metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{4-(all­yl­oxy)-N′-[4-(oct­yl­oxy)benzyl­­idene]benzohydrazidato}nickel(II)

crossmark logo

aDepartment of Pharmacy, Pabna University of Science and Technology, Pabna-6600, Bangladesh, bDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, cDivision of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 1-1 Tsushima-naka, 3-Chome, Okayama 700-8530, Japan, dCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and eDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: sshakilak@gmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 4 February 2025; accepted 10 February 2025; online 14 February 2025)

The central NiII atom in the title complex, [Ni(C25H31N2O3)2], is located on crystallographic inversion center and adopts a slightly distorted square-planar coordination geometry defined by the imine nitro­gen and amide oxygen donors of two chelating symmetry-related ligands in a trans configuration. The Ni—N and Ni—O bond lengths are 1.8685 (15) and 1.8409 (14) Å, respectively, with a chelating N—Ni—O bond angle of 83.79 (6)°. These data are in agreement with those determined for complexes of similar ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) crystallizes in the triclinic system, space group P[\overline{1}], with the nickel(II) atom located on a center of symmetry, thus the asymmetric unit comprises half of the mol­ecule and the trans configuration of donor atoms is imposed by the crystal symmetry. The Ni—O1 and Ni—N1 bond lengths are 1.8409 (14) and 1.8685 (15) Å, respectively, and the chelating O—Ni—N angle is of 83.78 (6)°. With the exception of the all­yloxy fragment (atoms O3 and C23–25) and the oct­yloxy (atoms O2 and C1–C8) chain, all atoms of the chelating benzohydrazide ligands and of phenyl group C9–14 are almost coplanar (max displacement of ±0.1 Å), indicating an extended electron delocalization about the central Ni atom. The allyl C24—C25 bond length is 1.292 (4) Å. The octyl alkyl chains adopt a staggered conformation for the C2–C7 chain, while the chain is kinked at both ends with C6—C7—C8—O2 and C1—C2—C3—C4 torsion angles of −64.7 (2) and 68.1 (2)°, respectively, likely for packing requirements. Bond lengths and angles around the central metal atom are in close agreement with values determined in similar complexes with a square-planar coordination environment (Banna et al. 2022[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081-1083.], 2024[Banna, M. H. A., Uzzaman, M., Saleh, Md. A., Zangrando, E., Howlader, Md. B. H., Ansary, Md. R. H., Miyatake, R. & Sheikh, Md. C. (2024). J. Mol. Struct. 1295, 136698.]; Al-Qadsy et al. 2021[Al-Qadsy, I., Al-Odayni, A. B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.]; Mondal et al., 2014[Mondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). Polyhedron, 80, 272-281.]; Neethu et al. 2021[Neethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419.]), indicating that the steric and electronic properties of the different groups bound to the hydrazone ligands have no appreciable influence on the central metal atom.

[Figure 1]
Figure 1
The title complex (displacement ellipsoid probability at 50%) showing the atom-labeling scheme for the asymmetric unit. [Symmetry code: (′) 2 − x, 1 − y, 2 − z.]

The crystal packing viewed down the a axis is shown in Fig. 2[link]. It is worth noting the metal atom is sandwiched by the phenyl rings of symmetry-related complexes indicating Ni⋯π-ring inter­actions between the complexes with an Ni–ring centroid distance of 3.688 Å (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal packing viewed down the a axis. (H atoms not shown for clarity.)
[Figure 3]
Figure 3
Detail of the crystal packing showing the Ni atom sandwiched by phenyl rings.

Synthesis and crystallization

An ethano­lic solution (20 ml) of 4-(all­yloxy)benzoyl­hydrazine (0.501 g, 2.6 mmol) was added to 4-octyloxybenzaldehyde (0.609 g, 2.6 mmol) dissolved in ethanol (10 ml). The resulting mixture was refluxed for 1 h. Subsequently, a solution of nickel(II) acetate tetra­hydrate (0.326 g, 1.3 mmol in 10 ml of ethanol) was introduced, and refluxing was continued for an additional 3 h. This led to the formation of an orange precipitate that was separated by filtration and washed with hot ethanol. Orange single crystals suitable for X-ray analysis were obtained by gradual evaporation from a chloro­form and aceto­nitrile mixture (1:1, v/v) over a period of 21 d, followed by filtration and drying under vacuum in a desiccator containing anhydrous CaCl2.

Orange crystal, yield: 0.85 g, 75%, m p. = 143°C.

IR data (KBr disc, cm−1): 1598 ν(C=N), 1499 ν(C=C), 1021 ν(N—N), 588 ν(M—N), 509 ν(M—O).

1H NMR (CDCl3, 400 MHz), δ: 8.31 (d, 2×2H, C-6, 8, J = 9.2 Hz), 7.92 (d, 2×2H, C-13, 17, J = 9.2 Hz), 7.12 (s, 2×1H, C-11, –CH=N,), 6.96 (d, 2×2H, C-5, 9, J = 9.2), 6.90 (d, 2×2H, C-14, 16, J = 9.2 Hz,), 6.12–6.02 (m, 2×1H, C-2, Hc), 5.44 (dq, 2×1H, C-1, Ha), 5.32 (dq, 2×1H, C-1, Hb), 4.59 (d, 2×2H, C-3, –OCH2), 4.03 (t, 2×2H, C-18, OCH2), 1.83 (p, 2×2H, C-19), 1.47(p, 2×2H, C-20), 1.40–1.25 (m, 2×8H, C-21, 22, 23, 24), 0.89(t, 2×3H, C-25, CH3).

UV-Vis spectrum in CHCl3 [λmax nm, ɛmax M−1cm−1)]: 265 (25660), 288 (31660), 322 (35000), 361 (22340), 394 (20920), 411 (20280).

Refinement

Crystal data, data collection and structure refinement are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Ni(C25H31N2O3)2]
Mr 873.74
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 5.5532 (3), 12.0594 (5), 17.0230 (8)
α, β, γ (°) 86.599 (6), 83.723 (6), 82.426 (6)
V3) 1122.13 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.14 × 0.07 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.840, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 10908, 5100, 4014
Rint 0.033
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 1.02
No. of reflections 5100
No. of parameters 278
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.26
Computer programs: RAPID-AUTO (Rigaku, 2010[Rigaku (2010). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.].

Structural data


Computing details top

Bis(N'-{[4-(octyloxy)phenyl]methylidene}-4-(prop-2-en-1-yloxy)benzohydrazidato)nickel(II) top
Crystal data top
[Ni(C25H31N2O3)2]Z = 1
Mr = 873.74F(000) = 466
Triclinic, P1Dx = 1.293 Mg m3
a = 5.5532 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.0594 (5) ÅCell parameters from 8635 reflections
c = 17.0230 (8) Åθ = 2.0–27.5°
α = 86.599 (6)°µ = 0.49 mm1
β = 83.723 (6)°T = 173 K
γ = 82.426 (6)°Platelet, orange
V = 1122.13 (9) Å30.14 × 0.07 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4014 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.840, Tmax = 0.990h = 76
10908 measured reflectionsk = 1515
5100 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4947P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5100 reflectionsΔρmax = 0.39 e Å3
278 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.0000000.5000001.0000000.02555 (11)
O21.3156 (2)0.39178 (11)0.51487 (7)0.0272 (3)
O10.7075 (2)0.58957 (11)0.99238 (7)0.0313 (3)
O30.1756 (3)0.88993 (14)0.84389 (9)0.0459 (4)
N10.9936 (3)0.48735 (14)0.89141 (9)0.0289 (4)
N20.7837 (3)0.54396 (14)0.86172 (9)0.0305 (4)
C10.9657 (5)0.1354 (2)0.30337 (15)0.0539 (7)
H1A0.9241740.0616460.2775050.065*
H1B0.8361940.1819220.2989850.065*
H1C1.1204350.1714500.2776600.065*
C20.9909 (4)0.12196 (17)0.38963 (13)0.0377 (5)
H2A1.0166460.1971440.4163170.045*
H2B0.8362260.0824330.4144230.045*
C31.1995 (4)0.05776 (16)0.40339 (12)0.0348 (5)
H3A1.3518690.0933390.3745110.042*
H3B1.2215440.0637830.4604790.042*
C41.1605 (4)0.06573 (16)0.37706 (12)0.0315 (4)
H4A1.1445800.0718570.3195560.038*
H4B1.0052420.1008300.4045110.038*
C51.3653 (4)0.13003 (16)0.39362 (12)0.0323 (4)
H5A1.5166920.1013080.3609120.039*
H5B1.3951440.1165170.4498730.039*
C61.3093 (4)0.25547 (15)0.37622 (11)0.0279 (4)
H6A1.1568580.2835820.4086110.033*
H6B1.2797650.2684960.3199130.033*
C71.5106 (4)0.32294 (16)0.39263 (10)0.0276 (4)
H7A1.6678120.2883870.3660780.033*
H7B1.4763720.3996900.3690530.033*
C81.5370 (3)0.33040 (16)0.47970 (10)0.0263 (4)
H8A1.5625620.2544370.5052300.032*
H8B1.6788960.3694710.4864570.032*
C91.2890 (3)0.40152 (14)0.59504 (10)0.0224 (4)
C101.0664 (3)0.45783 (16)0.62585 (10)0.0256 (4)
H100.9470150.4862750.5913720.031*
C111.0180 (3)0.47257 (16)0.70626 (10)0.0262 (4)
H110.8655130.5107090.7267580.031*
C121.1944 (3)0.43120 (15)0.75792 (10)0.0237 (4)
C131.4157 (3)0.37686 (15)0.72535 (10)0.0256 (4)
H131.5368850.3493060.7593740.031*
C141.4657 (3)0.36145 (15)0.64485 (10)0.0246 (4)
H141.6186550.3239970.6241270.030*
C151.1673 (4)0.44005 (16)0.84378 (10)0.0281 (4)
H151.3031460.4042960.8690190.034*
C160.6494 (4)0.59609 (17)0.92044 (11)0.0291 (4)
C170.4257 (4)0.67020 (17)0.90249 (11)0.0294 (4)
C180.2732 (4)0.72326 (18)0.96231 (11)0.0334 (5)
H180.3086200.7088481.0155790.040*
C190.0678 (4)0.79769 (18)0.94600 (12)0.0367 (5)
H190.0341760.8344760.9876070.044*
C200.0150 (4)0.81708 (18)0.86844 (12)0.0361 (5)
C210.1636 (4)0.76076 (19)0.80798 (12)0.0399 (5)
H210.1247480.7724760.7549060.048*
C220.3656 (4)0.68858 (18)0.82496 (11)0.0352 (5)
H220.4656180.6507080.7834320.042*
C230.3349 (4)0.9511 (2)0.90235 (14)0.0443 (5)
H23A0.2430370.9995100.9296290.053*
H23B0.4082700.8988330.9422420.053*
C240.5296 (5)1.0207 (2)0.86110 (15)0.0498 (6)
H240.6069090.9850270.8242240.060*
C250.6015 (6)1.1256 (2)0.87151 (16)0.0678 (8)
H25A0.5288321.1642910.9078750.081*
H25B0.7271281.1640380.8428070.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0277 (2)0.0329 (2)0.01594 (16)0.00290 (15)0.00241 (13)0.00230 (14)
O20.0301 (7)0.0322 (7)0.0180 (6)0.0033 (6)0.0029 (5)0.0045 (5)
O10.0323 (8)0.0399 (8)0.0221 (6)0.0045 (6)0.0045 (5)0.0012 (6)
O30.0411 (9)0.0540 (10)0.0380 (8)0.0101 (8)0.0050 (7)0.0018 (7)
N10.0307 (9)0.0336 (9)0.0222 (7)0.0033 (7)0.0020 (6)0.0025 (7)
N20.0291 (9)0.0388 (9)0.0229 (8)0.0003 (7)0.0041 (7)0.0026 (7)
C10.0678 (18)0.0453 (14)0.0559 (15)0.0210 (13)0.0212 (13)0.0040 (12)
C20.0370 (12)0.0282 (11)0.0485 (12)0.0054 (9)0.0053 (10)0.0006 (9)
C30.0386 (12)0.0266 (10)0.0400 (11)0.0033 (9)0.0100 (9)0.0001 (9)
C40.0338 (11)0.0254 (10)0.0369 (10)0.0034 (8)0.0109 (9)0.0009 (8)
C50.0340 (11)0.0276 (10)0.0363 (10)0.0032 (9)0.0089 (9)0.0025 (8)
C60.0336 (11)0.0255 (10)0.0248 (9)0.0029 (8)0.0056 (8)0.0018 (8)
C70.0353 (11)0.0257 (10)0.0216 (8)0.0039 (8)0.0012 (8)0.0035 (7)
C80.0285 (10)0.0265 (9)0.0234 (8)0.0003 (8)0.0011 (7)0.0053 (7)
C90.0288 (10)0.0203 (9)0.0187 (8)0.0056 (7)0.0019 (7)0.0014 (7)
C100.0263 (10)0.0288 (10)0.0223 (8)0.0017 (8)0.0069 (7)0.0014 (7)
C110.0248 (10)0.0300 (10)0.0228 (8)0.0010 (8)0.0020 (7)0.0036 (7)
C120.0271 (10)0.0246 (9)0.0199 (8)0.0040 (8)0.0027 (7)0.0021 (7)
C130.0276 (10)0.0266 (9)0.0233 (8)0.0022 (8)0.0083 (7)0.0005 (7)
C140.0239 (10)0.0252 (9)0.0245 (8)0.0012 (8)0.0022 (7)0.0040 (7)
C150.0325 (11)0.0316 (10)0.0207 (8)0.0051 (9)0.0040 (8)0.0014 (8)
C160.0305 (11)0.0340 (10)0.0234 (9)0.0090 (8)0.0003 (8)0.0019 (8)
C170.0295 (10)0.0338 (11)0.0255 (9)0.0077 (8)0.0017 (8)0.0015 (8)
C180.0348 (12)0.0421 (12)0.0237 (9)0.0071 (9)0.0021 (8)0.0025 (8)
C190.0347 (12)0.0432 (12)0.0309 (10)0.0025 (10)0.0019 (9)0.0054 (9)
C200.0344 (12)0.0383 (12)0.0345 (10)0.0041 (9)0.0029 (9)0.0043 (9)
C210.0429 (13)0.0491 (13)0.0260 (10)0.0004 (10)0.0061 (9)0.0010 (9)
C220.0396 (12)0.0408 (12)0.0236 (9)0.0016 (10)0.0001 (8)0.0013 (8)
C230.0389 (13)0.0448 (13)0.0468 (13)0.0031 (10)0.0034 (10)0.0023 (11)
C240.0450 (14)0.0481 (14)0.0562 (15)0.0022 (11)0.0129 (12)0.0047 (12)
C250.092 (2)0.0566 (17)0.0520 (15)0.0152 (16)0.0234 (15)0.0039 (13)
Geometric parameters (Å, º) top
Ni1—O11.8409 (14)C7—H7B0.9900
Ni1—O1i1.8410 (14)C8—H8A0.9900
Ni1—N11.8685 (15)C8—H8B0.9900
Ni1—N1i1.8685 (15)C9—C141.387 (2)
O2—C91.3669 (19)C9—C101.394 (3)
O2—C81.439 (2)C10—C111.383 (2)
O1—C161.295 (2)C10—H100.9500
O3—C201.369 (3)C11—C121.410 (2)
O3—C231.428 (3)C11—H110.9500
N1—C151.286 (2)C12—C131.389 (3)
N1—N21.399 (2)C12—C151.462 (2)
N2—C161.318 (2)C13—C141.387 (2)
C1—C21.510 (3)C13—H130.9500
C1—H1A0.9800C14—H140.9500
C1—H1B0.9800C15—H150.9500
C1—H1C0.9800C16—C171.481 (3)
C2—C31.521 (3)C17—C181.382 (3)
C2—H2A0.9900C17—C221.394 (3)
C2—H2B0.9900C18—C191.398 (3)
C3—C41.524 (3)C18—H180.9500
C3—H3A0.9900C19—C201.383 (3)
C3—H3B0.9900C19—H190.9500
C4—C51.518 (3)C20—C211.397 (3)
C4—H4A0.9900C21—C221.372 (3)
C4—H4B0.9900C21—H210.9500
C5—C61.522 (3)C22—H220.9500
C5—H5A0.9900C23—C241.491 (3)
C5—H5B0.9900C23—H23A0.9900
C6—C71.525 (3)C23—H23B0.9900
C6—H6A0.9900C24—C251.292 (4)
C6—H6B0.9900C24—H240.9500
C7—C81.514 (2)C25—H25A0.9500
C7—H7A0.9900C25—H25B0.9500
O1—Ni1—O1i180.00 (8)O2—C8—H8B110.2
O1—Ni1—N183.79 (6)C7—C8—H8B110.2
O1i—Ni1—N196.21 (6)H8A—C8—H8B108.5
O1—Ni1—N1i96.21 (6)O2—C9—C14124.71 (16)
O1i—Ni1—N1i83.79 (6)O2—C9—C10115.20 (15)
N1—Ni1—N1i180.00 (10)C14—C9—C10120.08 (16)
C9—O2—C8118.00 (13)C11—C10—C9120.45 (16)
C16—O1—Ni1110.83 (12)C11—C10—H10119.8
C20—O3—C23118.14 (17)C9—C10—H10119.8
C15—N1—N2119.86 (16)C10—C11—C12120.25 (17)
C15—N1—Ni1126.02 (14)C10—C11—H11119.9
N2—N1—Ni1113.90 (11)C12—C11—H11119.9
C16—N2—N1107.83 (15)C13—C12—C11117.96 (16)
C2—C1—H1A109.5C13—C12—C15115.99 (16)
C2—C1—H1B109.5C11—C12—C15126.05 (17)
H1A—C1—H1B109.5C14—C13—C12122.23 (16)
C2—C1—H1C109.5C14—C13—H13118.9
H1A—C1—H1C109.5C12—C13—H13118.9
H1B—C1—H1C109.5C9—C14—C13119.02 (17)
C1—C2—C3113.89 (19)C9—C14—H14120.5
C1—C2—H2A108.8C13—C14—H14120.5
C3—C2—H2A108.8N1—C15—C12131.82 (18)
C1—C2—H2B108.8N1—C15—H15114.1
C3—C2—H2B108.8C12—C15—H15114.1
H2A—C2—H2B107.7O1—C16—N2123.60 (18)
C2—C3—C4113.93 (17)O1—C16—C17118.14 (16)
C2—C3—H3A108.8N2—C16—C17118.20 (16)
C4—C3—H3A108.8C18—C17—C22118.66 (19)
C2—C3—H3B108.8C18—C17—C16120.56 (17)
C4—C3—H3B108.8C22—C17—C16120.77 (17)
H3A—C3—H3B107.7C17—C18—C19121.30 (18)
C5—C4—C3113.58 (16)C17—C18—H18119.3
C5—C4—H4A108.9C19—C18—H18119.3
C3—C4—H4A108.9C20—C19—C18119.10 (19)
C5—C4—H4B108.9C20—C19—H19120.4
C3—C4—H4B108.9C18—C19—H19120.4
H4A—C4—H4B107.7O3—C20—C19125.21 (19)
C4—C5—C6112.82 (16)O3—C20—C21114.91 (18)
C4—C5—H5A109.0C19—C20—C21119.9 (2)
C6—C5—H5A109.0C22—C21—C20120.26 (19)
C4—C5—H5B109.0C22—C21—H21119.9
C6—C5—H5B109.0C20—C21—H21119.9
H5A—C5—H5B107.8C21—C22—C17120.74 (19)
C5—C6—C7114.30 (16)C21—C22—H22119.6
C5—C6—H6A108.7C17—C22—H22119.6
C7—C6—H6A108.7O3—C23—C24107.57 (19)
C5—C6—H6B108.7O3—C23—H23A110.2
C7—C6—H6B108.7C24—C23—H23A110.2
H6A—C6—H6B107.6O3—C23—H23B110.2
C8—C7—C6113.99 (16)C24—C23—H23B110.2
C8—C7—H7A108.8H23A—C23—H23B108.5
C6—C7—H7A108.8C25—C24—C23125.2 (2)
C8—C7—H7B108.8C25—C24—H24117.4
C6—C7—H7B108.8C23—C24—H24117.4
H7A—C7—H7B107.7C24—C25—H25A120.0
O2—C8—C7107.42 (15)C24—C25—H25B120.0
O2—C8—H8A110.2H25A—C25—H25B120.0
C7—C8—H8A110.2
N1—Ni1—O1—C160.87 (13)N2—N1—C15—C120.6 (3)
N1i—Ni1—O1—C16179.13 (13)Ni1—N1—C15—C12174.90 (16)
O1—Ni1—N1—C15172.55 (18)C13—C12—C15—N1177.3 (2)
O1i—Ni1—N1—C157.45 (18)C11—C12—C15—N12.6 (3)
O1—Ni1—N1—N22.05 (13)Ni1—O1—C16—N20.6 (2)
O1i—Ni1—N1—N2177.95 (13)Ni1—O1—C16—C17176.57 (14)
C15—N1—N2—C16172.28 (18)N1—N2—C16—O12.2 (3)
Ni1—N1—N2—C162.7 (2)N1—N2—C16—C17174.98 (16)
C1—C2—C3—C468.1 (2)O1—C16—C17—C185.3 (3)
C2—C3—C4—C5177.99 (17)N2—C16—C17—C18177.36 (19)
C3—C4—C5—C6173.03 (17)O1—C16—C17—C22174.15 (19)
C4—C5—C6—C7179.67 (16)N2—C16—C17—C223.2 (3)
C5—C6—C7—C870.8 (2)C22—C17—C18—C192.7 (3)
C9—O2—C8—C7174.85 (15)C16—C17—C18—C19176.84 (19)
C6—C7—C8—O264.7 (2)C17—C18—C19—C201.0 (3)
C8—O2—C9—C143.5 (3)C23—O3—C20—C190.3 (3)
C8—O2—C9—C10177.39 (15)C23—O3—C20—C21179.7 (2)
O2—C9—C10—C11179.80 (17)C18—C19—C20—O3178.1 (2)
C14—C9—C10—C111.1 (3)C18—C19—C20—C211.3 (3)
C9—C10—C11—C120.3 (3)O3—C20—C21—C22177.7 (2)
C10—C11—C12—C130.6 (3)C19—C20—C21—C221.8 (3)
C10—C11—C12—C15179.54 (18)C20—C21—C22—C170.0 (3)
C11—C12—C13—C140.7 (3)C18—C17—C22—C212.1 (3)
C15—C12—C13—C14179.38 (17)C16—C17—C22—C21177.4 (2)
O2—C9—C14—C13179.96 (17)C20—O3—C23—C24178.13 (19)
C10—C9—C14—C130.9 (3)O3—C23—C24—C25132.8 (3)
C12—C13—C14—C90.0 (3)
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh for providing laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationAl-Qadsy, I., Al-Odayni, A. B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.  Google Scholar
First citationBanna, M. H. A., Uzzaman, M., Saleh, Md. A., Zangrando, E., Howlader, Md. B. H., Ansary, Md. R. H., Miyatake, R. & Sheikh, Md. C. (2024). J. Mol. Struct. 1295, 136698.  CrossRef Google Scholar
First citationBanna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). Polyhedron, 80, 272–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). Inorg. Chim. Acta, 524, 120419.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146