organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(2-Chloro­phen­yl)di­phenyl­meth­yl]-1H-pyrazole

crossmark logo

aDepartment of Pharmaceutical/Medicinal Chemistry II, Institute for Pharmacy, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany, and bUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: pierre.koch@chemie.uni-regensburg.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 November 2024; accepted 26 November 2024; online 3 December 2024)

The title compound C22H17ClN2, also named as TRAM-34, crystallizes in the monoclinic space group P21/n. The dihedral angles between the pyrazole ring and the three six-membered rings are 62.28 (9), 69.48 (9) and 71.30 (9)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C22H17ClN2 (I) Fig. 1[link], also named as tri­aryl­methane-34 (TRAM-34), is a structural isomer of the anti-fungal drug clotrimazole or 1-[(2-chloro­phen­yl)di­phenyl­meth­yl]-1H-imidazole. TRAM-34 is a selective and potent inhibitor of the inter­mediate-conductance, calcium-activated K+ channels KCa3.1 (KD = 20–25 nM) (Wulff et al., 2000[Wulff, H., Miller, M. J., Hänsel, W., Grissmer, S., Cahalan, M. D. & Chandy, K. D. (2000). Proc. Natl Acad. Sci. USA, 97, 8151-8156.], 2001[Wulff, H., Gutman, G. A., Cahalan, M. D. & Chandy, K. D. (2001). J. Biol. Chem. 276, 32040-32045.]). TRAM-34 was synthesized and investigated in two studies to analyze the in vivo effect of combined irradiation and KCa-targeting with TRAM-34 in a glioma mouse model (Stransky et al., 2023[Stransky, N., Ganser, K., Quintanilla-Martinez, L., Gonzalez-Menendez, I., Naumann, U., Eckert, F., Koch, P., Huber, S. M. & Ruth, P. (2023). Sci. Rep. 13, 20604.]; Ganser et al., 2024[Ganser, K., Stransky, N., Abed, T., Quintanilla-Martinez, L., Gonzalez-Menendez, I., Naumann, U., Koch, P., Krueger, M., Ruth, P., Huber, S. M. & Eckert, F. (2024). Int. J. Cancre, 155, 1886-1901.]).

[Figure 1]
Figure 1
The mol­ecular structure of I. Displacement ellipsoids are drawn at the 50% probability level.

The dihedral angles in I between the pyrazole ring and the three six-membered rings (C7–C12, C13–C18, and C19–C24) are 62.28 (9), 69.48 (9), and 71.30 (9)°, respectively. The 2-chloro­benzene ring (C19–C24) is almost perpendicular to the C13–C18 ring [dihedral angle = 81.27 (7)°]. The dihedral angles between the C7–C12 ring and the C13–C18 and C19–C24 rings are 71.44 (8) and 69.05 (8)°, respectively. For the crystal structure of clotrimazole, see Song et al. (1998[Song, H. & Shin, H.-S. (1998). Acta Cryst. C54, 1675-1677.]). In the extended structure of (I), some weak C—H⋯π inter­actions (Table 1[link]) link the mol­ecules Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg3i 0.94 2.93 3.5594 (16) 125
C16—H16⋯Cg2ii 0.94 2.88 3.6868 (18) 145
C20—H20⋯Cg3 0.94 2.89 3.6164 (17) 135
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z].
[Figure 2]
Figure 2
Part of the packing diagram viewed along the c-axis direction. Hydrogen atoms removed for clarity.

Synthesis and crystallization

The title compound was prepared using the synthetic strategy reported by Wulff et al. (2000[Wulff, H., Miller, M. J., Hänsel, W., Grissmer, S., Cahalan, M. D. & Chandy, K. D. (2000). Proc. Natl Acad. Sci. USA, 97, 8151-8156.]). To a suspension of 2-chloro­trityl chloride (12.5 g, 40 mmol) in aceto­nitrile (500 ml) was added pyrazole (8.17 g, 120 mmol). The reaction mixture was heated to reflux temperature for 3 h (during this time the reaction mixture became clear). After cooling to room temperature, the solvent was removed, and the residue was dissolved in ethyl acetate (200 ml). The organic phase was washed with water (3 × 150 ml). During this process, the title compound precipitated as a white solid, which was collected by filtration and dried (3.44 g, 25%). The filtrate was dried over sodium sulfate and solvent was evaporated. The obtained residue was recrystallized from hot ethanol solution to yield additional 7.11 g (52%) of the title compound as colorless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H17ClN2
Mr 344.82
Crystal system, space group Monoclinic, P21/n
Temperature (K) 233
a, b, c (Å) 8.8768 (3), 18.3002 (7), 10.5053 (3)
β (°) 95.942 (3)
V3) 1697.39 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.40 × 0.30 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 22452, 4092, 2854
Rint 0.070
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.00
No. of reflections 4092
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole top
Crystal data top
C22H17ClN2F(000) = 720
Mr = 344.82Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8768 (3) ÅCell parameters from 21301 reflections
b = 18.3002 (7) Åθ = 2.2–28.5°
c = 10.5053 (3) ŵ = 0.23 mm1
β = 95.942 (3)°T = 233 K
V = 1697.39 (10) Å3Plate, colourless
Z = 40.40 × 0.30 × 0.06 mm
Data collection top
Stoe IPDS 2T
diffractometer
2854 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.070
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
Detector resolution: 6.67 pixels mm-1h = 1110
rotation method scansk = 2424
22452 measured reflectionsl = 1313
4092 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.0511P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4092 reflectionsΔρmax = 0.25 e Å3
226 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89682 (4)0.34060 (2)0.81219 (4)0.03752 (11)
C10.58130 (17)0.42292 (7)0.75062 (13)0.0250 (3)
N20.62973 (14)0.38408 (6)0.63686 (11)0.0254 (3)
N30.59467 (16)0.31210 (7)0.62163 (12)0.0325 (3)
C40.6549 (2)0.29284 (9)0.51660 (15)0.0360 (4)
H40.6489320.2454760.4818080.043*
C50.7282 (2)0.35090 (9)0.46361 (16)0.0399 (4)
H50.7789810.3506180.3893820.048*
C60.71009 (19)0.40817 (8)0.54324 (14)0.0326 (3)
H60.7469280.4558720.5345240.039*
C70.67484 (16)0.49371 (8)0.77271 (13)0.0257 (3)
C80.77370 (17)0.50538 (8)0.88172 (14)0.0297 (3)
H80.7863780.4688770.9448710.036*
C90.85418 (19)0.57016 (9)0.89893 (16)0.0370 (4)
H90.9201680.5773670.9737890.044*
C100.8380 (2)0.62395 (9)0.80707 (17)0.0391 (4)
H100.8956200.6670540.8171390.047*
C110.7365 (2)0.61397 (8)0.70024 (16)0.0384 (4)
H110.7230450.6509500.6380040.046*
C120.65441 (18)0.54996 (8)0.68393 (15)0.0316 (3)
H120.5836020.5443850.6116240.038*
C130.41300 (17)0.44410 (8)0.72473 (13)0.0259 (3)
C140.31188 (18)0.40494 (8)0.64180 (15)0.0314 (3)
H140.3468060.3649340.5970330.038*
C150.15994 (19)0.42380 (9)0.62375 (16)0.0380 (4)
H150.0930760.3965390.5669900.046*
C160.10643 (19)0.48194 (9)0.68808 (15)0.0367 (4)
H160.0035070.4948990.6752550.044*
C170.20511 (19)0.52101 (9)0.77149 (15)0.0353 (4)
H170.1692560.5606870.8165240.042*
C180.35642 (18)0.50244 (9)0.78966 (15)0.0323 (3)
H180.4224260.5297780.8470210.039*
C190.60600 (17)0.37049 (7)0.86593 (13)0.0262 (3)
C200.49184 (19)0.35937 (8)0.94499 (15)0.0324 (3)
H200.3977460.3822740.9240930.039*
C210.5113 (2)0.31593 (9)1.05318 (16)0.0387 (4)
H210.4312340.3097441.1041960.046*
C220.6475 (2)0.28186 (9)1.08598 (16)0.0391 (4)
H220.6617120.2527931.1600290.047*
C230.7635 (2)0.29062 (8)1.00941 (15)0.0348 (4)
H230.8569560.2672621.0309450.042*
C240.74213 (18)0.33379 (8)0.90091 (14)0.0292 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (2)0.0464 (2)0.0397 (2)0.00709 (17)0.00596 (15)0.00740 (17)
C10.0244 (7)0.0250 (7)0.0252 (7)0.0008 (6)0.0013 (6)0.0002 (5)
N20.0235 (6)0.0254 (6)0.0271 (6)0.0019 (5)0.0025 (5)0.0019 (5)
N30.0331 (7)0.0267 (6)0.0383 (7)0.0044 (5)0.0067 (6)0.0050 (5)
C40.0378 (9)0.0329 (8)0.0373 (9)0.0007 (7)0.0040 (7)0.0091 (7)
C50.0488 (11)0.0414 (9)0.0308 (8)0.0024 (8)0.0113 (7)0.0018 (7)
C60.0341 (9)0.0325 (8)0.0317 (8)0.0032 (7)0.0061 (6)0.0031 (6)
C70.0228 (7)0.0268 (7)0.0276 (7)0.0002 (6)0.0032 (6)0.0028 (6)
C80.0266 (8)0.0319 (7)0.0301 (7)0.0016 (6)0.0001 (6)0.0033 (6)
C90.0294 (9)0.0404 (9)0.0406 (9)0.0016 (7)0.0003 (7)0.0141 (7)
C100.0374 (10)0.0307 (8)0.0508 (10)0.0082 (7)0.0129 (8)0.0135 (7)
C110.0469 (11)0.0272 (8)0.0425 (9)0.0027 (7)0.0109 (8)0.0001 (7)
C120.0333 (9)0.0289 (7)0.0320 (8)0.0004 (6)0.0009 (6)0.0001 (6)
C130.0235 (7)0.0273 (7)0.0268 (7)0.0017 (6)0.0022 (6)0.0025 (6)
C140.0276 (8)0.0308 (7)0.0353 (8)0.0036 (6)0.0007 (6)0.0024 (6)
C150.0259 (8)0.0453 (10)0.0416 (9)0.0051 (7)0.0014 (7)0.0020 (7)
C160.0243 (8)0.0464 (9)0.0395 (9)0.0022 (7)0.0030 (7)0.0067 (7)
C170.0304 (9)0.0393 (8)0.0370 (8)0.0063 (7)0.0077 (7)0.0008 (7)
C180.0297 (8)0.0344 (8)0.0321 (8)0.0003 (7)0.0001 (6)0.0022 (6)
C190.0272 (8)0.0237 (7)0.0272 (7)0.0008 (6)0.0013 (6)0.0003 (5)
C200.0322 (9)0.0322 (8)0.0337 (8)0.0000 (7)0.0075 (7)0.0021 (6)
C210.0426 (10)0.0378 (9)0.0378 (9)0.0005 (7)0.0143 (8)0.0049 (7)
C220.0504 (11)0.0334 (8)0.0339 (8)0.0020 (8)0.0063 (8)0.0093 (7)
C230.0371 (9)0.0306 (8)0.0362 (8)0.0059 (7)0.0008 (7)0.0053 (6)
C240.0282 (8)0.0284 (7)0.0307 (7)0.0004 (6)0.0026 (6)0.0002 (6)
Geometric parameters (Å, º) top
Cl1—C241.7420 (16)C12—H120.9400
C1—N21.4915 (18)C13—C141.384 (2)
C1—C131.540 (2)C13—C181.389 (2)
C1—C191.5430 (19)C14—C151.386 (2)
C1—C71.5433 (19)C14—H140.9400
N2—C61.3475 (19)C15—C161.371 (2)
N2—N31.3592 (17)C15—H150.9400
N3—C41.323 (2)C16—C171.374 (2)
C4—C51.392 (2)C16—H160.9400
C4—H40.9400C17—C181.379 (2)
C5—C61.361 (2)C17—H170.9400
C5—H50.9400C18—H180.9400
C6—H60.9400C19—C201.390 (2)
C7—C81.385 (2)C19—C241.398 (2)
C7—C121.388 (2)C20—C211.383 (2)
C8—C91.386 (2)C20—H200.9400
C8—H80.9400C21—C221.373 (2)
C9—C101.376 (2)C21—H210.9400
C9—H90.9400C22—C231.380 (2)
C10—C111.377 (3)C22—H220.9400
C10—H100.9400C23—C241.384 (2)
C11—C121.381 (2)C23—H230.9400
C11—H110.9400
N2—C1—C13109.46 (11)C14—C13—C18117.59 (14)
N2—C1—C19107.66 (11)C14—C13—C1122.33 (13)
C13—C1—C19110.58 (11)C18—C13—C1120.02 (13)
N2—C1—C7108.98 (11)C13—C14—C15121.04 (15)
C13—C1—C7108.19 (11)C13—C14—H14119.5
C19—C1—C7111.92 (12)C15—C14—H14119.5
C6—N2—N3111.30 (12)C16—C15—C14120.50 (15)
C6—N2—C1130.33 (12)C16—C15—H15119.7
N3—N2—C1118.34 (11)C14—C15—H15119.7
C4—N3—N2104.41 (12)C15—C16—C17119.18 (16)
N3—C4—C5112.11 (14)C15—C16—H16120.4
N3—C4—H4123.9C17—C16—H16120.4
C5—C4—H4123.9C16—C17—C18120.50 (15)
C6—C5—C4104.60 (14)C16—C17—H17119.8
C6—C5—H5127.7C18—C17—H17119.8
C4—C5—H5127.7C17—C18—C13121.19 (15)
N2—C6—C5107.58 (14)C17—C18—H18119.4
N2—C6—H6126.2C13—C18—H18119.4
C5—C6—H6126.2C20—C19—C24115.87 (13)
C8—C7—C12117.94 (14)C20—C19—C1120.46 (13)
C8—C7—C1122.59 (13)C24—C19—C1123.63 (13)
C12—C7—C1119.37 (13)C21—C20—C19122.59 (15)
C7—C8—C9120.89 (15)C21—C20—H20118.7
C7—C8—H8119.6C19—C20—H20118.7
C9—C8—H8119.6C22—C21—C20119.94 (15)
C10—C9—C8120.37 (15)C22—C21—H21120.0
C10—C9—H9119.8C20—C21—H21120.0
C8—C9—H9119.8C21—C22—C23119.47 (15)
C9—C10—C11119.26 (15)C21—C22—H22120.3
C9—C10—H10120.4C23—C22—H22120.3
C11—C10—H10120.4C22—C23—C24119.99 (15)
C10—C11—C12120.41 (16)C22—C23—H23120.0
C10—C11—H11119.8C24—C23—H23120.0
C12—C11—H11119.8C23—C24—C19122.12 (14)
C11—C12—C7121.00 (15)C23—C24—Cl1115.68 (12)
C11—C12—H12119.5C19—C24—Cl1122.19 (11)
C7—C12—H12119.5
C13—C1—N2—C6102.06 (17)C7—C1—C13—C14146.06 (14)
C19—C1—N2—C6137.68 (15)N2—C1—C13—C18155.38 (13)
C7—C1—N2—C616.1 (2)C19—C1—C13—C1886.16 (16)
C13—C1—N2—N380.21 (15)C7—C1—C13—C1836.74 (17)
C19—C1—N2—N340.04 (16)C18—C13—C14—C150.5 (2)
C7—C1—N2—N3161.64 (12)C1—C13—C14—C15177.75 (14)
C6—N2—N3—C40.18 (17)C13—C14—C15—C160.0 (2)
C1—N2—N3—C4178.31 (13)C14—C15—C16—C170.5 (2)
N2—N3—C4—C50.01 (19)C15—C16—C17—C180.5 (2)
N3—C4—C5—C60.2 (2)C16—C17—C18—C130.1 (2)
N3—N2—C6—C50.28 (18)C14—C13—C18—C170.4 (2)
C1—N2—C6—C5178.13 (14)C1—C13—C18—C17177.77 (14)
C4—C5—C6—N20.26 (19)N2—C1—C19—C20131.44 (14)
N2—C1—C7—C8116.07 (15)C13—C1—C19—C2011.89 (18)
C13—C1—C7—C8124.98 (15)C7—C1—C19—C20108.82 (15)
C19—C1—C7—C82.90 (19)N2—C1—C19—C2450.99 (17)
N2—C1—C7—C1267.44 (16)C13—C1—C19—C24170.54 (13)
C13—C1—C7—C1251.50 (17)C7—C1—C19—C2468.75 (17)
C19—C1—C7—C12173.59 (13)C24—C19—C20—C211.2 (2)
C12—C7—C8—C92.5 (2)C1—C19—C20—C21176.56 (14)
C1—C7—C8—C9179.07 (14)C19—C20—C21—C220.0 (3)
C7—C8—C9—C100.5 (2)C20—C21—C22—C230.8 (3)
C8—C9—C10—C112.6 (2)C21—C22—C23—C240.3 (2)
C9—C10—C11—C121.5 (3)C22—C23—C24—C191.0 (2)
C10—C11—C12—C71.6 (3)C22—C23—C24—Cl1179.98 (13)
C8—C7—C12—C113.6 (2)C20—C19—C24—C231.7 (2)
C1—C7—C12—C11179.73 (14)C1—C19—C24—C23175.98 (14)
N2—C1—C13—C1427.42 (18)C20—C19—C24—Cl1179.37 (11)
C19—C1—C13—C1491.04 (16)C1—C19—C24—Cl13.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg3i0.942.933.5594 (16)125
C16—H16···Cg2ii0.942.883.6868 (18)145
C20—H20···Cg30.942.893.6164 (17)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

References

First citationGanser, K., Stransky, N., Abed, T., Quintanilla–Martinez, L., Gonzalez–Menendez, I., Naumann, U., Koch, P., Krueger, M., Ruth, P., Huber, S. M. & Eckert, F. (2024). Int. J. Cancre, 155, 1886–1901.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, H. & Shin, H.-S. (1998). Acta Cryst. C54, 1675–1677.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStransky, N., Ganser, K., Quintanilla-Martinez, L., Gonzalez-Menendez, I., Naumann, U., Eckert, F., Koch, P., Huber, S. M. & Ruth, P. (2023). Sci. Rep. 13, 20604.  Web of Science CrossRef PubMed Google Scholar
First citationWulff, H., Gutman, G. A., Cahalan, M. D. & Chandy, K. D. (2001). J. Biol. Chem. 276, 32040–32045.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWulff, H., Miller, M. J., Hänsel, W., Grissmer, S., Cahalan, M. D. & Chandy, K. D. (2000). Proc. Natl Acad. Sci. USA, 97, 8151–8156.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146