metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[bis­­(μ4-acetato-κ4O:O:O′:O′)tetra­kis­(μ3-acetato-κ3O:O:O′)bis­­(μ2-acetato-κ2O:O′)bis­­(μ3-hydroxido)penta­nickel(II)] 2.60-hydrate]

crossmark logo

aTU Wien, X-Ray Centre, Getreidemarkt 9/E057, 1060 Vienna, Austria, and bTU Wien, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/E164-05-1, 1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 22 January 2025; accepted 29 January 2025; online 7 February 2025)

The title compound, {[Ni5(C2H3O2)8(OH)2]·2.60H2O}n or [Ni5(OAc)8(OH)2]·2.60H2O (OAc is the acetate anion, C2H3O2), represents a hydrated basic acetate. Its asymmetric unit comprises half of the formula unit, with one of the three unique NiII cations situated at an inversion centre. The NiII atoms are in octa­hedral coordination environments by O atoms of the acetato ligands and by the basic OH group. The different kinds of bridging modes (μ2, 2×μ3, and μ4 for the acetato ligands; μ3 for the OH group) lead to the formation of a framework structure with hydro­phobic channels extending parallel to the main crystallographic axes. Disordered water mol­ecules are situated in pockets close to the OH groups and are held in place by hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nickel acetate, Ni(OAc)2, is a common precursor for the synthesis of oxygen-containing nickel compounds and is usually employed in form of its tetra­hydrate. As it decomposes easily when the temperature is increased, it is used for typical solid-state reactions. As a result of its good solubility in water, nickel acetate can also be used for syntheses in aqueous media or under hydro­thermal conditions. Precisely for this purpose, Ni(OAc)2 was employed as a precursor intended for phase-formation studies of nickel arsenates under hydro­thermal conditions. However, a basic nickel acetate of composition [Ni5(OAc)8(OH)2]·2.60H2O had formed serendipitously instead, and its crystal structure is reported here.

In general, basic acetates comprise metal cations bound to a collection of acetate anions and to an O2– ion or an OH group. The latter bridge several metal atoms (M) and thus form oxido-centred coordination polyhedra, usually with {OM3}-/{(HO)M2}-trigonal–planar or {OM4}-/{(HO)M3}-tetra­hedral shapes. These kinds of structural features are observed, for example, in the acetate compounds Be4O(OAc)6 (Pauling & Sherman, 1934[Pauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340-345.]), Mg3O(OAc)4 (Scheurell et al., 2015[Scheurell, K., Troyanov, S. I. & Kemnitz, E. (2015). Z. Anorg. Allg. Chem. 641, 1106-1109.]), [Cr8(OH)8(OAc)16]·30H2O (Eshel & Bino, 2001[Eshel, M. & Bino, A. (2001). Inorg. Chim. Acta, 320, 127-132.]), Fe3O(OAc)7(HOAc) (Abrahams et al., 2024[Abrahams, B. F., Robson, R. & Commons, C. J. (2024). Acta Cryst. C80, 787-791.]), Cu2(OH)3(OAc)·H2O (Švarcová et al., 2011[Švarcová, S., Klementová, M., Bezdička, P., Łasocha, W., Dušek, M. & Hradil, D. (2011). Cryst. Res. Technol. 46, 1051-1057.]), Pb3O2(OAc)2·0.5H2O (Mauck et al., 2010[Mauck, C. M., van den Heuvel, T., Hull, M. M., Zeller, M. & Oertel, C. M. (2010). Inorg. Chem. 49, 10736-10743.]), Pb4O(OAc)6 or Pb2O(OAc)2 (Martínez Casado et al., 2016[Martínez-Casado, F. J., Ramos-Riesco, M., Rodríguez-Cheda, J. A., Cucinotta, F., Matesanz, E., Miletto, I., Gianotti, E., Marchese, L. & Matěj, Z. (2016). Inorg. Chem. 55, 8576-8586.]). In the title compound, an {(HO)Ni3} unit with tetra­hedral shape is present, as discussed in more detail below.

[Ni5(OAc)8(OH)2]·2.60H2O is isostructural with the magnesium analogue, [Mg5(OAc)8(OH)2]·1.19H2O (Scheurell et al., 2015[Scheurell, K., Troyanov, S. I. & Kemnitz, E. (2015). Z. Anorg. Allg. Chem. 641, 1106-1109.]). The asymmetric unit of [Ni5(OAc)8(OH)2]·2.60H2O comprises of half of the formula unit, with Ni1 situated at a special position (multiplicity 8, Wyckoff letter d, site symmetry [\overline{1}]) of space group I41/a. The three NiII cations are octa­hedrally surrounded by O atoms, with Ni1 only by carboxyl­ate O atoms, Ni2 by five carboxyl­ate O atoms and one O atom (O9) of the OH group, and Ni3 by four carboxyl­ate O atoms and two OH groups (Fig. 1[link]Table 1[link]). The Ni—O distances range from 1.993 (2) to 2.1259 (18) Å, with a mean of 2.063 (55) Å, which is close to the literature value of 2.070 (54) calculated for 242 [NiO6] polyhedra (Gagné & Hawthorne, 2020[Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581-629.]).

Table 1
Selected bond lengths (Å)

Ni1—O2 1.993 (2) Ni2—O6ii 2.1140 (18)
Ni1—O3 2.1037 (18) Ni3—O9 1.9747 (18)
Ni1—O5 2.1257 (19) Ni3—O9i 1.9902 (17)
Ni2—O1 1.993 (2) Ni3—O7 2.0474 (19)
Ni2—O9 1.9962 (18) Ni3—O4i 2.0750 (19)
Ni2—O3 2.0698 (18) Ni3—O8i 2.1023 (19)
Ni2—O5 2.0937 (19) Ni3—O6 2.1259 (18)
Ni2—O8i 2.1016 (18)    
Symmetry codes: (i) [y+{\script{1\over 4}}, -x+{\script{5\over 4}}, z+{\script{1\over 4}}]; (ii) [-y+{\script{5\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}].
[Figure 1]
Figure 1
The coordination of the NiII atoms in the crystal structure of [Ni5(OAc)8(OH)2]·2.6H2O. Displacement ellipsoids are drawn at the 40% probability level; for clarity, methyl H atoms and the O atoms of disordered water mol­ecules are not shown. [Symmetry codes: (i) −y + [{5\over 4}], x − [{1\over 4}], z  − [{1\over 4}]; (ii) y + [{1\over 4}], −x + [{5\over 4}], z + [{1\over 4}]; (iii) −x + 2, −y + 1, −z + 1.]

From the seven different possible coordination modes of acetato ligands to central MII cations shown in Fig. 2[link], the acetate groups in the structure of the title compound feature only three. Coordination mode (a) is bridging two NiII cations in a bis-monodentate manner, μ2-(-κ1O,κ1O′), and realized for carboxyl­ate group C2(O1)O2; mode (b) is bridging three NiII cations in a monodentate-bis-monodentate manner, μ3-(-κ1Oκ2O′), and realized for carboxyl­ate groups C4(O3)O4 and C7(O8)O7; mode (c) is bridging four NiII cations in a bis­(bis-monodentate) manner, μ4-(-κ2Oκ2O′, and realized for carboxyl­ate group C5(O5)O6. Monodentate coordination mode (d), or any of the chelating coordination modes (eg) detailed in Fig. 2[link] are not realized, but are known for other divalent first-row transition metals M, e.g. for anhydrous iron(II) acetate (Weber et al., 2011[Weber, B., Betz, R., Bauer, W. & Schlamp, S. (2011). Z. Anorg. Allg. Chem. 637, 102-107.]). The oxygen atom of the hy­droxy group, O9H9, bridges three NiII cations (Ni2, Ni3, Ni3′). Together with the attached H9 atom, the environment of O9 is distorted tetra­hedral, with Ni—O—Ni angles ranging from 97.13 (8) to 121.18 (9)°.

[Figure 2]
Figure 2
Possible coordination modes of the acetato ligand to metal cations M.

The μ2- μ3-, μ4- and μ3-bridging modes of the acetato ligands and the μ3-mode of the OH group, respectively, lead to the formation of a framework structure, whereby the arrangement of the acetato ligands with the methyl groups pointing away from the NiII cations creates hydro­phobic channels extending parallel to the main crystallographic axes (Figs. 3[link], 4[link]). The disordered water mol­ecules of crystallization are situated in pockets near to the hy­droxy group to which they are hydrogen-bonded (Table 2[link], Fig. 4[link]). In addition, typical donor⋯acceptor distances suitable for hydrogen bonds of moderate strength are present between O7⋯OW2 and O2W⋯O3W (Table 2[link]). These inter­actions might further consolidate the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯OW1 1.00 2.06 2.957 (4) 147
O9—H9⋯OW3 1.00 1.85 2.827 (8) 166
O7⋯OW2ii     2.87  
OW2⋯OW3     2.85  
Symmetry code: (ii) [-y+{\script{5\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}].
[Figure 3]
Figure 3
Packing plot of [Ni5(OAc)8(OH)2]·2.60H2O along [100].
[Figure 4]
Figure 4
Packing plot of [Ni5(OAc)8(OH)2]·2.60H2O along [001] with hydrogen-bonding inter­actions between the hy­droxy group and the O atoms of disordered water mol­ecules (shown as blue dotted lines).

Synthesis and crystallization

Single crystals of [Ni5(OAc)8(OH)2]·2.60H2O were inadvertently obtained by reacting Ni(OAc)2·4H2O, KOH (>85%wt) and ∼80%wt H3AsO4 under hydro­thermal conditions in an approximate 3:2:3 molar ratio. The reactants were introduced in a Teflon lined steal autoclave and heated at 493 K for 3 d. After cooling to room temperature, large faint greenish plates of [Ni5(OAc)8(OH)2]·2.60H2O were directly isolated from the mother liquor under a polarizing microscope.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atom of the hydroxide group was located in a difference-Fourier map and was refined as riding on the parent O atom with Uiso(H) = 1.5Ueq(O). Free refinement of the occupation factors of the three crystal water O-atom positions indicated underoccupation for all of them. For the final structure model, the two least occupied positions (OW2, OW3) were paired and coupled with the occupation factor of the most occupied site (OW1) so that the sum of site occupation factors equals 1. The water H atoms could not be located and were excluded from the structural model, but are included for calculation of crystal data.

Table 3
Experimental details

Crystal data
Chemical formula [Ni5(C2H3O2)8(OH)2]·2.60H2O
Mr 846.80
Crystal system, space group Tetragonal, I41/a
Temperature (K) 100
a, c (Å) 23.3025 (11), 11.2648 (5)
V3) 6116.9 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.10
Crystal size (mm) 0.20 × 0.12 × 0.05 × 0.04 (radius)
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kozisek, J. (2016). Acta Chim. Slovaca, 9, 136-140.])
Tmin, Tmax 0.581, 0.710
No. of measured, independent and observed [I > 2σ(I)] reflections 20999, 5145, 2744
Rint 0.069
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.069, 0.83
No. of reflections 5145
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.91
Computer programs: X-AREA (Stoe & Cie, 2024[Stoe & Cie (2024). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Poly[[bis(µ4-acetato-κ4O:O:O':O')tetrakis(µ3-acetato-κ3O:O:O')bis(µ2-acetato-κ2O:O')bis(µ3-hydroxido)pentanickel(II)] 2.60-hydrate] top
Crystal data top
[Ni5(C2H3O2)8(OH)2]·2.60H2ODx = 1.839 Mg m3
Mr = 846.80Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9821 reflections
a = 23.3025 (11) Åθ = 1.8–30.9°
c = 11.2648 (5) ŵ = 3.10 mm1
V = 6116.9 (6) Å3T = 100 K
Z = 8Plate, light green
F(000) = 34560.20 × 0.12 × 0.05 × 0.04 (radius) mm
Data collection top
Stoe Stadivari
diffractometer
5145 independent reflections
Radiation source: Axo_Mo2744 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.069
Detector resolution: 13.33 pixels mm-1θmax = 32.5°, θmin = 2.0°
rotation method, ω scansh = 3135
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
k = 3433
Tmin = 0.581, Tmax = 0.710l = 167
20999 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.002
5145 reflectionsΔρmax = 0.53 e Å3
210 parametersΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni11.0000000.5000000.5000000.01941 (13)
Ni20.87305 (2)0.53890 (2)0.49712 (3)0.01354 (8)
Ni30.77923 (2)0.44682 (2)0.52555 (3)0.01217 (8)
O10.90748 (9)0.59881 (9)0.60134 (16)0.0211 (5)
O21.00011 (9)0.57249 (10)0.59387 (17)0.0284 (5)
O30.94065 (8)0.53418 (9)0.37833 (14)0.0183 (5)
O40.88695 (8)0.53130 (9)0.21325 (15)0.0214 (5)
O50.92122 (8)0.47408 (9)0.57859 (15)0.0191 (5)
O60.84795 (8)0.42100 (8)0.63759 (14)0.0134 (4)
O70.70649 (8)0.46180 (8)0.42844 (15)0.0178 (4)
O80.72147 (8)0.54712 (8)0.34548 (14)0.0136 (4)
O90.83183 (8)0.47852 (8)0.40476 (14)0.0122 (4)
H90.8587920.4486590.3738730.018*
OW10.8698 (2)0.37614 (17)0.2711 (4)0.0573 (14)0.699 (5)
OW20.8781 (4)0.3908 (4)0.0907 (8)0.070 (4)0.301 (5)
OW30.8977 (4)0.3816 (4)0.3396 (8)0.041 (3)0.301 (5)
C10.97488 (17)0.65457 (18)0.7052 (4)0.0710 (15)
H1A0.9658060.6904560.6639140.106*
H1B1.0159700.6534580.7235520.106*
H1C0.9527620.6524060.7790610.106*
C20.95967 (16)0.60452 (16)0.6271 (3)0.0316 (8)
C30.98514 (14)0.51384 (18)0.1903 (3)0.0435 (11)
H3A0.9945970.5473770.1416130.065*
H3B0.9768650.4810450.1386440.065*
H3C1.0177150.5045960.2419300.065*
C40.93369 (12)0.52682 (13)0.2648 (2)0.0205 (6)
C50.94067 (13)0.37866 (14)0.6475 (3)0.0338 (9)
H5A0.9380840.3693740.7321440.051*
H5B0.9801020.3898910.6280960.051*
H5C0.9299240.3449470.6004470.051*
C60.90074 (13)0.42727 (13)0.6195 (2)0.0183 (7)
C70.62615 (14)0.52147 (16)0.4064 (3)0.0487 (11)
H7A0.6185610.5618010.3873640.073*
H7B0.6145440.5137070.4884350.073*
H7C0.6042580.4967920.3524000.073*
C80.68878 (12)0.50943 (13)0.3925 (2)0.0167 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0095 (3)0.0283 (3)0.0204 (3)0.0013 (2)0.0010 (2)0.0099 (2)
Ni20.01025 (19)0.0152 (2)0.01523 (16)0.00078 (14)0.00080 (15)0.00298 (15)
Ni30.0127 (2)0.01059 (19)0.01326 (15)0.00031 (14)0.00098 (14)0.00057 (14)
O10.0166 (12)0.0224 (13)0.0244 (10)0.0019 (9)0.0067 (9)0.0002 (9)
O20.0157 (13)0.0348 (15)0.0348 (12)0.0056 (10)0.0080 (10)0.0042 (11)
O30.0107 (11)0.0305 (13)0.0138 (9)0.0011 (9)0.0005 (8)0.0093 (9)
O40.0134 (11)0.0343 (14)0.0165 (9)0.0008 (9)0.0017 (8)0.0020 (9)
O50.0110 (11)0.0244 (13)0.0219 (10)0.0022 (9)0.0023 (8)0.0117 (9)
O60.0107 (11)0.0138 (11)0.0157 (9)0.0002 (8)0.0016 (8)0.0037 (8)
O70.0201 (12)0.0142 (11)0.0192 (9)0.0033 (9)0.0056 (9)0.0021 (9)
O80.0114 (11)0.0141 (11)0.0154 (8)0.0020 (8)0.0005 (8)0.0001 (8)
O90.0125 (11)0.0103 (10)0.0138 (8)0.0021 (8)0.0014 (8)0.0005 (8)
OW10.062 (3)0.050 (3)0.060 (3)0.013 (2)0.009 (3)0.001 (2)
OW20.057 (8)0.087 (9)0.065 (6)0.037 (6)0.022 (5)0.016 (6)
OW30.044 (6)0.033 (5)0.047 (5)0.016 (4)0.029 (4)0.020 (4)
C10.049 (3)0.060 (3)0.104 (3)0.001 (2)0.044 (3)0.038 (3)
C20.034 (2)0.031 (2)0.0298 (18)0.0104 (17)0.0141 (16)0.0046 (15)
C30.019 (2)0.087 (3)0.0240 (16)0.0062 (19)0.0037 (15)0.0094 (19)
C40.0133 (15)0.0274 (18)0.0208 (14)0.0023 (12)0.0019 (13)0.0057 (13)
C50.0184 (19)0.036 (2)0.0472 (19)0.0124 (15)0.0106 (16)0.0220 (17)
C60.0160 (17)0.0234 (18)0.0154 (13)0.0011 (13)0.0001 (12)0.0036 (12)
C70.015 (2)0.056 (3)0.075 (3)0.0044 (18)0.0072 (19)0.044 (2)
C80.0114 (15)0.0257 (18)0.0129 (12)0.0006 (13)0.0030 (11)0.0013 (12)
Geometric parameters (Å, º) top
Ni1—O2i1.993 (2)O5—C61.277 (3)
Ni1—O21.993 (2)O6—C61.255 (3)
Ni1—O3i2.1037 (18)O7—C81.251 (3)
Ni1—O32.1037 (18)O8—C81.278 (3)
Ni1—O52.1257 (19)O9—H91.0000
Ni1—O5i2.1257 (19)C1—H1A0.9800
Ni2—O11.993 (2)C1—H1B0.9800
Ni2—O91.9962 (18)C1—H1C0.9800
Ni2—O32.0698 (18)C1—C21.503 (5)
Ni2—O52.0937 (19)C3—H3A0.9800
Ni2—O8ii2.1016 (18)C3—H3B0.9800
Ni2—O6iii2.1140 (18)C3—H3C0.9800
Ni3—O91.9747 (18)C3—C41.494 (4)
Ni3—O9ii1.9902 (17)C5—H5A0.9800
Ni3—O72.0474 (19)C5—H5B0.9800
Ni3—O4ii2.0750 (19)C5—H5C0.9800
Ni3—O8ii2.1023 (19)C5—C61.499 (4)
Ni3—O62.1259 (18)C7—H7A0.9800
O1—C21.257 (4)C7—H7B0.9800
O2—C21.259 (4)C7—H7C0.9800
O3—C41.301 (3)C7—C81.495 (4)
O4—C41.238 (3)
O2i—Ni1—O2180.0C6—O5—Ni1135.72 (19)
O2—Ni1—O391.47 (8)C6—O5—Ni2125.03 (18)
O2—Ni1—O3i88.53 (8)Ni2ii—O6—Ni389.64 (7)
O2i—Ni1—O388.53 (8)C6—O6—Ni2ii142.11 (18)
O2i—Ni1—O3i91.47 (8)C6—O6—Ni3127.48 (17)
O2—Ni1—O591.20 (8)C8—O7—Ni3126.65 (19)
O2—Ni1—O5i88.80 (8)Ni2iii—O8—Ni3iii94.22 (7)
O2i—Ni1—O5i91.20 (8)C8—O8—Ni2iii136.79 (19)
O2i—Ni1—O588.80 (8)C8—O8—Ni3iii123.99 (18)
O3—Ni1—O3i180.0Ni2—O9—H9111.7
O3i—Ni1—O5100.88 (7)Ni3—O9—Ni2101.72 (7)
O3—Ni1—O579.12 (7)Ni3iii—O9—Ni297.13 (8)
O3i—Ni1—O5i79.12 (7)Ni3—O9—Ni3iii121.18 (9)
O3—Ni1—O5i100.89 (7)Ni3—O9—H9111.7
O5—Ni1—O5i180.0Ni3iii—O9—H9111.7
O1—Ni2—O396.42 (8)H1A—C1—H1B109.5
O1—Ni2—O591.80 (8)H1A—C1—H1C109.5
O1—Ni2—O6iii94.78 (7)H1B—C1—H1C109.5
O1—Ni2—O8ii96.25 (8)C2—C1—H1A109.5
O1—Ni2—O9174.04 (8)C2—C1—H1B109.5
O3—Ni2—O580.62 (7)C2—C1—H1C109.5
O3—Ni2—O6iii91.54 (7)O1—C2—O2126.4 (3)
O3—Ni2—O8ii167.29 (7)O1—C2—C1116.4 (3)
O5—Ni2—O6iii170.29 (7)O2—C2—C1117.2 (3)
O5—Ni2—O8ii97.89 (7)H3A—C3—H3B109.5
O8ii—Ni2—O6iii88.49 (7)H3A—C3—H3C109.5
O9—Ni2—O389.53 (7)H3B—C3—H3C109.5
O9—Ni2—O588.74 (7)C4—C3—H3A109.5
O9—Ni2—O6iii85.46 (7)C4—C3—H3B109.5
O9—Ni2—O8ii77.80 (7)C4—C3—H3C109.5
O4ii—Ni3—O685.24 (7)O3—C4—C3118.6 (3)
O4ii—Ni3—O8ii166.95 (8)O4—C4—O3124.0 (3)
O7—Ni3—O4ii89.94 (8)O4—C4—C3117.4 (2)
O7—Ni3—O6171.54 (7)H5A—C5—H5B109.5
O7—Ni3—O8ii102.12 (7)H5A—C5—H5C109.5
O8ii—Ni3—O683.37 (7)H5B—C5—H5C109.5
O9ii—Ni3—O4ii86.88 (7)C6—C5—H5A109.5
O9—Ni3—O4ii95.99 (7)C6—C5—H5B109.5
O9—Ni3—O692.72 (7)C6—C5—H5C109.5
O9ii—Ni3—O685.30 (7)O5—C6—C5119.3 (3)
O9—Ni3—O794.70 (7)O6—C6—O5121.6 (3)
O9ii—Ni3—O787.50 (7)O6—C6—C5119.1 (3)
O9—Ni3—O8ii78.25 (7)H7A—C7—H7B109.5
O9ii—Ni3—O8ii98.49 (7)H7A—C7—H7C109.5
O9—Ni3—O9ii176.38 (9)H7B—C7—H7C109.5
C2—O1—Ni2126.8 (2)C8—C7—H7A109.5
C2—O2—Ni1131.2 (2)C8—C7—H7B109.5
Ni2—O3—Ni195.69 (7)C8—C7—H7C109.5
C4—O3—Ni1132.29 (19)O7—C8—O8123.2 (3)
C4—O3—Ni2123.22 (18)O7—C8—C7117.0 (3)
C4—O4—Ni3iii131.83 (17)O8—C8—C7119.8 (3)
Ni2—O5—Ni194.33 (7)
Ni1—O2—C2—O14.1 (5)Ni2ii—O6—C6—O5150.4 (2)
Ni1—O2—C2—C1175.8 (2)Ni2ii—O6—C6—C529.1 (5)
Ni1—O3—C4—O4151.5 (2)Ni2iii—O8—C8—O7166.11 (17)
Ni1—O3—C4—C330.4 (4)Ni2iii—O8—C8—C713.8 (4)
Ni1—O5—C6—O6164.02 (18)Ni3iii—O4—C4—O318.6 (5)
Ni1—O5—C6—C516.4 (4)Ni3iii—O4—C4—C3163.2 (2)
Ni2—O1—C2—O21.8 (5)Ni3—O6—C6—O543.1 (4)
Ni2—O1—C2—C1178.3 (2)Ni3—O6—C6—C5137.4 (2)
Ni2—O3—C4—O412.4 (4)Ni3—O7—C8—O844.2 (3)
Ni2—O3—C4—C3169.5 (2)Ni3—O7—C8—C7135.9 (2)
Ni2—O5—C6—O615.7 (4)Ni3iii—O8—C8—O718.2 (4)
Ni2—O5—C6—C5164.8 (2)Ni3iii—O8—C8—C7161.7 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) y+1/4, x+5/4, z+1/4; (iii) y+5/4, x1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···OW11.002.062.957 (4)147
O9—H9···OW31.001.852.827 (8)166
O7···OW2iii2.87
OW2···OW32.85
Symmetry code: (iii) y+5/4, x1/4, z1/4.
 

Acknowledgements

We acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationAbrahams, B. F., Robson, R. & Commons, C. J. (2024). Acta Cryst. C80, 787–791.  CSD CrossRef IUCr Journals Google Scholar
First citationEshel, M. & Bino, A. (2001). Inorg. Chim. Acta, 320, 127–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629.  Web of Science CrossRef PubMed IUCr Journals Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kozisek, J. (2016). Acta Chim. Slovaca, 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Casado, F. J., Ramos-Riesco, M., Rodríguez-Cheda, J. A., Cucinotta, F., Matesanz, E., Miletto, I., Gianotti, E., Marchese, L. & Matěj, Z. (2016). Inorg. Chem. 55, 8576–8586.  Web of Science PubMed Google Scholar
First citationMauck, C. M., van den Heuvel, T., Hull, M. M., Zeller, M. & Oertel, C. M. (2010). Inorg. Chem. 49, 10736–10743.  CSD CrossRef CAS PubMed Google Scholar
First citationPauling, L. & Sherman, J. (1934). Proc. Natl Acad. Sci. USA, 20, 340–345.  CrossRef PubMed CAS Google Scholar
First citationScheurell, K., Troyanov, S. I. & Kemnitz, E. (2015). Z. Anorg. Allg. Chem. 641, 1106–1109.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2024). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationŠvarcová, S., Klementová, M., Bezdička, P., Łasocha, W., Dušek, M. & Hradil, D. (2011). Cryst. Res. Technol. 46, 1051–1057.  Google Scholar
First citationWeber, B., Betz, R., Bauer, W. & Schlamp, S. (2011). Z. Anorg. Allg. Chem. 637, 102–107.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146