organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2-Eth­­oxy-2-oxoeth­yl)-4,5,6,7,8,9-hexa­hydro­cyclo­octa­[d][1,2,3]selena­diazol-3-ium bromide

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 February 2025; accepted 17 February 2025; online 28 February 2025)

The title compound, C12H19N2O2Se+·Br, features a selena­diazole five-membered ring attached to a cyclo­octene ring. A bromine anion is located in the vicinity of the selenium atom [3.0197 (5) Å]

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Selena­diazo­les are known as precursors for alkynes, especially strained cyclo­alkynes (Bissinger et al., 1988[Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]; Detert & Meier, 1997[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557-1563.]). Jaffari et al. (1970[Jaffari, G. A., Nunn, A. J. & Ralph, J. T. (1970). J. Chem. Soc. C, pp. 2060-2062.]) reported benzo-annulated selena­diazo­lium salts, and the first 1,2,3-selena­diazo­lium salt was described by Butler & Fox (2001[Butler, R. N. & Fox, A. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 394-397.]). Recently, N-methyl­ated selena­diazo­les were characterized by us (Schollmeyer & Detert, 2016[Schollmeyer, D. & Detert, H. (2016). IUCrData, 1, x161950.], 2017[Schollmeyer, D. & Detert, H. (2017). IUCrData, 2, x170167.]).

The mol­ecular structure of the title compound (Fig. 1[link]) is composed of a cyclo­octene ring with a boat-twist conformation, a 1,2,3-selena­diazole ring, an ethyl­acetate unit, and a bromide anion in the vicinity of the selenium atom. The selena­diazole ring is planar with a maximum deviation of 0.018 (3) Å from the mean plane at N2 whereas N3 is slightly below the ring. In spite of the conformational freedom, the ester unit, C12–C17, is almost planar; here the maximum deviation from the mean plane is 0.117 (2) Å at O15. These planes subtend a dihedral angle of 77.24 (14)°. The cyclo­octene ring adopts a distorted boat-chair conformation (Evans & Boeyens, 1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.]). The bromide ion is located in the vicinity of the selenium atom [3.0197 (5) Å], opposite to the carbonyl group and slightly below the selena­diazole plane [0.5364 (3) Å]. The packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
View (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram. View along a-axis direction (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Synthesis and crystallization

The title compound was prepared by adding ethyl bromo­acetate (2.5 ml) to a solution of cyclo­octeno-1,2,3-selena­diazole (0.9 g, 4 mmol) (Meier & Voigt, 1972[Meier, H. & Voigt, E. (1972). Tetrahedron, 28, 187-198.]) in nitro­methane (12 ml). The mixture was kept for one month at room temperature under exclusion of light. Two isomeric selena­diazo­lium salts in a 2.5:1 ratio were formed (1H-NMR), the main isomer was isolated by evaporation of the solvent and chromatography on silica gel using chloro­form/propanol-2 as eluent. Yield: 0.65 g of the pure title compound (43%), m.p.: 435 K. IR (KBr): 2975, 2912, 2855, 1733, 1711, 1522, 1472, 1447, 1368, 1339, 1240, 1220, 1022 cm−1.1H-NMR (CDCl3, 400 MHz): 5.63 (s, 2 H, N—CH2; 13C-satellites, J = 148 Hz), 4.26, (q, J = 7.5 Hz, OCH2), 3.75 (pseudo-t, 2 H, 10-CH2), 3.17 (pseudo-t, 2 H, 5-CH2), 1.90 (qui, 2 H, 9-CH2), 1.78 (qui, 2 H, 6-CH2), 1.40 (m, 4 H, CH2), 1.26 ppm (t, 3 H, CH3). NOE: Irradiation into 5.63: positive NOE at 3.17, 1.78 ppm. 175.6 (C11, Se-satellites, 1JC–Se = 160 Hz), 164.0 (C=O), 154.4 (C-4) 64.4 (OCH2), 61.0 (NCH2), 31.2 (C-9), 30.5 (C-10), 28.2 (C-6), 26.8 (C-5), 25.6 (C-7), 24.8 (C-7), 13.9 (CH3) ppm. Numbering of atoms according to scheme 1. MS: (EI): 685 (19%, Se2Br-isotope pattern), (C12H19O2N2Se)2Br+); 381 (4%, M+).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H19N2O2Se+·Br
Mr 382.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 8.4924 (7), 9.3927 (7), 9.7799 (8)
α, β, γ (°) 71.379 (6), 86.439 (7), 74.119 (6)
V3) 710.78 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.45
Crystal size (mm) 0.37 × 0.35 × 0.18
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration [X-RED32 (Stoe, & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), absorption correction by Gaussian integration, analogous to Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])]
Tmin, Tmax 0.163, 0.405
No. of measured, independent and observed [I > 2σ(I)] reflections 6548, 3370, 3085
Rint 0.030
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.10
No. of reflections 3370
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −0.84
Computer programs: X-AREA WinXpose, Recipe, Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

3-(2-Ethoxy-2-oxoethyl)-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]selenadiazol-3-ium bromide top
Crystal data top
C12H19N2O2Se+·BrF(000) = 380
Mr = 382.16Dx = 1.786 Mg m3
Triclinic, P1Melting point: 435 K
a = 8.4924 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3927 (7) ÅCell parameters from 10409 reflections
c = 9.7799 (8) Åθ = 2.5–28.4°
α = 71.379 (6)°µ = 5.45 mm1
β = 86.439 (7)°T = 120 K
γ = 74.119 (6)°Block, colorless
V = 710.78 (10) Å30.37 × 0.35 × 0.18 mm
Z = 2
Data collection top
Stoe IPDS 2T
diffractometer
3370 independent reflections
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus3085 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.030
rotation method, ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: integration
[X-Red32 (Stoe, & Cie, 2020), absorption correction by Gaussian integration, analogous to Coppens (1970)]
h = 911
Tmin = 0.163, Tmax = 0.405k = 1212
6548 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.110P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3370 reflectionsΔρmax = 1.39 e Å3
164 parametersΔρmin = 0.84 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were refined as riding on their parent atoms with C—H = 0.99 Å for methylene groups and with C—H = 0.98 Å for methyl groups. Isotropic displacement parameters of the H atoms were set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49934 (4)0.22173 (3)1.21107 (3)0.02302 (10)
Se10.34890 (3)0.21865 (3)0.94061 (3)0.01662 (10)
O140.1838 (3)0.4488 (2)0.4557 (2)0.0206 (4)
O150.0967 (3)0.2826 (2)0.3758 (2)0.0178 (4)
N20.2602 (3)0.1785 (3)0.7980 (3)0.0173 (5)
N30.3497 (3)0.2043 (3)0.6843 (3)0.0144 (4)
C40.4827 (3)0.2615 (3)0.6848 (3)0.0143 (5)
C50.5890 (3)0.2910 (3)0.5563 (3)0.0164 (5)
H5A0.6260190.3844900.5481840.020*
H5B0.5229220.3137150.4681810.020*
C60.7403 (4)0.1532 (3)0.5634 (3)0.0187 (5)
H6A0.7042050.0563170.5906970.022*
H6B0.7852830.1681970.4654990.022*
C70.8790 (3)0.1298 (3)0.6690 (3)0.0197 (6)
H7A0.9778020.0556830.6481210.024*
H7B0.9050370.2307350.6500260.024*
C80.8431 (4)0.0691 (3)0.8295 (3)0.0191 (5)
H8A0.9408890.0134240.8784960.023*
H8B0.7522470.0196210.8385690.023*
C90.7976 (3)0.1894 (3)0.9106 (3)0.0187 (5)
H9A0.8934610.2297920.9117000.022*
H9B0.7765420.1350811.0120180.022*
C100.6482 (3)0.3294 (3)0.8502 (3)0.0163 (5)
H10A0.6144060.3851690.9221620.020*
H10B0.6792180.4027340.7619090.020*
C110.5076 (3)0.2798 (3)0.8151 (3)0.0139 (5)
C120.2965 (3)0.1714 (3)0.5601 (3)0.0167 (5)
H12A0.2370920.0898180.5942800.020*
H12B0.3934130.1319170.5075880.020*
C130.1851 (3)0.3189 (3)0.4589 (3)0.0161 (5)
C160.0031 (4)0.4150 (4)0.2620 (4)0.0263 (7)
H16A0.0643700.4843690.2078940.032*
H16B0.0947540.4761500.3048810.032*
C170.0676 (4)0.3498 (4)0.1638 (4)0.0245 (6)
H17A0.1317250.4353420.0843500.037*
H17B0.1374720.2844840.2177170.037*
H17C0.0241400.2865590.1246240.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02640 (17)0.02727 (17)0.01503 (16)0.00549 (12)0.00133 (12)0.00775 (12)
Se10.01565 (15)0.02022 (16)0.01349 (16)0.00509 (11)0.00309 (10)0.00490 (11)
O140.0246 (10)0.0171 (9)0.0214 (10)0.0071 (8)0.0009 (8)0.0062 (8)
O150.0195 (10)0.0160 (9)0.0174 (10)0.0055 (8)0.0041 (8)0.0030 (8)
N20.0151 (11)0.0218 (11)0.0152 (11)0.0053 (9)0.0007 (9)0.0056 (9)
N30.0135 (10)0.0147 (10)0.0158 (11)0.0046 (8)0.0007 (8)0.0050 (8)
C40.0124 (11)0.0122 (11)0.0166 (12)0.0033 (9)0.0003 (9)0.0021 (9)
C50.0161 (12)0.0181 (12)0.0147 (13)0.0068 (10)0.0014 (10)0.0032 (10)
C60.0173 (12)0.0230 (13)0.0172 (13)0.0063 (11)0.0046 (10)0.0081 (11)
C70.0139 (12)0.0205 (13)0.0232 (15)0.0033 (10)0.0026 (11)0.0062 (11)
C80.0179 (13)0.0187 (13)0.0173 (13)0.0028 (10)0.0016 (10)0.0027 (10)
C90.0163 (12)0.0225 (13)0.0173 (13)0.0046 (10)0.0031 (10)0.0060 (11)
C100.0178 (12)0.0155 (12)0.0169 (13)0.0060 (10)0.0007 (10)0.0053 (10)
C110.0149 (12)0.0117 (11)0.0138 (12)0.0025 (9)0.0022 (9)0.0037 (9)
C120.0184 (13)0.0168 (12)0.0173 (13)0.0061 (10)0.0002 (10)0.0074 (10)
C130.0170 (12)0.0194 (12)0.0145 (12)0.0088 (10)0.0033 (10)0.0059 (10)
C160.0371 (17)0.0187 (13)0.0204 (15)0.0025 (12)0.0127 (13)0.0043 (11)
C170.0245 (15)0.0270 (15)0.0213 (15)0.0055 (12)0.0067 (12)0.0064 (12)
Geometric parameters (Å, º) top
Se1—N21.811 (3)C8—C91.533 (4)
Se1—C111.850 (3)C8—H8A0.9900
O14—C131.208 (3)C8—H8B0.9900
O15—C131.316 (3)C9—C101.541 (4)
O15—C161.469 (4)C9—H9A0.9900
N2—N31.303 (3)C9—H9B0.9900
N3—C41.378 (3)C10—C111.490 (4)
N3—C121.470 (4)C10—H10A0.9900
C4—C111.375 (4)C10—H10B0.9900
C4—C51.498 (4)C12—C131.523 (4)
C5—C61.541 (4)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C5—H5B0.9900C16—C171.491 (4)
C6—C71.538 (4)C16—H16A0.9900
C6—H6A0.9900C16—H16B0.9900
C6—H6B0.9900C17—H17A0.9800
C7—C81.532 (4)C17—H17B0.9800
C7—H7A0.9900C17—H17C0.9800
C7—H7B0.9900
N2—Se1—C1189.04 (12)C10—C9—H9A108.2
C13—O15—C16115.5 (2)C8—C9—H9B108.2
N3—N2—Se1109.05 (18)C10—C9—H9B108.2
N2—N3—C4120.2 (2)H9A—C9—H9B107.4
N2—N3—C12115.6 (2)C11—C10—C9111.8 (2)
C4—N3—C12124.2 (2)C11—C10—H10A109.3
C11—C4—N3112.7 (2)C9—C10—H10A109.3
C11—C4—C5125.8 (2)C11—C10—H10B109.3
N3—C4—C5121.5 (2)C9—C10—H10B109.3
C4—C5—C6113.5 (2)H10A—C10—H10B107.9
C4—C5—H5A108.9C4—C11—C10124.5 (2)
C6—C5—H5A108.9C4—C11—Se1109.0 (2)
C4—C5—H5B108.9C10—C11—Se1126.3 (2)
C6—C5—H5B108.9N3—C12—C13110.1 (2)
H5A—C5—H5B107.7N3—C12—H12A109.6
C7—C6—C5115.8 (2)C13—C12—H12A109.6
C7—C6—H6A108.3N3—C12—H12B109.6
C5—C6—H6A108.3C13—C12—H12B109.6
C7—C6—H6B108.3H12A—C12—H12B108.2
C5—C6—H6B108.3O14—C13—O15126.4 (3)
H6A—C6—H6B107.4O14—C13—C12123.5 (3)
C8—C7—C6115.6 (2)O15—C13—C12110.1 (2)
C8—C7—H7A108.4O15—C16—C17107.3 (2)
C6—C7—H7A108.4O15—C16—H16A110.3
C8—C7—H7B108.4C17—C16—H16A110.3
C6—C7—H7B108.4O15—C16—H16B110.3
H7A—C7—H7B107.4C17—C16—H16B110.3
C7—C8—C9116.7 (2)H16A—C16—H16B108.5
C7—C8—H8A108.1C16—C17—H17A109.5
C9—C8—H8A108.1C16—C17—H17B109.5
C7—C8—H8B108.1H17A—C17—H17B109.5
C9—C8—H8B108.1C16—C17—H17C109.5
H8A—C8—H8B107.3H17A—C17—H17C109.5
C8—C9—C10116.3 (2)H17B—C17—H17C109.5
C8—C9—H9A108.2
C11—Se1—N2—N32.47 (19)C5—C4—C11—C101.3 (4)
Se1—N2—N3—C43.2 (3)N3—C4—C11—Se10.0 (3)
Se1—N2—N3—C12177.90 (18)C5—C4—C11—Se1177.0 (2)
N2—N3—C4—C112.2 (4)C9—C10—C11—C487.9 (3)
C12—N3—C4—C11179.0 (2)C9—C10—C11—Se187.2 (3)
N2—N3—C4—C5179.4 (2)N2—Se1—C11—C41.4 (2)
C12—N3—C4—C51.8 (4)N2—Se1—C11—C10177.1 (2)
C11—C4—C5—C682.8 (3)N2—N3—C12—C1393.4 (3)
N3—C4—C5—C694.1 (3)C4—N3—C12—C1385.5 (3)
C4—C5—C6—C774.3 (3)C16—O15—C13—O144.8 (4)
C5—C6—C7—C871.2 (3)C16—O15—C13—C12173.6 (2)
C6—C7—C8—C9102.0 (3)N3—C12—C13—O1421.8 (4)
C7—C8—C9—C1057.4 (3)N3—C12—C13—O15159.8 (2)
C8—C9—C10—C1145.7 (3)C13—O15—C16—C17169.4 (3)
N3—C4—C11—C10175.8 (2)
 

References

First citationBissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationButler, R. N. & Fox, A. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 394–397.  Web of Science CrossRef Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557–1563.  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaffari, G. A., Nunn, A. J. & Ralph, J. T. (1970). J. Chem. Soc. C, pp. 2060–2062.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeier, H. & Voigt, E. (1972). Tetrahedron, 28, 187–198.  CrossRef CAS Web of Science Google Scholar
First citationSchollmeyer, D. & Detert, H. (2016). IUCrData, 1, x161950.  Google Scholar
First citationSchollmeyer, D. & Detert, H. (2017). IUCrData, 2, x170167.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146