organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Iodo­aniline

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za

Edited by I. Brito, University of Antofagasta, Chile (Received 13 November 2024; accepted 18 December 2024; online 24 December 2024)

The title compound, C6H6IN, is the meta-iodinated derivative of aniline. The asymmetric unit contains two mol­ecules. The structure was refined as a two-component inversion twin with a volume ratio of 55.6:44.4. In the crystal, cooperative hydrogen bonds of the N–H⋯N type connect the mol­ecules into infinite chains propagating along the a-axis direction. Dispersive I⋯I contacts extend these chains to sheets perpendicular to the crystallographic c axis.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aniline and its derivatives are valuable starting materials in synthetic organic chemistry and have found ample use in industrial processes, as is apparent in the historic establishment of the artificial dye and, subsequently, pharmaceutical industry (Griess, 1879[Griess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426-428.]; Bopp et al., 1891[Bopp, A., v, Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006-1078.]). As an activated aromatic system, a large number of reactions is available for further functionalization of the phenyl group as well as the ipso-substitution of the amine functionality itself (Becker et al., 2000[Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum - Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.]; Sandmeyer, 1884[Sandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633-1635.]), which allows for tailoring the physicochemical and spectroscopic properties of the target mol­ecules over a seemingly endless range. In a continuation of our own inter­est in the structural variety of aniline derivatives (Islor et al., 2013[Islor, A. M., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217-218.]; Betz & Gerber, 2011[Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359.]; Betz et al., 2008[Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501.], 2011a[Betz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118.],b[Betz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489.]; Betz, 2015[Betz, R. (2015). Crystallogr. Rep. 60, 1049-1052.]; Hosten & Betz, 2021a[Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329-331.],b[Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475-477.],c[Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 187-188.]) as well as pyridine-based amines (Betz et al., 2011c[Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011c). Acta Cryst. E67, o2154.],d[Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011d). Acta Cryst. E67, o2513.]) we sought to determine the structure of 3-iodo­aniline. Structural information about this mol­ecule is scarce as only protonated versions of the compound under investigation are apparent in the literature, such as the chloride (Xing et al., 2021[Xing, T., Elsegood, M. R. J., Dale, S. H. & Redshaw, C. (2021). Catalysts 11, 1554.]), iodide (Gray & Jones, 2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. B. - Chem. Sci. 57, 61-72.]), phosphate (Yoshii et al., 2015[Yoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845-20854.]), ortho-nitro­phthalate (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o246-o248.]) as well as the crown-ether-supported salts of an anionic nickel coordination compound (Kubo et al., 2021[Kubo, K., Takahashi, K., Nakagawa, S., Sakai, K., Noro, S., Akutagawa, T. & Nakamura, T. (2021). Cryst. Growth Des. 21, 2340-2347.]) and two Keggin-ion-inspired polyoxometallates derived from molybdenum (Xiong et al., 2015[Xiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2015). CrystEngComm, 17, 856-861.], 2016[Xiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2016). Cryst. Growth Des. 16, 800-807.]), with a metal–organic molybdenum coordination compound being the only example in which structural data about the neutral title compound – as a ligand – is available (Xing et al., 2021[Xing, T., Elsegood, M. R. J., Dale, S. H. & Redshaw, C. (2021). Catalysts 11, 1554.]).

The title compound is the meta-iodinated derivative of aniline. The asymmetric unit contains two mol­ecules. The structure was refined as an inversion twin with a volume ratio of 55.6:44.4. The C—I bond lengths of 2.105 (10) and 2.113 (11) Å are in good agreement with other aromatic iodine compounds whose metrical parameters have been determined on the basis of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The intra­cyclic C—C—C angles span a range of 117.9 (11)–122.4 (11)° in the first and 117.9 (9)–122.5 (10)° in the second mol­ecule present in the asymmetric unit with the smallest angle on the carbon atom in para-position to the amino group in the first mol­ecule and in ortho-position to the amino group in the second mol­ecule. The largest C—C—C angle is invariably found on the carbon atom bearing the halogen substituent. The least-squares planes as defined by the carbon atoms of the two respective aromatic systems enclose an angle of 83.3 (5)° (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).

In the crystal, cooperative hydrogen bonds of the N—H⋯N type (Table 1[link]) are apparent that are supported by only one hydrogen in each amino group. These connect the mol­ecules into infinite chains propagating along the a-axis direction. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for these hydrogen bonds is DD on the unary level. Furthermore, dispersive I⋯I contacts are observed whose range of 3.79 (1)–3.85 (1) Å falls by more than 0.1 Å below the sum of the van der Waals radii of the atoms participating in them. The latter extend the chains to sheets lying perpendicular to the crystallographic c axis. π-Stacking is not a prominent stabilizing feature in the crystal structure of the title compound with the shortest inter­centroid distance measured at 5.074 (6) Å between the aromatic system of one of the two mol­ecules present in the asymmetric unit and its symmetry-generated equivalent, which corresponds to the b-axis unit-cell dimension (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H711⋯N2 0.78 (15) 2.38 (16) 3.156 (17) 170 (15)
N2—H722⋯N1i 0.84 (15) 2.33 (15) 3.157 (18) 171 (13)
C13—I1⋯I2ii 2.11 (1) 3.85 (1) 8.677 (10) 173 (1)
C23—I2⋯I1iii 2.11 (1) 3.79 (1) 9.437 (9) 172 (1)
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z]; (iii) [x, y+1, z].
[Figure 2]
Figure 2
Inter­molecular contacts, viewed along [001].

Synthesis and crystallization

The title compound was obtained commercially (Sigma-Aldrich). A crystal suitable for the diffraction study was obtained upon prolonged and repeated sublimation and re-sublimation of the compound at a temperature just above 0°C in a fridge.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H6IN
Mr 219.02
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 5.0748 (3), 12.9872 (8), 20.6243 (12)
V3) 1359.29 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.60
Crystal size (mm) 0.30 × 0.29 × 0.22
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.280, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 3508, 3379, 3094
Rint 0.025
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.079, 1.25
No. of reflections 3379
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.96, −1.04
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.44 (9)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

3-Iodoaniline top
Crystal data top
C6H6INDx = 2.140 Mg m3
Mr = 219.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9179 reflections
a = 5.0748 (3) Åθ = 2.5–28.3°
b = 12.9872 (8) ŵ = 4.60 mm1
c = 20.6243 (12) ÅT = 200 K
V = 1359.29 (14) Å3Block, colourless
Z = 80.30 × 0.29 × 0.22 mm
F(000) = 816
Data collection top
Bruker D8 Quest
diffractometer
3094 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.280, Tmax = 0.746h = 66
3508 measured reflectionsk = 017
3379 independent reflectionsl = 027
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + 10.4557P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
3379 reflectionsΔρmax = 0.96 e Å3
158 parametersΔρmin = 1.04 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. The aromatic carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The N–H bonded H atoms were located on a DFM and included in the refinement with with U(H) set to 1.5Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.29954 (15)0.23185 (5)0.36694 (4)0.03054 (16)
I20.19029 (13)1.01208 (5)0.36477 (4)0.03011 (16)
N10.311 (2)0.5517 (8)0.2859 (5)0.038 (2)
H7110.45 (3)0.581 (12)0.283 (7)0.057*
H7120.29 (3)0.523 (10)0.246 (6)0.057*
N20.811 (2)0.6961 (7)0.2824 (5)0.035 (2)
H7210.79 (3)0.718 (10)0.244 (6)0.053*
H7220.95 (3)0.660 (12)0.288 (7)0.053*
C110.246 (2)0.4856 (8)0.3367 (5)0.034 (3)
C120.055 (2)0.4098 (8)0.3286 (5)0.027 (2)
H120.0255860.3998000.2874620.033*
C130.017 (2)0.3494 (8)0.3806 (5)0.028 (2)
C140.096 (2)0.3604 (10)0.4415 (5)0.037 (3)
H140.0444050.3175330.4765990.044*
C150.285 (3)0.4353 (9)0.4494 (5)0.040 (3)
H150.3659930.4442200.4905030.048*
C160.359 (2)0.4986 (9)0.3974 (5)0.035 (3)
H160.4875060.5507850.4037650.042*
C210.7402 (19)0.7588 (8)0.3351 (5)0.029 (2)
C220.548 (2)0.8356 (8)0.3249 (5)0.027 (2)
H220.4748170.8472720.2831070.032*
C230.4677 (17)0.8935 (7)0.3780 (5)0.023 (2)
C240.568 (2)0.8779 (8)0.4395 (5)0.032 (2)
H240.5077380.9178820.4751350.038*
C250.757 (2)0.8032 (8)0.4478 (5)0.035 (3)
H250.8278300.7920690.4898530.042*
C260.846 (2)0.7436 (9)0.3964 (5)0.032 (3)
H260.9775700.6928670.4031750.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0283 (3)0.0277 (3)0.0356 (3)0.0017 (3)0.0044 (4)0.0022 (3)
I20.0273 (3)0.0253 (3)0.0377 (3)0.0014 (3)0.0022 (4)0.0021 (3)
N10.029 (5)0.036 (5)0.049 (6)0.011 (5)0.004 (5)0.004 (4)
N20.043 (6)0.026 (5)0.037 (5)0.002 (5)0.004 (5)0.004 (4)
C110.027 (7)0.026 (5)0.049 (6)0.004 (5)0.005 (5)0.005 (5)
C120.029 (6)0.032 (6)0.021 (5)0.003 (5)0.003 (4)0.001 (4)
C130.025 (5)0.028 (5)0.032 (6)0.001 (4)0.002 (4)0.001 (4)
C140.038 (7)0.046 (7)0.027 (5)0.007 (6)0.002 (5)0.002 (5)
C150.041 (7)0.048 (7)0.031 (5)0.007 (6)0.012 (5)0.010 (5)
C160.030 (6)0.032 (6)0.043 (6)0.014 (5)0.006 (5)0.015 (5)
C210.015 (6)0.036 (6)0.036 (5)0.013 (5)0.002 (4)0.006 (4)
C220.025 (6)0.028 (5)0.027 (5)0.002 (5)0.010 (4)0.006 (4)
C230.012 (4)0.023 (5)0.033 (5)0.004 (4)0.005 (4)0.002 (4)
C240.038 (6)0.032 (6)0.024 (5)0.000 (5)0.005 (5)0.001 (4)
C250.040 (8)0.038 (6)0.028 (5)0.002 (5)0.000 (5)0.004 (4)
C260.023 (6)0.036 (6)0.037 (5)0.003 (5)0.005 (5)0.013 (5)
Geometric parameters (Å, º) top
I1—C132.113 (11)C14—H140.9500
I2—C232.105 (10)C15—C161.403 (16)
N1—C111.394 (14)C15—H150.9500
N1—H7110.78 (15)C16—H160.9500
N1—H7120.92 (13)C21—C261.388 (13)
N2—C211.404 (14)C21—C221.412 (15)
N2—H7210.84 (13)C22—C231.388 (14)
N2—H7220.84 (15)C22—H220.9500
C11—C161.388 (14)C23—C241.381 (14)
C11—C121.391 (15)C24—C251.374 (16)
C12—C131.378 (14)C24—H240.9500
C12—H120.9500C25—C261.389 (15)
C13—C141.388 (15)C25—H250.9500
C14—C151.375 (17)C26—H260.9500
C11—N1—H711124 (10)C11—C16—C15120.5 (10)
C11—N1—H712113 (8)C11—C16—H16119.8
H711—N1—H712105 (10)C15—C16—H16119.8
C21—N2—H721120 (9)C26—C21—N2121.6 (10)
C21—N2—H722116 (10)C26—C21—C22120.2 (10)
H721—N2—H722114 (10)N2—C21—C22118.2 (10)
C16—C11—C12118.9 (10)C23—C22—C21117.9 (9)
C16—C11—N1120.2 (10)C23—C22—H22121.1
C12—C11—N1120.7 (10)C21—C22—H22121.1
C13—C12—C11119.6 (10)C24—C23—C22122.5 (10)
C13—C12—H12120.2C24—C23—I2118.2 (8)
C11—C12—H12120.2C22—C23—I2119.3 (7)
C12—C13—C14122.4 (11)C25—C24—C23118.3 (10)
C12—C13—I1119.2 (8)C25—C24—H24120.8
C14—C13—I1118.3 (8)C23—C24—H24120.8
C15—C14—C13117.9 (11)C24—C25—C26121.6 (10)
C15—C14—H14121.1C24—C25—H25119.2
C13—C14—H14121.1C26—C25—H25119.2
C14—C15—C16120.7 (10)C21—C26—C25119.5 (10)
C14—C15—H15119.6C21—C26—H26120.3
C16—C15—H15119.6C25—C26—H26120.3
C16—C11—C12—C130.2 (16)C26—C21—C22—C230.6 (15)
N1—C11—C12—C13176.3 (10)N2—C21—C22—C23176.5 (10)
C11—C12—C13—C140.6 (17)C21—C22—C23—C240.5 (15)
C11—C12—C13—I1178.3 (8)C21—C22—C23—I2178.0 (7)
C12—C13—C14—C150.5 (17)C22—C23—C24—C251.0 (16)
I1—C13—C14—C15178.2 (8)I2—C23—C24—C25177.5 (8)
C13—C14—C15—C160.3 (17)C23—C24—C25—C260.4 (17)
C12—C11—C16—C151.0 (17)N2—C21—C26—C25175.8 (10)
N1—C11—C16—C15177.1 (11)C22—C21—C26—C251.1 (16)
C14—C15—C16—C111.1 (18)C24—C25—C26—C210.7 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H711···N20.78 (15)2.38 (16)3.156 (17)170 (15)
N2—H722···N1i0.84 (15)2.33 (15)3.157 (18)171 (13)
C13—I1···I2ii2.11 (1)3.85 (1)8.677 (10)173 (1)
C23—I2···I1iii2.11 (1)3.79 (1)9.437 (9)172 (1)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z.
 

References

First citationBecker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. (2015). Crystallogr. Rep. 60, 1049–1052.  CrossRef Google Scholar
First citationBetz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011c). Acta Cryst. E67, o2154.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011d). Acta Cryst. E67, o2513.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBopp, A., v, Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006–1078.  CrossRef Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o246–o248.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGray, L. & Jones, P. G. (2002). Z. Naturforsch. B. – Chem. Sci. 57, 61–72.  CrossRef Google Scholar
First citationGriess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426–428.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329–331.  CrossRef Google Scholar
First citationHosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475–477.  CrossRef Google Scholar
First citationHosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 187–188.  CrossRef Google Scholar
First citationIslor, A. M., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217–218.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKubo, K., Takahashi, K., Nakagawa, S., Sakai, K., Noro, S., Akutagawa, T. & Nakamura, T. (2021). Cryst. Growth Des. 21, 2340–2347.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633–1635.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXing, T., Elsegood, M. R. J., Dale, S. H. & Redshaw, C. (2021). Catalysts 11, 1554.  CrossRef Google Scholar
First citationXiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2015). CrystEngComm, 17, 856–861.  CrossRef Google Scholar
First citationXiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2016). Cryst. Growth Des. 16, 800–807.  CrossRef Google Scholar
First citationYoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845–20854.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146