

metal-organic compounds
Poly[[bis(μ4-acetato-κ4O:O:O′:O′)tetrakis(μ3-acetato-κ3O:O:O′)bis(μ2-acetato-κ2O:O′)bis(μ3-hydroxido)pentanickel(II)] 2.60-hydrate]
aTU Wien, X-Ray Centre, Getreidemarkt 9/E057, 1060 Vienna, Austria, and bTU Wien, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/E164-05-1, 1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
The title compound, {[Ni5(C2H3O2)8(OH)2]·2.60H2O}n or [Ni5(OAc)8(OH)2]·2.60H2O (OAc is the acetate anion, C2H3O2), represents a hydrated basic acetate. Its comprises half of the formula unit, with one of the three unique NiII cations situated at an inversion centre. The NiII atoms are in octahedral coordination environments by O atoms of the acetato ligands and by the basic OH group. The different kinds of bridging modes (μ2, 2×μ3, and μ4 for the acetato ligands; μ3 for the OH group) lead to the formation of a framework structure with hydrophobic channels extending parallel to the main crystallographic axes. Disordered water molecules are situated in pockets close to the OH groups and are held in place by hydrogen-bonding interactions.
Keywords: crystal structure; nickel; basic acetate; disorder; hydrogen-bonding.
CCDC reference: 2420345
![[Scheme 3D1]](bt4163scheme3D1.gif)
![[Scheme 1]](bt4163scheme1.gif)
Structure description
Nickel acetate, Ni(OAc)2, is a common precursor for the synthesis of oxygen-containing nickel compounds and is usually employed in form of its tetrahydrate. As it decomposes easily when the temperature is increased, it is used for typical solid-state reactions. As a result of its good solubility in water, nickel acetate can also be used for syntheses in aqueous media or under hydrothermal conditions. Precisely for this purpose, Ni(OAc)2 was employed as a precursor intended for phase-formation studies of nickel arsenates under hydrothermal conditions. However, a basic nickel acetate of composition [Ni5(OAc)8(OH)2]·2.60H2O had formed serendipitously instead, and its is reported here.
In general, basic acetates comprise metal cations bound to a collection of acetate anions and to an O2– ion or an OH− group. The latter bridge several metal atoms (M) and thus form oxido-centred coordination polyhedra, usually with {OM3}-/{(HO)M2}-trigonal–planar or {OM4}-/{(HO)M3}-tetrahedral shapes. These kinds of structural features are observed, for example, in the acetate compounds Be4O(OAc)6 (Pauling & Sherman, 1934), Mg3O(OAc)4 (Scheurell et al., 2015
), [Cr8(OH)8(OAc)16]·30H2O (Eshel & Bino, 2001
), Fe3O(OAc)7(HOAc) (Abrahams et al., 2024
), Cu2(OH)3(OAc)·H2O (Švarcová et al., 2011
), Pb3O2(OAc)2·0.5H2O (Mauck et al., 2010
), Pb4O(OAc)6 or Pb2O(OAc)2 (Martínez Casado et al., 2016
). In the title compound, an {(HO)Ni3} unit with tetrahedral shape is present, as discussed in more detail below.
[Ni5(OAc)8(OH)2]·2.60H2O is isostructural with the magnesium analogue, [Mg5(OAc)8(OH)2]·1.19H2O (Scheurell et al., 2015). The of [Ni5(OAc)8(OH)2]·2.60H2O comprises of half of the formula unit, with Ni1 situated at a special position (multiplicity 8, Wyckoff letter d,
) of I41/a. The three NiII cations are octahedrally surrounded by O atoms, with Ni1 only by carboxylate O atoms, Ni2 by five carboxylate O atoms and one O atom (O9) of the OH group, and Ni3 by four carboxylate O atoms and two OH groups (Fig. 1
Table 1
). The Ni—O distances range from 1.993 (2) to 2.1259 (18) Å, with a mean of 2.063 (55) Å, which is close to the literature value of 2.070 (54) calculated for 242 [NiO6] polyhedra (Gagné & Hawthorne, 2020
).
|
![]() | Figure 1 The coordination of the NiII atoms in the of [Ni5(OAc)8(OH)2]·2.6H2O. Displacement ellipsoids are drawn at the 40% probability level; for clarity, methyl H atoms and the O atoms of disordered water molecules are not shown. [Symmetry codes: (i) −y + |
From the seven different possible coordination modes of acetato ligands to central MII cations shown in Fig. 2, the acetate groups in the structure of the title compound feature only three. Coordination mode (a) is bridging two NiII cations in a bis-monodentate manner, μ2-(-κ1O,κ1O′), and realized for carboxylate group C2(O1)O2; mode (b) is bridging three NiII cations in a monodentate-bis-monodentate manner, μ3-(-κ1Oκ2O′), and realized for carboxylate groups C4(O3)O4 and C7(O8)O7; mode (c) is bridging four NiII cations in a bis(bis-monodentate) manner, μ4-(-κ2Oκ2O′, and realized for carboxylate group C5(O5)O6. Monodentate coordination mode (d), or any of the chelating coordination modes (e–g) detailed in Fig. 2
are not realized, but are known for other divalent first-row transition metals M, e.g. for anhydrous iron(II) acetate (Weber et al., 2011
). The oxygen atom of the hydroxy group, O9H9, bridges three NiII cations (Ni2, Ni3, Ni3′). Together with the attached H9 atom, the environment of O9 is distorted tetrahedral, with Ni—O—Ni angles ranging from 97.13 (8) to 121.18 (9)°.
![]() | Figure 2 Possible coordination modes of the acetato ligand to metal cations M. |
The μ2- μ3-, μ4- and μ3-bridging modes of the acetato ligands and the μ3-mode of the OH group, respectively, lead to the formation of a framework structure, whereby the arrangement of the acetato ligands with the methyl groups pointing away from the NiII cations creates hydrophobic channels extending parallel to the main crystallographic axes (Figs. 3, 4
). The disordered water molecules of crystallization are situated in pockets near to the hydroxy group to which they are hydrogen-bonded (Table 2
, Fig. 4
). In addition, typical donor⋯acceptor distances suitable for hydrogen bonds of moderate strength are present between O7⋯OW2 and O2W⋯O3W (Table 2
). These interactions might further consolidate the crystal structure.
|
![]() | Figure 3 Packing plot of [Ni5(OAc)8(OH)2]·2.60H2O along [100]. |
![]() | Figure 4 Packing plot of [Ni5(OAc)8(OH)2]·2.60H2O along [001] with hydrogen-bonding interactions between the hydroxy group and the O atoms of disordered water molecules (shown as blue dotted lines). |
Synthesis and crystallization
Single crystals of [Ni5(OAc)8(OH)2]·2.60H2O were inadvertently obtained by reacting Ni(OAc)2·4H2O, KOH (>85%wt) and ∼80%wt H3AsO4 under hydrothermal conditions in an approximate 3:2:3 molar ratio. The reactants were introduced in a Teflon lined steal autoclave and heated at 493 K for 3 d. After cooling to room temperature, large faint greenish plates of [Ni5(OAc)8(OH)2]·2.60H2O were directly isolated from the mother liquor under a polarizing microscope.
Refinement
Crystal data, data collection and structure . The H atom of the hydroxide group was located in a difference-Fourier map and was refined as riding on the parent O atom with Uiso(H) = 1.5Ueq(O). Free of the occupation factors of the three crystal water O-atom positions indicated underoccupation for all of them. For the final structure model, the two least occupied positions (OW2, OW3) were paired and coupled with the occupation factor of the most occupied site (OW1) so that the sum of site occupation factors equals 1. The water H atoms could not be located and were excluded from the structural model, but are included for calculation of crystal data.
|
Structural data
CCDC reference: 2420345
https://doi.org/10.1107/S2414314625000823/bt4163sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314625000823/bt4163Isup2.hkl
[Ni5(C2H3O2)8(OH)2]·2.60H2O | Dx = 1.839 Mg m−3 |
Mr = 846.80 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 9821 reflections |
a = 23.3025 (11) Å | θ = 1.8–30.9° |
c = 11.2648 (5) Å | µ = 3.10 mm−1 |
V = 6116.9 (6) Å3 | T = 100 K |
Z = 8 | Plate, light green |
F(000) = 3456 | 0.20 × 0.12 × 0.05 × 0.04 (radius) mm |
Stoe Stadivari diffractometer | 5145 independent reflections |
Radiation source: Axo_Mo | 2744 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.069 |
Detector resolution: 13.33 pixels mm-1 | θmax = 32.5°, θmin = 2.0° |
rotation method, ω scans | h = −31→35 |
Absorption correction: multi-scan (LANA; Koziskova et al., 2016) | k = −34→33 |
Tmin = 0.581, Tmax = 0.710 | l = −16→7 |
20999 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.026P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max = 0.002 |
5145 reflections | Δρmax = 0.53 e Å−3 |
210 parameters | Δρmin = −0.91 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 1.000000 | 0.500000 | 0.500000 | 0.01941 (13) | |
Ni2 | 0.87305 (2) | 0.53890 (2) | 0.49712 (3) | 0.01354 (8) | |
Ni3 | 0.77923 (2) | 0.44682 (2) | 0.52555 (3) | 0.01217 (8) | |
O1 | 0.90748 (9) | 0.59881 (9) | 0.60134 (16) | 0.0211 (5) | |
O2 | 1.00011 (9) | 0.57249 (10) | 0.59387 (17) | 0.0284 (5) | |
O3 | 0.94065 (8) | 0.53418 (9) | 0.37833 (14) | 0.0183 (5) | |
O4 | 0.88695 (8) | 0.53130 (9) | 0.21325 (15) | 0.0214 (5) | |
O5 | 0.92122 (8) | 0.47408 (9) | 0.57859 (15) | 0.0191 (5) | |
O6 | 0.84795 (8) | 0.42100 (8) | 0.63759 (14) | 0.0134 (4) | |
O7 | 0.70649 (8) | 0.46180 (8) | 0.42844 (15) | 0.0178 (4) | |
O8 | 0.72147 (8) | 0.54712 (8) | 0.34548 (14) | 0.0136 (4) | |
O9 | 0.83183 (8) | 0.47852 (8) | 0.40476 (14) | 0.0122 (4) | |
H9 | 0.858792 | 0.448659 | 0.373873 | 0.018* | |
OW1 | 0.8698 (2) | 0.37614 (17) | 0.2711 (4) | 0.0573 (14) | 0.699 (5) |
OW2 | 0.8781 (4) | 0.3908 (4) | 0.0907 (8) | 0.070 (4) | 0.301 (5) |
OW3 | 0.8977 (4) | 0.3816 (4) | 0.3396 (8) | 0.041 (3) | 0.301 (5) |
C1 | 0.97488 (17) | 0.65457 (18) | 0.7052 (4) | 0.0710 (15) | |
H1A | 0.965806 | 0.690456 | 0.663914 | 0.106* | |
H1B | 1.015970 | 0.653458 | 0.723552 | 0.106* | |
H1C | 0.952762 | 0.652406 | 0.779061 | 0.106* | |
C2 | 0.95967 (16) | 0.60452 (16) | 0.6271 (3) | 0.0316 (8) | |
C3 | 0.98514 (14) | 0.51384 (18) | 0.1903 (3) | 0.0435 (11) | |
H3A | 0.994597 | 0.547377 | 0.141613 | 0.065* | |
H3B | 0.976865 | 0.481045 | 0.138644 | 0.065* | |
H3C | 1.017715 | 0.504596 | 0.241930 | 0.065* | |
C4 | 0.93369 (12) | 0.52682 (13) | 0.2648 (2) | 0.0205 (6) | |
C5 | 0.94067 (13) | 0.37866 (14) | 0.6475 (3) | 0.0338 (9) | |
H5A | 0.938084 | 0.369374 | 0.732144 | 0.051* | |
H5B | 0.980102 | 0.389891 | 0.628096 | 0.051* | |
H5C | 0.929924 | 0.344947 | 0.600447 | 0.051* | |
C6 | 0.90074 (13) | 0.42727 (13) | 0.6195 (2) | 0.0183 (7) | |
C7 | 0.62615 (14) | 0.52147 (16) | 0.4064 (3) | 0.0487 (11) | |
H7A | 0.618561 | 0.561801 | 0.387364 | 0.073* | |
H7B | 0.614544 | 0.513707 | 0.488435 | 0.073* | |
H7C | 0.604258 | 0.496792 | 0.352400 | 0.073* | |
C8 | 0.68878 (12) | 0.50943 (13) | 0.3925 (2) | 0.0167 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0095 (3) | 0.0283 (3) | 0.0204 (3) | −0.0013 (2) | −0.0010 (2) | 0.0099 (2) |
Ni2 | 0.01025 (19) | 0.0152 (2) | 0.01523 (16) | −0.00078 (14) | −0.00080 (15) | 0.00298 (15) |
Ni3 | 0.0127 (2) | 0.01059 (19) | 0.01326 (15) | −0.00031 (14) | 0.00098 (14) | 0.00057 (14) |
O1 | 0.0166 (12) | 0.0224 (13) | 0.0244 (10) | −0.0019 (9) | −0.0067 (9) | −0.0002 (9) |
O2 | 0.0157 (13) | 0.0348 (15) | 0.0348 (12) | −0.0056 (10) | −0.0080 (10) | 0.0042 (11) |
O3 | 0.0107 (11) | 0.0305 (13) | 0.0138 (9) | −0.0011 (9) | −0.0005 (8) | 0.0093 (9) |
O4 | 0.0134 (11) | 0.0343 (14) | 0.0165 (9) | 0.0008 (9) | −0.0017 (8) | 0.0020 (9) |
O5 | 0.0110 (11) | 0.0244 (13) | 0.0219 (10) | −0.0022 (9) | −0.0023 (8) | 0.0117 (9) |
O6 | 0.0107 (11) | 0.0138 (11) | 0.0157 (9) | −0.0002 (8) | 0.0016 (8) | 0.0037 (8) |
O7 | 0.0201 (12) | 0.0142 (11) | 0.0192 (9) | −0.0033 (9) | −0.0056 (9) | 0.0021 (9) |
O8 | 0.0114 (11) | 0.0141 (11) | 0.0154 (8) | −0.0020 (8) | 0.0005 (8) | 0.0001 (8) |
O9 | 0.0125 (11) | 0.0103 (10) | 0.0138 (8) | 0.0021 (8) | 0.0014 (8) | 0.0005 (8) |
OW1 | 0.062 (3) | 0.050 (3) | 0.060 (3) | 0.013 (2) | 0.009 (3) | 0.001 (2) |
OW2 | 0.057 (8) | 0.087 (9) | 0.065 (6) | 0.037 (6) | −0.022 (5) | −0.016 (6) |
OW3 | 0.044 (6) | 0.033 (5) | 0.047 (5) | 0.016 (4) | −0.029 (4) | −0.020 (4) |
C1 | 0.049 (3) | 0.060 (3) | 0.104 (3) | 0.001 (2) | −0.044 (3) | −0.038 (3) |
C2 | 0.034 (2) | 0.031 (2) | 0.0298 (18) | −0.0104 (17) | −0.0141 (16) | 0.0046 (15) |
C3 | 0.019 (2) | 0.087 (3) | 0.0240 (16) | 0.0062 (19) | 0.0037 (15) | 0.0094 (19) |
C4 | 0.0133 (15) | 0.0274 (18) | 0.0208 (14) | 0.0023 (12) | 0.0019 (13) | 0.0057 (13) |
C5 | 0.0184 (19) | 0.036 (2) | 0.0472 (19) | 0.0124 (15) | 0.0106 (16) | 0.0220 (17) |
C6 | 0.0160 (17) | 0.0234 (18) | 0.0154 (13) | 0.0011 (13) | 0.0001 (12) | 0.0036 (12) |
C7 | 0.015 (2) | 0.056 (3) | 0.075 (3) | 0.0044 (18) | 0.0072 (19) | 0.044 (2) |
C8 | 0.0114 (15) | 0.0257 (18) | 0.0129 (12) | 0.0006 (13) | −0.0030 (11) | 0.0013 (12) |
Ni1—O2i | 1.993 (2) | O5—C6 | 1.277 (3) |
Ni1—O2 | 1.993 (2) | O6—C6 | 1.255 (3) |
Ni1—O3i | 2.1037 (18) | O7—C8 | 1.251 (3) |
Ni1—O3 | 2.1037 (18) | O8—C8 | 1.278 (3) |
Ni1—O5 | 2.1257 (19) | O9—H9 | 1.0000 |
Ni1—O5i | 2.1257 (19) | C1—H1A | 0.9800 |
Ni2—O1 | 1.993 (2) | C1—H1B | 0.9800 |
Ni2—O9 | 1.9962 (18) | C1—H1C | 0.9800 |
Ni2—O3 | 2.0698 (18) | C1—C2 | 1.503 (5) |
Ni2—O5 | 2.0937 (19) | C3—H3A | 0.9800 |
Ni2—O8ii | 2.1016 (18) | C3—H3B | 0.9800 |
Ni2—O6iii | 2.1140 (18) | C3—H3C | 0.9800 |
Ni3—O9 | 1.9747 (18) | C3—C4 | 1.494 (4) |
Ni3—O9ii | 1.9902 (17) | C5—H5A | 0.9800 |
Ni3—O7 | 2.0474 (19) | C5—H5B | 0.9800 |
Ni3—O4ii | 2.0750 (19) | C5—H5C | 0.9800 |
Ni3—O8ii | 2.1023 (19) | C5—C6 | 1.499 (4) |
Ni3—O6 | 2.1259 (18) | C7—H7A | 0.9800 |
O1—C2 | 1.257 (4) | C7—H7B | 0.9800 |
O2—C2 | 1.259 (4) | C7—H7C | 0.9800 |
O3—C4 | 1.301 (3) | C7—C8 | 1.495 (4) |
O4—C4 | 1.238 (3) | ||
O2i—Ni1—O2 | 180.0 | C6—O5—Ni1 | 135.72 (19) |
O2—Ni1—O3 | 91.47 (8) | C6—O5—Ni2 | 125.03 (18) |
O2—Ni1—O3i | 88.53 (8) | Ni2ii—O6—Ni3 | 89.64 (7) |
O2i—Ni1—O3 | 88.53 (8) | C6—O6—Ni2ii | 142.11 (18) |
O2i—Ni1—O3i | 91.47 (8) | C6—O6—Ni3 | 127.48 (17) |
O2—Ni1—O5 | 91.20 (8) | C8—O7—Ni3 | 126.65 (19) |
O2—Ni1—O5i | 88.80 (8) | Ni2iii—O8—Ni3iii | 94.22 (7) |
O2i—Ni1—O5i | 91.20 (8) | C8—O8—Ni2iii | 136.79 (19) |
O2i—Ni1—O5 | 88.80 (8) | C8—O8—Ni3iii | 123.99 (18) |
O3—Ni1—O3i | 180.0 | Ni2—O9—H9 | 111.7 |
O3i—Ni1—O5 | 100.88 (7) | Ni3—O9—Ni2 | 101.72 (7) |
O3—Ni1—O5 | 79.12 (7) | Ni3iii—O9—Ni2 | 97.13 (8) |
O3i—Ni1—O5i | 79.12 (7) | Ni3—O9—Ni3iii | 121.18 (9) |
O3—Ni1—O5i | 100.89 (7) | Ni3—O9—H9 | 111.7 |
O5—Ni1—O5i | 180.0 | Ni3iii—O9—H9 | 111.7 |
O1—Ni2—O3 | 96.42 (8) | H1A—C1—H1B | 109.5 |
O1—Ni2—O5 | 91.80 (8) | H1A—C1—H1C | 109.5 |
O1—Ni2—O6iii | 94.78 (7) | H1B—C1—H1C | 109.5 |
O1—Ni2—O8ii | 96.25 (8) | C2—C1—H1A | 109.5 |
O1—Ni2—O9 | 174.04 (8) | C2—C1—H1B | 109.5 |
O3—Ni2—O5 | 80.62 (7) | C2—C1—H1C | 109.5 |
O3—Ni2—O6iii | 91.54 (7) | O1—C2—O2 | 126.4 (3) |
O3—Ni2—O8ii | 167.29 (7) | O1—C2—C1 | 116.4 (3) |
O5—Ni2—O6iii | 170.29 (7) | O2—C2—C1 | 117.2 (3) |
O5—Ni2—O8ii | 97.89 (7) | H3A—C3—H3B | 109.5 |
O8ii—Ni2—O6iii | 88.49 (7) | H3A—C3—H3C | 109.5 |
O9—Ni2—O3 | 89.53 (7) | H3B—C3—H3C | 109.5 |
O9—Ni2—O5 | 88.74 (7) | C4—C3—H3A | 109.5 |
O9—Ni2—O6iii | 85.46 (7) | C4—C3—H3B | 109.5 |
O9—Ni2—O8ii | 77.80 (7) | C4—C3—H3C | 109.5 |
O4ii—Ni3—O6 | 85.24 (7) | O3—C4—C3 | 118.6 (3) |
O4ii—Ni3—O8ii | 166.95 (8) | O4—C4—O3 | 124.0 (3) |
O7—Ni3—O4ii | 89.94 (8) | O4—C4—C3 | 117.4 (2) |
O7—Ni3—O6 | 171.54 (7) | H5A—C5—H5B | 109.5 |
O7—Ni3—O8ii | 102.12 (7) | H5A—C5—H5C | 109.5 |
O8ii—Ni3—O6 | 83.37 (7) | H5B—C5—H5C | 109.5 |
O9ii—Ni3—O4ii | 86.88 (7) | C6—C5—H5A | 109.5 |
O9—Ni3—O4ii | 95.99 (7) | C6—C5—H5B | 109.5 |
O9—Ni3—O6 | 92.72 (7) | C6—C5—H5C | 109.5 |
O9ii—Ni3—O6 | 85.30 (7) | O5—C6—C5 | 119.3 (3) |
O9—Ni3—O7 | 94.70 (7) | O6—C6—O5 | 121.6 (3) |
O9ii—Ni3—O7 | 87.50 (7) | O6—C6—C5 | 119.1 (3) |
O9—Ni3—O8ii | 78.25 (7) | H7A—C7—H7B | 109.5 |
O9ii—Ni3—O8ii | 98.49 (7) | H7A—C7—H7C | 109.5 |
O9—Ni3—O9ii | 176.38 (9) | H7B—C7—H7C | 109.5 |
C2—O1—Ni2 | 126.8 (2) | C8—C7—H7A | 109.5 |
C2—O2—Ni1 | 131.2 (2) | C8—C7—H7B | 109.5 |
Ni2—O3—Ni1 | 95.69 (7) | C8—C7—H7C | 109.5 |
C4—O3—Ni1 | 132.29 (19) | O7—C8—O8 | 123.2 (3) |
C4—O3—Ni2 | 123.22 (18) | O7—C8—C7 | 117.0 (3) |
C4—O4—Ni3iii | 131.83 (17) | O8—C8—C7 | 119.8 (3) |
Ni2—O5—Ni1 | 94.33 (7) | ||
Ni1—O2—C2—O1 | −4.1 (5) | Ni2ii—O6—C6—O5 | −150.4 (2) |
Ni1—O2—C2—C1 | 175.8 (2) | Ni2ii—O6—C6—C5 | 29.1 (5) |
Ni1—O3—C4—O4 | 151.5 (2) | Ni2iii—O8—C8—O7 | 166.11 (17) |
Ni1—O3—C4—C3 | −30.4 (4) | Ni2iii—O8—C8—C7 | −13.8 (4) |
Ni1—O5—C6—O6 | −164.02 (18) | Ni3iii—O4—C4—O3 | −18.6 (5) |
Ni1—O5—C6—C5 | 16.4 (4) | Ni3iii—O4—C4—C3 | 163.2 (2) |
Ni2—O1—C2—O2 | −1.8 (5) | Ni3—O6—C6—O5 | 43.1 (4) |
Ni2—O1—C2—C1 | 178.3 (2) | Ni3—O6—C6—C5 | −137.4 (2) |
Ni2—O3—C4—O4 | 12.4 (4) | Ni3—O7—C8—O8 | 44.2 (3) |
Ni2—O3—C4—C3 | −169.5 (2) | Ni3—O7—C8—C7 | −135.9 (2) |
Ni2—O5—C6—O6 | −15.7 (4) | Ni3iii—O8—C8—O7 | 18.2 (4) |
Ni2—O5—C6—C5 | 164.8 (2) | Ni3iii—O8—C8—C7 | −161.7 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) y+1/4, −x+5/4, z+1/4; (iii) −y+5/4, x−1/4, z−1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···OW1 | 1.00 | 2.06 | 2.957 (4) | 147 |
O9—H9···OW3 | 1.00 | 1.85 | 2.827 (8) | 166 |
O7···OW2iii | 2.87 | |||
OW2···OW3 | 2.85 |
Symmetry code: (iii) −y+5/4, x−1/4, z−1/4. |
Acknowledgements
We acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.
References
Abrahams, B. F., Robson, R. & Commons, C. J. (2024). Acta Cryst. C80, 787–791. CSD CrossRef IUCr Journals Google Scholar
Eshel, M. & Bino, A. (2001). Inorg. Chim. Acta, 320, 127–132. Web of Science CSD CrossRef CAS Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629. Web of Science CrossRef PubMed IUCr Journals Google Scholar
Koziskova, J., Hahn, F., Richter, J. & Kozisek, J. (2016). Acta Chim. Slovaca, 9, 136–140. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martínez-Casado, F. J., Ramos-Riesco, M., Rodríguez-Cheda, J. A., Cucinotta, F., Matesanz, E., Miletto, I., Gianotti, E., Marchese, L. & Matěj, Z. (2016). Inorg. Chem. 55, 8576–8586. Web of Science PubMed Google Scholar
Mauck, C. M., van den Heuvel, T., Hull, M. M., Zeller, M. & Oertel, C. M. (2010). Inorg. Chem. 49, 10736–10743. CSD CrossRef CAS PubMed Google Scholar
Pauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340–345. CrossRef PubMed CAS Google Scholar
Scheurell, K., Troyanov, S. I. & Kemnitz, E. (2015). Z. Anorg. Allg. Chem. 641, 1106–1109. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2024). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Švarcová, S., Klementová, M., Bezdička, P., Łasocha, W., Dušek, M. & Hradil, D. (2011). Cryst. Res. Technol. 46, 1051–1057. Google Scholar
Weber, B., Betz, R., Bauer, W. & Schlamp, S. (2011). Z. Anorg. Allg. Chem. 637, 102–107. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.