organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-2-{3-[1-(Acet­yl­oxy)eth­yl]-2,2-di­methyl­cyclobut­yl}acetic acid

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 20 November 2024; accepted 25 November 2024; online 3 December 2024)

The title compound, C12H20O4, was prepared from α-pinene in three steps. The ester and acid moieties are cis on the slightly folded cyclo­butane ring. In the crystal, carb­oxy­lic acid bound dimers form layers parallel to (202).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of a project on strained carbocycles (Detert & Schollmeyer, 2017[Detert, H. & Schollmeyer, D. (2017). IUCrData, 2, x171550.]; Herges et al., 2005[Herges, R., Papafilippopoulos, A., Hess, C., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. 117, 1437-1441.]), the title compound, C12H20O4 (Fig. 1[link]), was prepared from racemic α-pinene by permanganate oxidation, borohydride reduction of the pinonic acid to pinolic acid and acetyl­ation. The compound crystallizes in the monoclinic space group C2/c with the asymmetric unit containing eight mol­ecules. Two enanti­omeric mol­ecules are connected via two hydrogen bridges of the carb­oxy­lic acids, forming centrosymmetric dimers. The distance between the oxygen atoms forming the hydrogen bond is 2.6547 (13) Å. These dimers are arranged in layers parallel to the ([\overline{2}]02) plane (Table 1[link], Fig. 2[link]). The central cyclo­butane ring is folded in a butterfly-like manner: the planes defined by C1,C2,C4 and by C2, C3, C4 subtend an angle of 24.61 (12)°, which is due to the bulky methyl groups at C2. However, it is significantly smaller than the ideal angle of 35° (Bucourt, 1974[Bucourt, R. (1974). Topics in Stereochemistry, vol. 8, pp. 159-224. New York: Wiley.]). The acetic acid substituent on C1 and the acet­oxy­ethyl on C3 are cis and on the open side of the folded cyclo­butane. The geminal methyl groups on C2 open an angle of 110.39 (10)° and provoke an elongation of the cyclo­butane bond lengths e.g. C1—C2 = 1.5697 (15) Å versus C1—C4 = 1.5467 (15) Å. A deviation of only 0.0193 (10) Å for O8 destroys the otherwise perfect planarity of the acetic acid unit O7,O8,C5,C6.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8O⋯O7i 0.90 (2) 1.75 (2) 2.6547 (13) 178 (2)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram. Hydrogen bonds are drawn with dashed lines. View along the [101] direction. The color of the mol­ecules corresponds to the generating symmetry operator.

Synthesis and crystallization

The title compound was prepared from α-pinene by phase-transfer-catalyzed oxidation with permanganate according to Hünig et al. (1979[Hünig, S., Märkl, G. & Sauer, J. (1979). Integriertes Organisches Praktikum. Weinheim: VCH.]) (43% yield) followed by reduction with sodium borohydride according to Fernández et al. (2001[Fernández, F., Hergueta, A. R., López, C., De Clercq, E. & Balzarini, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1129-1131.]) (94% yield). The resulting diastereomeric mixture of pinolic acids (2.00 g) was dissolved in benzene (5 ml), acetic acid (2.58 g) and toluene­sulfonic acid (0.47 g) were added. The mixture was refluxed for 3.5 h and water was separated using a Dean–Stark trap. The mixture was washed with water, the aqueous phase extracted with toluene and the combined organic layers were dried and the solvents removed in vacuo. The residue thus obtained was dissolved in heptane (5 ml), treated with active charcoal and filtered. Upon cooling, the mixture separated into two phases, the lower layer was dissolved in heptane (15 ml) and upon cooling for 3 days. The precipitated solid was recrystallized from heptane to yield 0.22 g (9%) of colorless crystals with m.p. = 360–362 K. Hergueta et al. (2003[Hergueta, A. R., López, C., Fernández, F., Caamaño, O. & Blanco, J. M. (2003). Tetrahedron Asymmetry, 14, 3773-3778.]) report a melting point of the enanti­opure compound of 258-258 K. Their NMR data correspond well with the results from the racemate, except a general deep-field shift of all H-NMR signals and a high-field shift of ca 0.25 p.p.m. in C-NMR. The numbering of H- and C-signals follows IUPAC nomenclature. 1H-NMR (300 MHz, CDCl3): δ = 4.77 (dq, J = 10.2, 6.2 Hz, 1H, 1′′-H), 2.41–2.15 (m, 3H, 2-H, 1′-H), 2.14–1.93 (m, 2H, 3′-H, 4′-H), 2.00 (s, 3H, 4′′-H), 1.30–1.16 (m, 1H, 4′-H), 1.08 (s, 3H, 5′′-H), 1.06 (d, J = 6.2 Hz, 3H, 2′′-H), 0.88 (s, 3H, 6′′-H). 13C-NMR (101 MHz, CDCl3): δ = 179.3 (C-1), 170.7 (C-3′′), 71.9 (C-1′′), 47.1 (C-3′), 40.0 (C-2′), 37.9 (C-1′), 35.0 (C-2), 30.5 (C-5′′), 26.5 (C-4′), 21.6 (C-4′′), 17.7 (C-2′′), 16.9 (C-6′′).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H20O4
Mr 228.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 9.8411 (4), 12.3319 (5), 21.0912 (10)
β (°) 94.254 (4)
V3) 2552.56 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.55 × 0.29 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration [X-RED32 (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), absorption correction by Gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 255-270. Munksgaard, Copenhagen.])]
Tmin, Tmax 0.966, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 6713, 3019, 2607
Rint 0.023
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.03
No. of reflections 3019
No. of parameters 215
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.35, −0.17
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

rac-2-{3-[1-(Acetyloxy)ethyl]-2,2-dimethylcyclobutyl}acetic acid top
Crystal data top
C12H20O4F(000) = 992
Mr = 228.28Dx = 1.188 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 9.8411 (4) ÅCell parameters from 9202 reflections
b = 12.3319 (5) Åθ = 2.7–28.4°
c = 21.0912 (10) ŵ = 0.09 mm1
β = 94.254 (4)°T = 120 K
V = 2552.56 (19) Å3Block, colourless
Z = 80.55 × 0.29 × 0.25 mm
Data collection top
Stoe IPDS 2T
diffractometer
3019 independent reflections
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus2607 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.023
rotation method, ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: integration
[X-Red32 (Stoe & Cie, 2020), absorption correction by Gaussian integration (Coppens, 1970)]
h = 1212
Tmin = 0.966, Tmax = 0.982k = 1616
6713 measured reflectionsl = 2722
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0554P)2 + 1.746P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3019 reflectionsΔρmax = 0.35 e Å3
215 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were freely refined, constraining the displacement parameters of H atoms bonded to the same C atom to the same values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40274 (11)0.82757 (9)0.44466 (5)0.0212 (2)
H10.3386 (14)0.8179 (12)0.4752 (7)0.021 (3)*
C20.32858 (11)0.80492 (9)0.37750 (5)0.0212 (2)
C30.30462 (11)0.93023 (9)0.37194 (5)0.0210 (2)
H30.2131 (14)0.9476 (11)0.3853 (7)0.022 (3)*
C40.41585 (12)0.94836 (9)0.42633 (6)0.0230 (2)
H4A0.3951 (15)1.0022 (13)0.4595 (8)0.028 (3)*
H4B0.5044 (15)0.9629 (12)0.4101 (7)0.028 (3)*
C50.53464 (12)0.76965 (10)0.46563 (6)0.0255 (3)
H5A0.6042 (16)0.7761 (13)0.4351 (8)0.033 (3)*
H5B0.5742 (16)0.8011 (13)0.5037 (8)0.033 (3)*
C60.51864 (12)0.65089 (9)0.47940 (5)0.0227 (2)
O70.40910 (9)0.60728 (7)0.48459 (5)0.0320 (2)
O80.63537 (9)0.59850 (8)0.48631 (5)0.0330 (2)
H8O0.619 (2)0.5291 (17)0.4968 (10)0.052 (5)*
C90.42329 (14)0.76090 (11)0.32965 (6)0.0285 (3)
H9A0.4498 (16)0.6864 (14)0.3401 (8)0.034 (2)*
H9B0.5078 (16)0.8031 (13)0.3281 (8)0.034 (2)*
H9C0.3767 (16)0.7584 (13)0.2863 (8)0.034 (2)*
C100.19969 (13)0.73714 (10)0.37673 (6)0.0269 (3)
H10A0.1379 (17)0.7659 (14)0.4077 (8)0.039 (2)*
H10B0.2197 (16)0.6612 (15)0.3872 (8)0.039 (2)*
H10C0.1509 (17)0.7390 (14)0.3334 (9)0.039 (2)*
C110.32282 (12)0.98916 (10)0.31042 (6)0.0247 (3)
H110.4032 (15)0.9670 (12)0.2925 (7)0.024 (3)*
C120.32133 (16)1.11163 (11)0.31801 (7)0.0358 (3)
H12A0.3994 (18)1.1323 (15)0.3481 (9)0.045 (3)*
H12B0.2328 (19)1.1347 (15)0.3341 (9)0.045 (3)*
H12C0.3331 (17)1.1457 (15)0.2758 (9)0.045 (3)*
O130.20759 (8)0.95683 (8)0.26638 (4)0.0268 (2)
C140.22864 (12)0.95332 (10)0.20432 (6)0.0250 (3)
O150.33550 (9)0.97409 (10)0.18328 (5)0.0382 (3)
C160.10262 (15)0.92018 (13)0.16498 (7)0.0345 (3)
H16A0.025 (3)0.940 (2)0.1833 (14)0.099 (5)*
H16B0.102 (3)0.847 (3)0.1585 (14)0.099 (5)*
H16C0.106 (3)0.951 (2)0.1231 (16)0.099 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0229 (5)0.0191 (5)0.0212 (5)0.0011 (4)0.0002 (4)0.0006 (4)
C20.0227 (5)0.0198 (5)0.0209 (5)0.0007 (4)0.0006 (4)0.0001 (4)
C30.0212 (5)0.0205 (5)0.0211 (5)0.0004 (4)0.0006 (4)0.0008 (4)
C40.0266 (6)0.0184 (5)0.0232 (6)0.0010 (4)0.0038 (4)0.0004 (4)
C50.0238 (6)0.0213 (6)0.0307 (6)0.0011 (4)0.0030 (5)0.0020 (5)
C60.0251 (5)0.0216 (5)0.0211 (5)0.0034 (4)0.0003 (4)0.0000 (4)
O70.0248 (4)0.0223 (4)0.0490 (6)0.0033 (3)0.0036 (4)0.0072 (4)
O80.0240 (4)0.0237 (5)0.0513 (6)0.0044 (3)0.0029 (4)0.0077 (4)
C90.0315 (6)0.0269 (6)0.0273 (6)0.0014 (5)0.0050 (5)0.0042 (5)
C100.0267 (6)0.0252 (6)0.0284 (6)0.0050 (5)0.0013 (5)0.0001 (5)
C110.0209 (5)0.0278 (6)0.0246 (6)0.0020 (4)0.0034 (4)0.0041 (4)
C120.0419 (8)0.0264 (6)0.0376 (8)0.0038 (6)0.0082 (6)0.0099 (5)
O130.0204 (4)0.0375 (5)0.0221 (4)0.0027 (3)0.0011 (3)0.0039 (3)
C140.0247 (5)0.0256 (6)0.0246 (6)0.0044 (4)0.0006 (4)0.0040 (4)
O150.0265 (5)0.0596 (7)0.0290 (5)0.0018 (4)0.0048 (4)0.0074 (4)
C160.0332 (7)0.0422 (8)0.0271 (7)0.0029 (6)0.0033 (5)0.0010 (6)
Geometric parameters (Å, º) top
C1—C51.5183 (15)C9—H9A0.976 (17)
C1—C41.5467 (15)C9—H9B0.983 (16)
C1—C21.5697 (15)C9—H9C0.992 (17)
C1—H10.942 (14)C10—H10A0.991 (17)
C2—C101.5182 (16)C10—H10B0.979 (18)
C2—C91.5235 (16)C10—H10C1.000 (18)
C2—C31.5664 (15)C11—O131.4669 (13)
C3—C111.5092 (16)C11—C121.5189 (18)
C3—C41.5421 (15)C11—H110.942 (15)
C3—H30.987 (14)C12—H12A0.993 (19)
C4—H4A0.996 (16)C12—H12B0.999 (19)
C4—H4B0.976 (15)C12—H12C1.000 (19)
C5—C61.5036 (16)O13—C141.3410 (15)
C5—H5A0.977 (17)C14—O151.1990 (15)
C5—H5B0.948 (17)C14—C161.4970 (18)
C6—O71.2169 (15)C16—H16A0.91 (3)
C6—O81.3166 (14)C16—H16B0.91 (3)
O8—H8O0.90 (2)C16—H16C0.96 (3)
C5—C1—C4116.13 (10)C2—C9—H9A110.6 (10)
C5—C1—C2120.62 (10)C2—C9—H9B113.2 (10)
C4—C1—C289.29 (8)H9A—C9—H9B107.1 (13)
C5—C1—H1110.1 (8)C2—C9—H9C111.0 (9)
C4—C1—H1111.4 (9)H9A—C9—H9C106.0 (13)
C2—C1—H1107.7 (8)H9B—C9—H9C108.7 (13)
C10—C2—C9110.39 (10)C2—C10—H10A110.4 (10)
C10—C2—C3114.92 (9)C2—C10—H10B111.7 (10)
C9—C2—C3113.45 (10)H10A—C10—H10B108.5 (14)
C10—C2—C1116.09 (10)C2—C10—H10C110.0 (10)
C9—C2—C1113.26 (10)H10A—C10—H10C108.5 (14)
C3—C2—C187.10 (8)H10B—C10—H10C107.7 (14)
C11—C3—C4116.54 (10)O13—C11—C3106.14 (9)
C11—C3—C2120.84 (10)O13—C11—C12108.90 (10)
C4—C3—C289.58 (8)C3—C11—C12112.67 (11)
C11—C3—H3108.0 (8)O13—C11—H11107.5 (9)
C4—C3—H3111.7 (8)C3—C11—H11111.2 (9)
C2—C3—H3109.2 (8)C12—C11—H11110.2 (9)
C3—C4—C188.78 (8)C11—C12—H12A108.0 (11)
C3—C4—H4A116.6 (9)C11—C12—H12B109.5 (11)
C1—C4—H4A116.2 (9)H12A—C12—H12B111.3 (15)
C3—C4—H4B111.7 (9)C11—C12—H12C108.8 (11)
C1—C4—H4B111.0 (9)H12A—C12—H12C109.0 (15)
H4A—C4—H4B111.0 (13)H12B—C12—H12C110.2 (15)
C6—C5—C1114.51 (10)C14—O13—C11117.31 (9)
C6—C5—H5A107.2 (9)O15—C14—O13123.89 (11)
C1—C5—H5A113.3 (9)O15—C14—C16124.51 (12)
C6—C5—H5B106.1 (10)O13—C14—C16111.60 (11)
C1—C5—H5B110.0 (10)C14—C16—H16A112.2 (18)
H5A—C5—H5B105.1 (13)C14—C16—H16B110.6 (18)
O7—C6—O8123.00 (11)H16A—C16—H16B109 (2)
O7—C6—C5123.65 (10)C14—C16—H16C108.8 (17)
O8—C6—C5113.35 (10)H16A—C16—H16C112 (2)
C6—O8—H8O108.9 (12)H16B—C16—H16C104 (2)
C5—C1—C2—C10106.21 (12)C5—C1—C4—C3141.48 (11)
C4—C1—C2—C10133.49 (10)C2—C1—C4—C317.33 (9)
C5—C1—C2—C923.05 (15)C4—C1—C5—C6176.63 (10)
C4—C1—C2—C997.25 (11)C2—C1—C5—C670.71 (15)
C5—C1—C2—C3137.38 (11)C1—C5—C6—O712.44 (18)
C4—C1—C2—C317.08 (8)C1—C5—C6—O8168.52 (11)
C10—C2—C3—C11104.29 (12)C4—C3—C11—O13178.53 (9)
C9—C2—C3—C1124.05 (14)C2—C3—C11—O1371.76 (13)
C1—C2—C3—C11138.19 (10)C4—C3—C11—C1262.37 (14)
C10—C2—C3—C4134.65 (10)C2—C3—C11—C12169.14 (10)
C9—C2—C3—C497.01 (11)C3—C11—O13—C14149.15 (10)
C1—C2—C3—C417.13 (9)C12—C11—O13—C1489.30 (13)
C11—C3—C4—C1142.07 (10)C11—O13—C14—O150.61 (18)
C2—C3—C4—C117.37 (9)C11—O13—C14—C16179.50 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8O···O7i0.90 (2)1.75 (2)2.6547 (13)178 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBucourt, R. (1974). Topics in Stereochemistry, vol. 8, pp. 159–224. New York: Wiley.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 255–270. Munksgaard, Copenhagen.  Google Scholar
First citationDetert, H. & Schollmeyer, D. (2017). IUCrData, 2, x171550.  Google Scholar
First citationFernández, F., Hergueta, A. R., López, C., De Clercq, E. & Balzarini, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1129–1131.  Web of Science PubMed Google Scholar
First citationHerges, R., Papafilippopoulos, A., Hess, C., Chiappe, C., Lenoir, D. & Detert, H. (2005). Angew. Chem. 117, 1437–1441.  CrossRef Google Scholar
First citationHergueta, A. R., López, C., Fernández, F., Caamaño, O. & Blanco, J. M. (2003). Tetrahedron Asymmetry, 14, 3773–3778.  Web of Science CSD CrossRef CAS Google Scholar
First citationHünig, S., Märkl, G. & Sauer, J. (1979). Integriertes Organisches Praktikum. Weinheim: VCH.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146