organic compounds
3-Iodoaniline
aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za
The title compound, C6H6IN, is the meta-iodinated derivative of aniline. The contains two molecules. The structure was refined as a two-component with a volume ratio of 55.6:44.4. In the crystal, cooperative hydrogen bonds of the N–H⋯N type connect the molecules into infinite chains propagating along the a-axis direction. Dispersive I⋯I contacts extend these chains to sheets perpendicular to the crystallographic c axis.
Keywords: crystal structure.
CCDC reference: 2411477
Structure description
Aniline and its derivatives are valuable starting materials in synthetic organic chemistry and have found ample use in industrial processes, as is apparent in the historic establishment of the artificial dye and, subsequently, pharmaceutical industry (Griess, 1879; Bopp et al., 1891). As an activated aromatic system, a large number of reactions is available for further functionalization of the phenyl group as well as the ipso-substitution of the amine functionality itself (Becker et al., 2000; Sandmeyer, 1884), which allows for tailoring the physicochemical and spectroscopic properties of the target molecules over a seemingly endless range. In a continuation of our own interest in the structural variety of aniline derivatives (Islor et al., 2013; Betz & Gerber, 2011; Betz et al., 2008, 2011a,b; Betz, 2015; Hosten & Betz, 2021a,b,c) as well as pyridine-based (Betz et al., 2011c,d) we sought to determine the structure of 3-iodoaniline. Structural information about this molecule is scarce as only protonated versions of the compound under investigation are apparent in the literature, such as the chloride (Xing et al., 2021), iodide (Gray & Jones, 2002), phosphate (Yoshii et al., 2015), ortho-nitrophthalate (Glidewell et al., 2005) as well as the crown-ether-supported salts of an anionic nickel coordination compound (Kubo et al., 2021) and two Keggin-ion-inspired polyoxometallates derived from molybdenum (Xiong et al., 2015, 2016), with a metal–organic molybdenum coordination compound being the only example in which structural data about the neutral title compound – as a ligand – is available (Xing et al., 2021).
The title compound is the meta-iodinated derivative of aniline. The contains two molecules. The structure was refined as an with a volume ratio of 55.6:44.4. The C—I bond lengths of 2.105 (10) and 2.113 (11) Å are in good agreement with other aromatic iodine compounds whose metrical parameters have been determined on the basis of diffraction studies on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016). The intracyclic C—C—C angles span a range of 117.9 (11)–122.4 (11)° in the first and 117.9 (9)–122.5 (10)° in the second molecule present in the with the smallest angle on the carbon atom in para-position to the amino group in the first molecule and in ortho-position to the amino group in the second molecule. The largest C—C—C angle is invariably found on the carbon atom bearing the halogen substituent. The least-squares planes as defined by the carbon atoms of the two respective aromatic systems enclose an angle of 83.3 (5)° (Fig. 1).
In the crystal, cooperative hydrogen bonds of the N—H⋯N type (Table 1) are apparent that are supported by only one hydrogen in each amino group. These connect the molecules into infinite chains propagating along the a-axis direction. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these hydrogen bonds is DD on the unary level. Furthermore, dispersive I⋯I contacts are observed whose range of 3.79 (1)–3.85 (1) Å falls by more than 0.1 Å below the sum of the van der Waals radii of the atoms participating in them. The latter extend the chains to sheets lying perpendicular to the crystallographic c axis. π-Stacking is not a prominent stabilizing feature in the of the title compound with the shortest intercentroid distance measured at 5.074 (6) Å between the aromatic system of one of the two molecules present in the and its symmetry-generated equivalent, which corresponds to the b-axis unit-cell dimension (Fig. 2).
Synthesis and crystallization
The title compound was obtained commercially (Sigma-Aldrich). A crystal suitable for the diffraction study was obtained upon prolonged and repeated
and re-sublimation of the compound at a temperature just above 0°C in a fridge.Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2411477
https://doi.org/10.1107/S2414314624012264/bx4032sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624012264/bx4032Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624012264/bx4032Isup3.cml
C6H6IN | Dx = 2.140 Mg m−3 |
Mr = 219.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9179 reflections |
a = 5.0748 (3) Å | θ = 2.5–28.3° |
b = 12.9872 (8) Å | µ = 4.60 mm−1 |
c = 20.6243 (12) Å | T = 200 K |
V = 1359.29 (14) Å3 | Block, colourless |
Z = 8 | 0.30 × 0.29 × 0.22 mm |
F(000) = 816 |
Bruker D8 Quest diffractometer | 3094 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.280, Tmax = 0.746 | h = −6→6 |
3508 measured reflections | k = 0→17 |
3379 independent reflections | l = 0→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + 10.4557P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max < 0.001 |
3379 reflections | Δρmax = 0.96 e Å−3 |
158 parameters | Δρmin = −1.04 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.44 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. The aromatic carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The N–H bonded H atoms were located on a DFM and included in the refinement with with U(H) set to 1.5Ueq(N). |
x | y | z | Uiso*/Ueq | ||
I1 | −0.29954 (15) | 0.23185 (5) | 0.36694 (4) | 0.03054 (16) | |
I2 | 0.19029 (13) | 1.01208 (5) | 0.36477 (4) | 0.03011 (16) | |
N1 | 0.311 (2) | 0.5517 (8) | 0.2859 (5) | 0.038 (2) | |
H711 | 0.45 (3) | 0.581 (12) | 0.283 (7) | 0.057* | |
H712 | 0.29 (3) | 0.523 (10) | 0.246 (6) | 0.057* | |
N2 | 0.811 (2) | 0.6961 (7) | 0.2824 (5) | 0.035 (2) | |
H721 | 0.79 (3) | 0.718 (10) | 0.244 (6) | 0.053* | |
H722 | 0.95 (3) | 0.660 (12) | 0.288 (7) | 0.053* | |
C11 | 0.246 (2) | 0.4856 (8) | 0.3367 (5) | 0.034 (3) | |
C12 | 0.055 (2) | 0.4098 (8) | 0.3286 (5) | 0.027 (2) | |
H12 | −0.025586 | 0.399800 | 0.287462 | 0.033* | |
C13 | −0.017 (2) | 0.3494 (8) | 0.3806 (5) | 0.028 (2) | |
C14 | 0.096 (2) | 0.3604 (10) | 0.4415 (5) | 0.037 (3) | |
H14 | 0.044405 | 0.317533 | 0.476599 | 0.044* | |
C15 | 0.285 (3) | 0.4353 (9) | 0.4494 (5) | 0.040 (3) | |
H15 | 0.365993 | 0.444220 | 0.490503 | 0.048* | |
C16 | 0.359 (2) | 0.4986 (9) | 0.3974 (5) | 0.035 (3) | |
H16 | 0.487506 | 0.550785 | 0.403765 | 0.042* | |
C21 | 0.7402 (19) | 0.7588 (8) | 0.3351 (5) | 0.029 (2) | |
C22 | 0.548 (2) | 0.8356 (8) | 0.3249 (5) | 0.027 (2) | |
H22 | 0.474817 | 0.847272 | 0.283107 | 0.032* | |
C23 | 0.4677 (17) | 0.8935 (7) | 0.3780 (5) | 0.023 (2) | |
C24 | 0.568 (2) | 0.8779 (8) | 0.4395 (5) | 0.032 (2) | |
H24 | 0.507738 | 0.917882 | 0.475135 | 0.038* | |
C25 | 0.757 (2) | 0.8032 (8) | 0.4478 (5) | 0.035 (3) | |
H25 | 0.827830 | 0.792069 | 0.489853 | 0.042* | |
C26 | 0.846 (2) | 0.7436 (9) | 0.3964 (5) | 0.032 (3) | |
H26 | 0.977570 | 0.692867 | 0.403175 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0283 (3) | 0.0277 (3) | 0.0356 (3) | 0.0017 (3) | 0.0044 (4) | 0.0022 (3) |
I2 | 0.0273 (3) | 0.0253 (3) | 0.0377 (3) | 0.0014 (3) | 0.0022 (4) | 0.0021 (3) |
N1 | 0.029 (5) | 0.036 (5) | 0.049 (6) | −0.011 (5) | 0.004 (5) | 0.004 (4) |
N2 | 0.043 (6) | 0.026 (5) | 0.037 (5) | 0.002 (5) | 0.004 (5) | −0.004 (4) |
C11 | 0.027 (7) | 0.026 (5) | 0.049 (6) | 0.004 (5) | −0.005 (5) | −0.005 (5) |
C12 | 0.029 (6) | 0.032 (6) | 0.021 (5) | 0.003 (5) | −0.003 (4) | −0.001 (4) |
C13 | 0.025 (5) | 0.028 (5) | 0.032 (6) | 0.001 (4) | −0.002 (4) | −0.001 (4) |
C14 | 0.038 (7) | 0.046 (7) | 0.027 (5) | 0.007 (6) | 0.002 (5) | 0.002 (5) |
C15 | 0.041 (7) | 0.048 (7) | 0.031 (5) | 0.007 (6) | −0.012 (5) | −0.010 (5) |
C16 | 0.030 (6) | 0.032 (6) | 0.043 (6) | −0.014 (5) | 0.006 (5) | −0.015 (5) |
C21 | 0.015 (6) | 0.036 (6) | 0.036 (5) | −0.013 (5) | −0.002 (4) | 0.006 (4) |
C22 | 0.025 (6) | 0.028 (5) | 0.027 (5) | −0.002 (5) | −0.010 (4) | 0.006 (4) |
C23 | 0.012 (4) | 0.023 (5) | 0.033 (5) | −0.004 (4) | 0.005 (4) | 0.002 (4) |
C24 | 0.038 (6) | 0.032 (6) | 0.024 (5) | 0.000 (5) | 0.005 (5) | −0.001 (4) |
C25 | 0.040 (8) | 0.038 (6) | 0.028 (5) | −0.002 (5) | 0.000 (5) | 0.004 (4) |
C26 | 0.023 (6) | 0.036 (6) | 0.037 (5) | −0.003 (5) | −0.005 (5) | 0.013 (5) |
I1—C13 | 2.113 (11) | C14—H14 | 0.9500 |
I2—C23 | 2.105 (10) | C15—C16 | 1.403 (16) |
N1—C11 | 1.394 (14) | C15—H15 | 0.9500 |
N1—H711 | 0.78 (15) | C16—H16 | 0.9500 |
N1—H712 | 0.92 (13) | C21—C26 | 1.388 (13) |
N2—C21 | 1.404 (14) | C21—C22 | 1.412 (15) |
N2—H721 | 0.84 (13) | C22—C23 | 1.388 (14) |
N2—H722 | 0.84 (15) | C22—H22 | 0.9500 |
C11—C16 | 1.388 (14) | C23—C24 | 1.381 (14) |
C11—C12 | 1.391 (15) | C24—C25 | 1.374 (16) |
C12—C13 | 1.378 (14) | C24—H24 | 0.9500 |
C12—H12 | 0.9500 | C25—C26 | 1.389 (15) |
C13—C14 | 1.388 (15) | C25—H25 | 0.9500 |
C14—C15 | 1.375 (17) | C26—H26 | 0.9500 |
C11—N1—H711 | 124 (10) | C11—C16—C15 | 120.5 (10) |
C11—N1—H712 | 113 (8) | C11—C16—H16 | 119.8 |
H711—N1—H712 | 105 (10) | C15—C16—H16 | 119.8 |
C21—N2—H721 | 120 (9) | C26—C21—N2 | 121.6 (10) |
C21—N2—H722 | 116 (10) | C26—C21—C22 | 120.2 (10) |
H721—N2—H722 | 114 (10) | N2—C21—C22 | 118.2 (10) |
C16—C11—C12 | 118.9 (10) | C23—C22—C21 | 117.9 (9) |
C16—C11—N1 | 120.2 (10) | C23—C22—H22 | 121.1 |
C12—C11—N1 | 120.7 (10) | C21—C22—H22 | 121.1 |
C13—C12—C11 | 119.6 (10) | C24—C23—C22 | 122.5 (10) |
C13—C12—H12 | 120.2 | C24—C23—I2 | 118.2 (8) |
C11—C12—H12 | 120.2 | C22—C23—I2 | 119.3 (7) |
C12—C13—C14 | 122.4 (11) | C25—C24—C23 | 118.3 (10) |
C12—C13—I1 | 119.2 (8) | C25—C24—H24 | 120.8 |
C14—C13—I1 | 118.3 (8) | C23—C24—H24 | 120.8 |
C15—C14—C13 | 117.9 (11) | C24—C25—C26 | 121.6 (10) |
C15—C14—H14 | 121.1 | C24—C25—H25 | 119.2 |
C13—C14—H14 | 121.1 | C26—C25—H25 | 119.2 |
C14—C15—C16 | 120.7 (10) | C21—C26—C25 | 119.5 (10) |
C14—C15—H15 | 119.6 | C21—C26—H26 | 120.3 |
C16—C15—H15 | 119.6 | C25—C26—H26 | 120.3 |
C16—C11—C12—C13 | −0.2 (16) | C26—C21—C22—C23 | −0.6 (15) |
N1—C11—C12—C13 | −176.3 (10) | N2—C21—C22—C23 | 176.5 (10) |
C11—C12—C13—C14 | −0.6 (17) | C21—C22—C23—C24 | −0.5 (15) |
C11—C12—C13—I1 | −178.3 (8) | C21—C22—C23—I2 | 178.0 (7) |
C12—C13—C14—C15 | 0.5 (17) | C22—C23—C24—C25 | 1.0 (16) |
I1—C13—C14—C15 | 178.2 (8) | I2—C23—C24—C25 | −177.5 (8) |
C13—C14—C15—C16 | 0.3 (17) | C23—C24—C25—C26 | −0.4 (17) |
C12—C11—C16—C15 | 1.0 (17) | N2—C21—C26—C25 | −175.8 (10) |
N1—C11—C16—C15 | 177.1 (11) | C22—C21—C26—C25 | 1.1 (16) |
C14—C15—C16—C11 | −1.1 (18) | C24—C25—C26—C21 | −0.7 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H711···N2 | 0.78 (15) | 2.38 (16) | 3.156 (17) | 170 (15) |
N2—H722···N1i | 0.84 (15) | 2.33 (15) | 3.157 (18) | 171 (13) |
C13—I1···I2ii | 2.11 (1) | 3.85 (1) | 8.677 (10) | 173 (1) |
C23—I2···I1iii | 2.11 (1) | 3.79 (1) | 9.437 (9) | 172 (1) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, y+1, z. |
References
Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betz, R. (2015). Crystallogr. Rep. 60, 1049–1052. CrossRef Google Scholar
Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T. & Hosten, E. (2011a). Acta Cryst. E67, o2118. CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011c). Acta Cryst. E67, o2154. CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011d). Acta Cryst. E67, o2513. CrossRef IUCr Journals Google Scholar
Betz, R., Gerber, T. & Schalekamp, H. (2011b). Acta Cryst. E67, o489. CrossRef IUCr Journals Google Scholar
Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o2501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bopp, A., v, Hofmann, A. W. & Fischer, E. (1891). Ber. Dtsch. Chem. Ges. 24, 1006–1078. CrossRef Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o246–o248. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gray, L. & Jones, P. G. (2002). Z. Naturforsch. B. – Chem. Sci. 57, 61–72. CrossRef Google Scholar
Griess, P. (1879). Ber. Dtsch. Chem. Ges. 12, 426–428. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct. 236, 329–331. CrossRef Google Scholar
Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 475–477. CrossRef Google Scholar
Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 187–188. CrossRef Google Scholar
Islor, A. M., Chandrakantha, B., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. New Cryst. Struct. 228, 217–218. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kubo, K., Takahashi, K., Nakagawa, S., Sakai, K., Noro, S., Akutagawa, T. & Nakamura, T. (2021). Cryst. Growth Des. 21, 2340–2347. CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sandmeyer, T. (1884). Ber. Dtsch. Chem. Ges. 17, 1633–1635. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Xing, T., Elsegood, M. R. J., Dale, S. H. & Redshaw, C. (2021). Catalysts 11, 1554. CrossRef Google Scholar
Xiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2015). CrystEngComm, 17, 856–861. CrossRef Google Scholar
Xiong, J., Kubo, K., Noro, S., Akutagawa, T. & Nakamura, T. (2016). Cryst. Growth Des. 16, 800–807. CrossRef Google Scholar
Yoshii, Y., Hoshino, N., Takeda, T. & Akutagawa, T. (2015). J. Phys. Chem. C, 119, 20845–20854. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.