26—C27—H27A109.5
H12A—C12—H12B107.6C26—C27—H27B109.5
O4—C13—C8123.47 (17)H27A—C27—H27B109.5
O4—C13—C12114.02 (16)C26—C27—H27C109.5
C8—C13—C12122.49 (17)H27A—C27—H27C109.5
C3—C14—H14A109.5H27B—C27—H27C109.5
C3—C14—H14B109.5C1—O2—H2113.2 (18)
H14A—C14—H14B109.5C13—O4—H4113 (2)
C3—C14—H14C109.5C21—O5—C24117.78 (14)
H14A—C14—H14C109.5
O2—C1—C2—C3160.74 (17)C9—C10—C11—C1246.3 (2)
C6—C1—C2—C319.2 (3)C9—C10—C11—C17165.60 (18)
C1—C2—C3—C447.6 (2)C9—C10—C11—C1674.7 (2)
C1—C2—C3—C15167.44 (18)C10—C11—C12—C1350.3 (2)
C1—C2—C3—C1472.8 (2)C17—C11—C12—C13169.64 (18)
C2—C3—C4—C548.9 (2)C16—C11—C12—C1370.5 (2)
C15—C3—C4—C5168.94 (18)C9—C8—C13—O4170.37 (17)
C14—C3—C4—C571.6 (2)C7—C8—C13—O46.4 (3)
C3—C4—C5—O1159.53 (17)C9—C8—C13—C128.0 (3)
C3—C4—C5—C622.4 (3)C7—C8—C13—C12175.28 (17)
O2—C1—C6—C5168.64 (17)C11—C12—C13—O4156.05 (18)
C2—C1—C6—C511.4 (3)C11—C12—C13—C825.5 (3)
O2—C1—C6—C78.7 (3)C8—C7—C18—C19152.88 (17)
C2—C1—C6—C7171.27 (17)C6—C7—C18—C1917.1 (2)
O1—C5—C6—C1168.28 (18)C8—C7—C18—C2335.6 (2)
C4—C5—C6—C19.7 (3)C6—C7—C18—C23171.40 (16)
O1—C5—C6—C79.2 (3)C23—C18—C19—C200.6 (3)
C4—C5—C6—C7172.81 (17)C7—C18—C19—C20172.40 (17)
C1—C6—C7—C883.6 (2)C18—C19—C20—C211.1 (3)
C5—C6—C7—C893.71 (19)C19—C20—C21—O5178.59 (17)
C1—C6—C7—C1851.6 (2)C19—C20—C21—C220.9 (3)
C5—C6—C7—C18131.04 (17)O5—C21—C22—C23179.26 (16)
C6—C7—C8—C1390.6 (2)C20—C21—C22—C230.3 (3)
C18—C7—C8—C13133.42 (17)C21—C22—C23—C180.2 (3)
C6—C7—C8—C986.00 (19)C19—C18—C23—C220.0 (3)
C18—C7—C8—C950.0 (2)C7—C18—C23—C22171.99 (16)
C13—C8—C9—O3165.22 (17)O5—C24—C25—C2667.1 (2)
C7—C8—C9—O311.5 (3)C24—C25—C26—C27174.0 (2)
C13—C8—C9—C1012.5 (3)C20—C21—O5—C245.5 (3)
C7—C8—C9—C10170.83 (16)C22—C21—O5—C24174.98 (17)
O3—C9—C10—C11165.42 (16)C25—C24—O5—C21174.82 (16)
C8—C9—C10—C1116.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.92 (2)1.66 (2)2.566 (2)166 (3)
O4—H4···O10.94 (3)1.72 (3)2.655 (2)171 (3)
C10—H10B···Cg1i0.973.113.773 (2)127
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr P. K. Sudhadevi antharjanam and SAIF, IIT Madras for intensity data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2–9.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHorning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95–99.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKaupp, G., Reza Naimi-Jamal, M. & Schmeyers, J. (2003). Tetrahedron, 59, 3753–3760.  CrossRef CAS Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 436–440.  CrossRef IUCr Journals Google Scholar
First citationKhan, Z. & Sekar, N. (2023). Dyes Pigments, 208, 110735.  CrossRef Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajumdar, D., Philip, J. E., Tüzün, B., Frontera, A., Gomila, R. M., Roy, S. & Bankura, K. (2022). J. Inorg. Organomet. Polym. 32, 4320–4339.  Web of Science CrossRef CAS Google Scholar
First citationPohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222–3230.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125–131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875–o2876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.  CSD CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o1690–o1691.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146