metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tri­phenyl­phospho­nium tri­chlorido­(tri­phenyl­phosphane-κP)cobaltate(II) benzene disolvate

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@mandela.ac.za

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 November 2024; accepted 18 November 2024; online 22 November 2024)

The solvated title compound, (C18H16P)[CoCl3(C18H15P)]·2C6H6, is the tri­phenyl­phospho­nium salt of an anionic CoII chlorido coordination compound; the asymmetric unit features an ion-pair and two benzene solvent molecules. One of the solvent mol­ecules shows rotational disorder. C—H⋯Cl and P—H⋯Cl contacts connect the individual constituents into infinite chains extending parallel to [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coordination compounds of transition metals play a crucial role in a multitude of industrial and laboratory synthesis protocols. The nature of the metal, the ligands and electronic configuration can be tweaked systematically to optimize reactivity (Gade, 1998[Gade, L. H. (1998). Koordinationschemie, Vol. 1. Weinheim: Wiley-VCH.]). In our ongoing inter­est into coordination compounds featuring halogenido ligands of main group metals such as anti­mony (Averdunk et al., 2021[Averdunk, A., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 439-441.]) as well as transition metals such as rhenium (Yumata et al., 2011[Yumata, N., Gerber, T. & Betz, R. (2011). Acta Cryst. E67, m1337.]; Schoultz et al., 2016[Schoultz, X., Gerber, T. I. A. & Betz, R. (2016). Inorg. Chem. Commun. 69, 45-46.]; Gerber et al., 2011[Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739-1745.]), iron (Schlamp et al., 2012[Schlamp, S., Schulten, J., Betz, R., Bauch, T., Mudring, A. V. & Weber, B. (2012). Z. Anorg. Allg. Chem. 638, 1093-1102.]), zinc (Hosten et al., 2015a[Hosten, E. C., Schalekamp, H. & Betz, R. (2015a). Z. Kristallogr. New Cryst. Struct. 230, 295-297.]), copper (Hosten & Betz, 2016[Hosten, E. C. & Betz, R. (2016). Z. Kristallogr. New Cryst. Struct. 231, 355-359.]; Moosun et al., 2015[Moosun, S. B., Jhaumeer-Laulloo, S., Hosten, E. C., Betz, R. & Bhowon, M. G. (2015). Inorg. Chim. Acta, 430, 8-16.]) and cobalt (Hosten et al., 2015b[Hosten, E. C., Schalekamp, H. & Betz, R. (2015b). Z. Kristallogr. New Cryst. Struct. 230, 303-305.]), we sought to expand our knowledge into the field of anionic cobalt coordination compounds featuring phospho­nium counter-ions, especially protonated tri­phenyl­phosphane. While not that common, some structural information about the latter class of ionic compounds is apparent in the literature, predominantly for halogenido coordination compounds of several heavier d-block elements such as molybdenum (Junk & Atwood, 1999[Junk, P. C. & Atwood, J. L. (1999). J. Coord. Chem. 46, 505-518.]), tungsten (Bhuiyan et al., 2015[Bhuiyan, M. A. I., Hargrove, W. R., Metz, C. R., White, P. S. & Sendlinger, S. C. (2015). Transition Met. Chem. 40, 613-621.]) and osmium (Robinson et al., 1988[Robinson, P. D., Hinckley, C. C., Matusz, M. & Kibala, P. A. (1988). Acta Cryst. C44, 619-621.]) as well as selected lanthanides such as praseodymium (Majeste et al., 1977[Majeste, R. J., Chriss, D. & Trefonas, L. M. (1977). Inorg. Chem. 16, 188-191.]) and main-group-based coordination compounds involving, among others, phospho­rus (Dyke et al., 2020[Dyke, J. M., Emsley, J. W., Greenacre, V. K., Levason, W., Monzittu, F. M., Reid, G. & De Luca, G. (2020). Inorg. Chem. 59, 4517-4526.]) and boron (Burke et al., 2020[Burke, J. M., Fox, M. A., Goeta, A. E., Hughes, A. K. & Marder, T. B. (2020). Chem. Commun. pp. 2217-2218.]).

In the crystal structure of the title compound, a tetra­coordinate CoII atom is present whose ligand sphere is comprised of one tri­phenyl­phosphane as well as three chlorido ligands. The negative charge of the cobaltate is balanced by one tri­phenyl­phospho­nium cation. Furthermore, the asymmetric unit contains two benzene solvent mol­ecules, one of which shows rotational disorder over two positions.

The Co—Cl bond lengths cover a range of 2.2313 (5)–2.2671 (4) Å, and the Co—P bond length is 2.3893 (4) Å. Both findings are in good agreement with comparable cobalt coord­ination compounds whose metrical parameters have been determined on grounds of diffraction studies and deposited with the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Inter­atomic angles over the central metal atom span 101.167 (15)–115.758 (19)°, which is indicative of a distorted tetra­hedral coordination sphere. The least-squares planes as defined by the respective carbon atoms of the aromatic systems of the cobalt-bound phosphane inter­sect at angles of 77.22 (8), 79.87 (8) and 80.08 (8)° while the corresponding angles in the protonated counter-ion present as 77.06 (9), 88.97 (10) and 89.52 (10)°, respectively (Fig. 1[link]).

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title compound, showing atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level. For clarity, only the major component (C81–C86) of the disordered solvent mol­ecule is depicted.

In the crystal, C—H⋯Cl and P—H⋯Cl contacts, whose ranges fall by more than 0.1 Å below the sum of the van der Waals radii of the atoms participating in them, are apparent (Table 1[link]). While the C—H⋯Cl contacts are supported by one hydrogen atom in the ortho (H52) as well as the meta (H63) positions on two different benzene rings of the cation, both solvent mol­ecules establish one C—H⋯Cl contact each. All chlorido ligands act as acceptors, one of them as a threefold acceptor (Table 1[link]). The phospho­rus-bonded hydrogen atom (H2) acts as bifurcated donor towards two chlorido acceptors. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for these contacts is DDDDDD on the unary level. π-Stacking is not a prominent stabilizing feature in the crystal structure of the title compound with the shortest inter­centroid distance between two aromatic systems being 4.3603 (11) Å, which involves one phenyl group each on the protonated as well as on the metal-bonded tri­phenyl­phosphane moieties. In total, the individual mol­ecular entities are connected into infinite chains extending parallel to [010] by these latter contacts (Fig. 2[link]). Furthermore, a number of C—H⋯π inter­actions (Table 1[link]) are apparent in the crystal structure that are supported by one hydrogen atom each on the solvent mol­ecules as well as on one of the aromatic hydrogen atoms in the ortho position (H62) to the protonated phospho­rus atom as donors while the aromatic system of the disordered solvent mol­ecule and two of the aromatic systems of the coordinating tri­phenyl­phosphane mol­ecule serve as acceptors.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg4 are the centroids of the (C21–C26), (C81–C86), (C91–C96) and (C11–C16) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
P2—H2⋯Cl1i 1.271 (18) 2.701 (18) 3.7531 (6) 138.9 (11)
P2—H2⋯Cl3i 1.271 (18) 2.758 (18) 3.6380 (6) 124.9 (11)
C52—H52⋯Cl1i 0.95 2.80 3.6874 (19) 155
C63—H63⋯Cl3ii 0.95 2.76 3.6294 (19) 152
C75—H75⋯Cl2ii 0.95 2.85 3.694 (2) 149
C85a—H85a⋯Cl1iii 0.95 2.83 3.690 (3) 150
C62—H62⋯Cg1i 0.95 2.72 3.6042 (19) 154
C72—H72⋯Cg2iv 0.95 2.77 3.611 (3) 148
C72—H72⋯Cg3iv 0.95 2.78 3.607 (4) 146
C92—H92⋯Cg4iv 0.95 2.84 3.636 (6) 143
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, y-1, z]; (iii) [x+1, y, z]; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Inter­molecular contacts (shown as dashed lines) in the crystal structure of the title compound, in a view along [100].

Synthesis and crystallization

The title compound was obtained by reacting bis­(tri­phenyl­phosphane)cobalt(II) chloride and the hydrido­spiro­phosphor­ane derived from α-hy­droxy-cyclo­penta­necarb­oxy­lic acid in the presence of n-butyl­lithium in THF/benzene. Crystals suitable for the diffraction study were obtained upon concentrating the reaction mixture and subsequent storage at room temperature.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link]. The H atom of the phospho­nium cation was located from a difference-Fourier map and refined freely. The modelling of the disordered benzene mol­ecule was conducted applying RIGU instructions; the refined split ratio is 0.580 (11):0.420 (11) for atoms (C81–C86):(C91–C96). Reflections [\overline{1}]02 and 100 were obstructed by the beam stop and were omitted from refinement.

Table 2
Experimental details

Crystal data
Chemical formula (C18H16P)[CoCl3(C18H15P)]·2C6H6
Mr 847.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 11.1017 (5), 12.6011 (7), 30.7804 (17)
β (°) 96.1058 (18)
V3) 4281.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.54 × 0.35 × 0.19
 
Data collection
Diffractometer Bruker D8 Quest CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 152138, 10618, 9173
Rint 0.032
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.10
No. of reflections 10618
No. of parameters 523
No. of restraints 72
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Triphenylphosphonium trichlorido(triphenylphosphane-κP)cobaltate(II) benzene disolvate top
Crystal data top
(C18H16P)[CoCl3(C18H15P)]·2C6H6F(000) = 1756
Mr = 847.04Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1017 (5) ÅCell parameters from 9084 reflections
b = 12.6011 (7) Åθ = 2.6–28.3°
c = 30.7804 (17) ŵ = 0.70 mm1
β = 96.1058 (18)°T = 200 K
V = 4281.6 (4) Å3Block, blue
Z = 40.54 × 0.35 × 0.19 mm
Data collection top
Bruker D8 Quest CCD
diffractometer
9173 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.666, Tmax = 0.746h = 1413
152138 measured reflectionsk = 1616
10618 independent reflectionsl = 4141
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.025P)2 + 2.5132P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
10618 reflectionsΔρmax = 0.32 e Å3
523 parametersΔρmin = 0.39 e Å3
72 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00096 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.22726 (2)0.57761 (2)0.64710 (2)0.02814 (6)
Cl10.06114 (4)0.60916 (4)0.68130 (2)0.04288 (10)
Cl20.22832 (5)0.67126 (4)0.58562 (2)0.05106 (12)
Cl30.39690 (3)0.58985 (3)0.69482 (2)0.03465 (9)
P10.22642 (3)0.39273 (3)0.62985 (2)0.02457 (8)
P20.76380 (3)0.07677 (3)0.70830 (2)0.02696 (8)
C110.35395 (13)0.34857 (12)0.60188 (5)0.0281 (3)
C120.45791 (15)0.41007 (14)0.60449 (6)0.0385 (4)
H120.4609350.4751560.6201430.046*
C130.55740 (16)0.37733 (16)0.58444 (6)0.0461 (4)
H130.6284440.4198480.5864630.055*
C140.55363 (16)0.28333 (16)0.56157 (6)0.0449 (4)
H140.6224340.2604140.5482210.054*
C150.44962 (16)0.22231 (15)0.55807 (6)0.0443 (4)
H150.4465160.1580430.5418510.053*
C160.35031 (15)0.25444 (13)0.57805 (5)0.0371 (3)
H160.2790600.2121680.5755420.045*
C210.23067 (13)0.31045 (11)0.67874 (5)0.0285 (3)
C220.31954 (16)0.23475 (13)0.68989 (5)0.0383 (4)
H220.3817950.2233430.6714850.046*
C230.31752 (19)0.17565 (15)0.72793 (6)0.0504 (5)
H230.3786980.1242190.7355710.060*
C240.2271 (2)0.19146 (15)0.75457 (6)0.0522 (5)
H240.2255140.1499900.7802780.063*
C250.13871 (18)0.26712 (15)0.74423 (6)0.0452 (4)
H250.0766620.2778030.7627850.054*
C260.14092 (15)0.32739 (13)0.70666 (5)0.0346 (3)
H260.0811720.3805050.6998160.042*
C310.09423 (13)0.34600 (12)0.59506 (5)0.0275 (3)
C320.04677 (14)0.24392 (13)0.59722 (5)0.0342 (3)
H320.0807650.1955450.6188100.041*
C330.05067 (15)0.21306 (14)0.56761 (6)0.0418 (4)
H330.0833900.1436960.5692610.050*
C340.09977 (15)0.28228 (16)0.53603 (6)0.0441 (4)
H340.1651740.2602480.5156070.053*
C350.05421 (17)0.38338 (17)0.53402 (6)0.0491 (4)
H350.0887060.4312550.5123190.059*
C360.04195 (16)0.41587 (14)0.56355 (6)0.0401 (4)
H360.0721920.4861930.5622130.048*
C410.75381 (13)0.21631 (12)0.69837 (5)0.0309 (3)
C420.66069 (17)0.27264 (14)0.71490 (6)0.0427 (4)
H420.6065670.2375840.7320530.051*
C430.6477 (2)0.37994 (15)0.70614 (7)0.0522 (5)
H430.5844560.4189920.7172530.063*
C440.7270 (2)0.43013 (15)0.68114 (7)0.0525 (5)
H440.7173480.5036710.6749260.063*
C450.81943 (19)0.37509 (16)0.66521 (7)0.0545 (5)
H450.8740900.4106980.6484390.065*
C460.83296 (16)0.26732 (15)0.67362 (6)0.0444 (4)
H460.8963990.2287900.6624100.053*
C510.88873 (13)0.01638 (12)0.68543 (5)0.0312 (3)
C520.99972 (15)0.01000 (17)0.71046 (6)0.0475 (4)
H521.0109910.0415810.7386200.057*
C531.09425 (17)0.0431 (2)0.69387 (8)0.0626 (6)
H531.1708870.0473730.7107440.075*
C541.07820 (17)0.08970 (17)0.65325 (7)0.0536 (5)
H541.1427590.1277670.6425470.064*
C550.96903 (18)0.08109 (19)0.62828 (7)0.0576 (5)
H550.9588870.1111680.5998280.069*
C560.87367 (17)0.02901 (18)0.64420 (6)0.0504 (5)
H560.7977050.0242420.6269110.061*
C610.62667 (13)0.01349 (12)0.68678 (5)0.0288 (3)
C620.59340 (16)0.07992 (13)0.70637 (6)0.0399 (4)
H620.6377220.1045460.7325260.048*
C630.49483 (18)0.13659 (15)0.68725 (7)0.0506 (5)
H630.4719180.2009590.7001830.061*
C640.42989 (17)0.10025 (16)0.64966 (7)0.0503 (5)
H640.3630170.1401500.6365730.060*
C650.46119 (17)0.00624 (16)0.63080 (7)0.0498 (5)
H650.4148530.0190290.6051650.060*
C660.56006 (15)0.05141 (14)0.64918 (6)0.0396 (4)
H660.5820400.1160570.6362480.048*
C710.16723 (18)0.09182 (16)0.49511 (7)0.0510 (5)
H710.1119490.1492630.4904440.061*
C720.26135 (19)0.08187 (16)0.46958 (6)0.0491 (4)
H720.2710030.1321720.4472240.059*
C730.34138 (19)0.00149 (18)0.47669 (7)0.0541 (5)
H730.4060990.0089700.4590600.065*
C740.3277 (2)0.07396 (16)0.50928 (7)0.0558 (5)
H740.3835510.1308880.5143770.067*
C750.2333 (2)0.06383 (16)0.53441 (7)0.0538 (5)
H750.2233270.1140800.5567620.065*
C760.15334 (19)0.01882 (17)0.52723 (7)0.0536 (5)
H760.0879780.0255670.5446090.064*
H20.7786 (16)0.0606 (15)0.7493 (6)0.039 (5)*
C810.5761 (3)0.6801 (4)0.5880 (2)0.0570 (14)0.580 (11)
H810.4977480.6944780.5963200.068*0.580 (11)
C820.5886 (6)0.6418 (5)0.54632 (17)0.072 (2)0.580 (11)
H820.5187960.6300120.5262340.087*0.580 (11)
C830.7031 (9)0.6209 (5)0.53407 (14)0.089 (3)0.580 (11)
H830.7116910.5946960.5056200.107*0.580 (11)
C840.8052 (5)0.6382 (5)0.5635 (3)0.086 (3)0.580 (11)
H840.8835410.6238470.5550930.103*0.580 (11)
C850.7927 (4)0.6765 (5)0.6051 (2)0.070 (2)0.580 (11)
H850.8624960.6883140.6251790.083*0.580 (11)
C860.6781 (6)0.6975 (4)0.61734 (9)0.0578 (15)0.580 (11)
H860.6696010.7236310.6457930.069*0.580 (11)
C910.7755 (7)0.6260 (5)0.54132 (18)0.069 (2)0.420 (11)
H910.8255760.6061000.5194940.083*0.420 (11)
C920.6502 (8)0.6250 (6)0.53201 (19)0.066 (2)0.420 (11)
H920.6146590.6045060.5038220.079*0.420 (11)
C930.5769 (3)0.6541 (6)0.5639 (4)0.064 (2)0.420 (11)
H930.4913080.6534170.5575840.077*0.420 (11)
C940.6290 (9)0.6841 (5)0.6052 (3)0.063 (2)0.420 (11)
H940.5788720.7039240.6270160.075*0.420 (11)
C950.7542 (10)0.6850 (7)0.61450 (14)0.059 (2)0.420 (11)
H950.7897880.7055190.6426880.071*0.420 (11)
C960.8275 (4)0.6560 (7)0.5826 (3)0.065 (2)0.420 (11)
H960.9131410.6566070.5889270.078*0.420 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03459 (11)0.02290 (10)0.02626 (10)0.00063 (8)0.00009 (8)0.00095 (7)
Cl10.0398 (2)0.0481 (2)0.0410 (2)0.01255 (18)0.00541 (16)0.00370 (17)
Cl20.0727 (3)0.0409 (2)0.0380 (2)0.0081 (2)0.0017 (2)0.01524 (18)
Cl30.03560 (19)0.03528 (19)0.03212 (18)0.00622 (15)0.00087 (14)0.00509 (14)
P10.02735 (17)0.02210 (17)0.02383 (16)0.00099 (13)0.00065 (13)0.00026 (13)
P20.02619 (17)0.02732 (18)0.02725 (17)0.00001 (14)0.00222 (13)0.00032 (14)
C110.0299 (7)0.0282 (7)0.0258 (6)0.0007 (6)0.0010 (5)0.0002 (5)
C120.0352 (8)0.0399 (9)0.0408 (9)0.0066 (7)0.0064 (7)0.0104 (7)
C130.0332 (8)0.0571 (11)0.0489 (10)0.0078 (8)0.0088 (7)0.0083 (9)
C140.0354 (9)0.0586 (11)0.0415 (9)0.0084 (8)0.0080 (7)0.0070 (8)
C150.0435 (9)0.0434 (10)0.0462 (9)0.0053 (8)0.0058 (7)0.0142 (8)
C160.0353 (8)0.0339 (8)0.0424 (9)0.0015 (6)0.0051 (6)0.0089 (7)
C210.0329 (7)0.0237 (7)0.0278 (7)0.0033 (6)0.0021 (5)0.0007 (5)
C220.0427 (9)0.0328 (8)0.0381 (8)0.0045 (7)0.0018 (7)0.0041 (7)
C230.0636 (12)0.0379 (9)0.0467 (10)0.0067 (9)0.0079 (9)0.0132 (8)
C240.0776 (14)0.0404 (10)0.0370 (9)0.0094 (9)0.0018 (9)0.0146 (8)
C250.0592 (11)0.0418 (9)0.0357 (8)0.0111 (8)0.0103 (8)0.0054 (7)
C260.0391 (8)0.0331 (8)0.0317 (7)0.0036 (6)0.0041 (6)0.0029 (6)
C310.0270 (7)0.0287 (7)0.0268 (6)0.0005 (5)0.0024 (5)0.0028 (5)
C320.0329 (8)0.0306 (8)0.0386 (8)0.0034 (6)0.0024 (6)0.0009 (6)
C330.0351 (8)0.0394 (9)0.0512 (10)0.0115 (7)0.0063 (7)0.0112 (8)
C340.0327 (8)0.0573 (11)0.0408 (9)0.0052 (8)0.0035 (7)0.0123 (8)
C350.0474 (10)0.0544 (11)0.0411 (9)0.0031 (9)0.0150 (8)0.0031 (8)
C360.0439 (9)0.0367 (9)0.0372 (8)0.0047 (7)0.0073 (7)0.0029 (7)
C410.0314 (7)0.0279 (7)0.0326 (7)0.0031 (6)0.0000 (6)0.0030 (6)
C420.0504 (10)0.0337 (9)0.0458 (9)0.0054 (7)0.0131 (8)0.0016 (7)
C430.0673 (13)0.0345 (9)0.0549 (11)0.0120 (9)0.0071 (9)0.0034 (8)
C440.0692 (13)0.0286 (9)0.0561 (11)0.0058 (8)0.0101 (10)0.0024 (8)
C450.0510 (11)0.0416 (10)0.0704 (13)0.0138 (9)0.0043 (10)0.0144 (9)
C460.0365 (9)0.0395 (9)0.0584 (11)0.0044 (7)0.0099 (8)0.0055 (8)
C510.0288 (7)0.0296 (7)0.0354 (7)0.0002 (6)0.0050 (6)0.0011 (6)
C520.0315 (8)0.0625 (12)0.0471 (10)0.0037 (8)0.0017 (7)0.0157 (9)
C530.0301 (9)0.0861 (16)0.0702 (14)0.0127 (10)0.0019 (9)0.0185 (12)
C540.0376 (9)0.0579 (12)0.0675 (13)0.0073 (8)0.0162 (9)0.0138 (10)
C550.0453 (10)0.0765 (15)0.0522 (11)0.0044 (10)0.0109 (9)0.0261 (10)
C560.0356 (9)0.0727 (14)0.0421 (9)0.0067 (9)0.0002 (7)0.0173 (9)
C610.0266 (7)0.0264 (7)0.0338 (7)0.0006 (5)0.0051 (5)0.0018 (6)
C620.0462 (9)0.0316 (8)0.0425 (9)0.0049 (7)0.0077 (7)0.0034 (7)
C630.0550 (11)0.0373 (9)0.0620 (12)0.0177 (8)0.0181 (9)0.0028 (8)
C640.0341 (9)0.0489 (11)0.0683 (13)0.0119 (8)0.0064 (8)0.0172 (9)
C650.0380 (9)0.0495 (11)0.0585 (11)0.0020 (8)0.0111 (8)0.0044 (9)
C660.0373 (8)0.0341 (8)0.0455 (9)0.0032 (7)0.0042 (7)0.0036 (7)
C710.0479 (10)0.0447 (10)0.0590 (12)0.0066 (8)0.0009 (9)0.0040 (9)
C720.0572 (11)0.0463 (10)0.0427 (10)0.0067 (9)0.0005 (8)0.0003 (8)
C730.0484 (11)0.0621 (13)0.0521 (11)0.0019 (9)0.0071 (9)0.0141 (10)
C740.0649 (13)0.0432 (11)0.0562 (12)0.0133 (9)0.0086 (10)0.0129 (9)
C750.0782 (14)0.0387 (10)0.0430 (10)0.0110 (10)0.0008 (9)0.0031 (8)
C760.0526 (11)0.0537 (12)0.0561 (11)0.0066 (9)0.0136 (9)0.0083 (9)
C810.060 (3)0.057 (3)0.053 (3)0.006 (2)0.003 (2)0.011 (3)
C820.109 (5)0.061 (3)0.046 (3)0.006 (3)0.001 (3)0.005 (3)
C830.134 (8)0.066 (4)0.072 (4)0.017 (6)0.035 (4)0.007 (3)
C840.099 (4)0.059 (4)0.107 (7)0.028 (4)0.040 (4)0.017 (6)
C850.055 (3)0.064 (3)0.089 (5)0.019 (3)0.004 (3)0.027 (4)
C860.058 (4)0.062 (3)0.052 (2)0.005 (3)0.004 (2)0.0156 (19)
C910.086 (5)0.065 (5)0.057 (4)0.018 (5)0.015 (4)0.007 (4)
C920.085 (6)0.058 (4)0.055 (4)0.009 (4)0.009 (4)0.013 (3)
C930.064 (4)0.059 (5)0.069 (7)0.004 (3)0.005 (3)0.012 (5)
C940.071 (5)0.059 (4)0.061 (5)0.000 (5)0.024 (4)0.011 (4)
C950.072 (6)0.060 (4)0.047 (3)0.001 (5)0.016 (4)0.011 (3)
C960.068 (4)0.072 (6)0.058 (5)0.026 (3)0.014 (3)0.014 (4)
Geometric parameters (Å, º) top
Co1—Cl22.2313 (5)C52—C531.387 (3)
Co1—Cl12.2541 (5)C52—H520.9500
Co1—Cl32.2671 (4)C53—C541.376 (3)
Co1—P12.3893 (4)C53—H530.9500
P1—C311.8201 (15)C54—C551.369 (3)
P1—C111.8205 (15)C54—H540.9500
P1—C211.8239 (15)C55—C561.379 (3)
P2—C611.7826 (15)C55—H550.9500
P2—C411.7861 (16)C56—H560.9500
P2—C511.7905 (15)C61—C661.390 (2)
P2—H21.271 (18)C61—C621.390 (2)
C11—C121.385 (2)C62—C631.384 (3)
C11—C161.393 (2)C62—H620.9500
C12—C131.384 (2)C63—C641.375 (3)
C12—H120.9500C63—H630.9500
C13—C141.376 (3)C64—C651.380 (3)
C13—H130.9500C64—H640.9500
C14—C151.382 (3)C65—C661.386 (2)
C14—H140.9500C65—H650.9500
C15—C161.379 (2)C66—H660.9500
C15—H150.9500C71—C761.371 (3)
C16—H160.9500C71—C721.378 (3)
C21—C221.389 (2)C71—H710.9500
C21—C261.400 (2)C72—C731.378 (3)
C22—C231.390 (2)C72—H720.9500
C22—H220.9500C73—C741.377 (3)
C23—C241.376 (3)C73—H730.9500
C23—H230.9500C74—C751.374 (3)
C24—C251.381 (3)C74—H740.9500
C24—H240.9500C75—C761.371 (3)
C25—C261.386 (2)C75—H750.9500
C25—H250.9500C76—H760.9500
C26—H260.9500C81—C821.3900
C31—C361.390 (2)C81—C861.3900
C31—C321.394 (2)C81—H810.9500
C32—C331.394 (2)C82—C831.3900
C32—H320.9500C82—H820.9500
C33—C341.375 (3)C83—C841.3900
C33—H330.9500C83—H830.9500
C34—C351.374 (3)C84—C851.3900
C34—H340.9500C84—H840.9500
C35—C361.388 (2)C85—C861.3900
C35—H350.9500C85—H850.9500
C36—H360.9500C86—H860.9500
C41—C461.381 (2)C91—C921.3900
C41—C421.394 (2)C91—C961.3900
C42—C431.383 (3)C91—H910.9500
C42—H420.9500C92—C931.3900
C43—C441.383 (3)C92—H920.9500
C43—H430.9500C93—C941.3900
C44—C451.372 (3)C93—H930.9500
C44—H440.9500C94—C951.3900
C45—C461.388 (3)C94—H940.9500
C45—H450.9500C95—C961.3900
C46—H460.9500C95—H950.9500
C51—C521.384 (2)C96—H960.9500
C51—C561.386 (2)
Cl2—Co1—Cl1112.41 (2)C52—C51—C56119.95 (15)
Cl2—Co1—Cl3115.758 (19)C52—C51—P2119.13 (12)
Cl1—Co1—Cl3110.480 (18)C56—C51—P2120.82 (12)
Cl2—Co1—P1109.115 (18)C51—C52—C53119.13 (17)
Cl1—Co1—P1106.962 (17)C51—C52—H52120.4
Cl3—Co1—P1101.167 (15)C53—C52—H52120.4
C31—P1—C11104.00 (6)C54—C53—C52120.70 (18)
C31—P1—C21104.48 (7)C54—C53—H53119.7
C11—P1—C21105.26 (7)C52—C53—H53119.7
C31—P1—Co1115.47 (5)C55—C54—C53119.86 (17)
C11—P1—Co1114.73 (5)C55—C54—H54120.1
C21—P1—Co1111.82 (5)C53—C54—H54120.1
C61—P2—C41109.98 (7)C54—C55—C56120.38 (18)
C61—P2—C51109.30 (7)C54—C55—H55119.8
C41—P2—C51112.81 (7)C56—C55—H55119.8
C61—P2—H2108.2 (8)C55—C56—C51119.95 (17)
C41—P2—H2109.1 (8)C55—C56—H56120.0
C51—P2—H2107.3 (8)C51—C56—H56120.0
C12—C11—C16118.95 (14)C66—C61—C62120.64 (15)
C12—C11—P1119.12 (12)C66—C61—P2120.88 (12)
C16—C11—P1121.93 (12)C62—C61—P2118.25 (12)
C13—C12—C11120.45 (16)C63—C62—C61119.14 (17)
C13—C12—H12119.8C63—C62—H62120.4
C11—C12—H12119.8C61—C62—H62120.4
C14—C13—C12120.15 (17)C64—C63—C62120.38 (17)
C14—C13—H13119.9C64—C63—H63119.8
C12—C13—H13119.9C62—C63—H63119.8
C13—C14—C15119.90 (16)C63—C64—C65120.46 (17)
C13—C14—H14120.0C63—C64—H64119.8
C15—C14—H14120.0C65—C64—H64119.8
C16—C15—C14120.18 (16)C64—C65—C66120.16 (18)
C16—C15—H15119.9C64—C65—H65119.9
C14—C15—H15119.9C66—C65—H65119.9
C15—C16—C11120.34 (16)C65—C66—C61119.20 (16)
C15—C16—H16119.8C65—C66—H66120.4
C11—C16—H16119.8C61—C66—H66120.4
C22—C21—C26119.10 (14)C76—C71—C72120.02 (19)
C22—C21—P1123.34 (12)C76—C71—H71120.0
C26—C21—P1117.53 (11)C72—C71—H71120.0
C21—C22—C23120.10 (17)C73—C72—C71119.59 (19)
C21—C22—H22120.0C73—C72—H72120.2
C23—C22—H22120.0C71—C72—H72120.2
C24—C23—C22120.16 (18)C74—C73—C72120.1 (2)
C24—C23—H23119.9C74—C73—H73119.9
C22—C23—H23119.9C72—C73—H73119.9
C23—C24—C25120.54 (16)C75—C74—C73119.90 (19)
C23—C24—H24119.7C75—C74—H74120.1
C25—C24—H24119.7C73—C74—H74120.1
C24—C25—C26119.70 (18)C76—C75—C74120.0 (2)
C24—C25—H25120.2C76—C75—H75120.0
C26—C25—H25120.2C74—C75—H75120.0
C25—C26—C21120.37 (16)C75—C76—C71120.4 (2)
C25—C26—H26119.8C75—C76—H76119.8
C21—C26—H26119.8C71—C76—H76119.8
C36—C31—C32119.06 (14)C82—C81—C86120.0
C36—C31—P1117.14 (12)C82—C81—H81120.0
C32—C31—P1123.75 (12)C86—C81—H81120.0
C33—C32—C31119.82 (15)C81—C82—C83120.0
C33—C32—H32120.1C81—C82—H82120.0
C31—C32—H32120.1C83—C82—H82120.0
C34—C33—C32120.47 (16)C82—C83—C84120.0
C34—C33—H33119.8C82—C83—H83120.0
C32—C33—H33119.8C84—C83—H83120.0
C35—C34—C33119.98 (16)C83—C84—C85120.0
C35—C34—H34120.0C83—C84—H84120.0
C33—C34—H34120.0C85—C84—H84120.0
C34—C35—C36120.33 (17)C86—C85—C84120.0
C34—C35—H35119.8C86—C85—H85120.0
C36—C35—H35119.8C84—C85—H85120.0
C35—C36—C31120.32 (16)C85—C86—C81120.0
C35—C36—H36119.8C85—C86—H86120.0
C31—C36—H36119.8C81—C86—H86120.0
C46—C41—C42120.28 (16)C92—C91—C96120.0
C46—C41—P2121.40 (13)C92—C91—H91120.0
C42—C41—P2118.28 (12)C96—C91—H91120.0
C43—C42—C41119.53 (18)C93—C92—C91120.0
C43—C42—H42120.2C93—C92—H92120.0
C41—C42—H42120.2C91—C92—H92120.0
C44—C43—C42119.73 (19)C92—C93—C94120.0
C44—C43—H43120.1C92—C93—H93120.0
C42—C43—H43120.1C94—C93—H93120.0
C45—C44—C43120.85 (18)C95—C94—C93120.0
C45—C44—H44119.6C95—C94—H94120.0
C43—C44—H44119.6C93—C94—H94120.0
C44—C45—C46119.88 (19)C94—C95—C96120.0
C44—C45—H45120.1C94—C95—H95120.0
C46—C45—H45120.1C96—C95—H95120.0
C41—C46—C45119.72 (18)C95—C96—C91120.0
C41—C46—H46120.1C95—C96—H96120.0
C45—C46—H46120.1C91—C96—H96120.0
C31—P1—C11—C12147.12 (13)C41—C42—C43—C440.0 (3)
C21—P1—C11—C12103.30 (13)C42—C43—C44—C450.6 (3)
Co1—P1—C11—C1220.06 (14)C43—C44—C45—C460.9 (3)
C31—P1—C11—C1633.13 (14)C42—C41—C46—C450.1 (3)
C21—P1—C11—C1676.45 (14)P2—C41—C46—C45177.51 (15)
Co1—P1—C11—C16160.20 (12)C44—C45—C46—C410.6 (3)
C16—C11—C12—C131.3 (3)C61—P2—C51—C52147.38 (15)
P1—C11—C12—C13178.47 (14)C41—P2—C51—C5289.93 (16)
C11—C12—C13—C140.2 (3)C61—P2—C51—C5628.95 (17)
C12—C13—C14—C151.0 (3)C41—P2—C51—C5693.74 (16)
C13—C14—C15—C161.1 (3)C56—C51—C52—C530.7 (3)
C14—C15—C16—C110.0 (3)P2—C51—C52—C53175.67 (18)
C12—C11—C16—C151.2 (2)C51—C52—C53—C540.5 (4)
P1—C11—C16—C15178.58 (14)C52—C53—C54—C551.9 (4)
C31—P1—C21—C22111.23 (14)C53—C54—C55—C562.2 (4)
C11—P1—C21—C222.00 (15)C54—C55—C56—C511.0 (4)
Co1—P1—C21—C22123.19 (13)C52—C51—C56—C550.4 (3)
C31—P1—C21—C2670.46 (13)P2—C51—C56—C55175.85 (17)
C11—P1—C21—C26179.69 (12)C41—P2—C61—C6633.31 (15)
Co1—P1—C21—C2655.12 (12)C51—P2—C61—C6691.06 (14)
C26—C21—C22—C231.1 (2)C41—P2—C61—C62152.07 (13)
P1—C21—C22—C23179.39 (14)C51—P2—C61—C6283.57 (14)
C21—C22—C23—C240.4 (3)C66—C61—C62—C631.8 (3)
C22—C23—C24—C251.0 (3)P2—C61—C62—C63172.82 (14)
C23—C24—C25—C260.2 (3)C61—C62—C63—C640.7 (3)
C24—C25—C26—C211.3 (3)C62—C63—C64—C650.8 (3)
C22—C21—C26—C252.0 (2)C63—C64—C65—C661.3 (3)
P1—C21—C26—C25179.66 (13)C64—C65—C66—C610.2 (3)
C11—P1—C31—C3692.74 (13)C62—C61—C66—C651.4 (3)
C21—P1—C31—C36157.11 (13)P2—C61—C66—C65173.14 (14)
Co1—P1—C31—C3633.86 (14)C76—C71—C72—C730.2 (3)
C11—P1—C31—C3284.52 (14)C71—C72—C73—C740.4 (3)
C21—P1—C31—C3225.63 (14)C72—C73—C74—C750.8 (3)
Co1—P1—C31—C32148.88 (11)C73—C74—C75—C760.5 (3)
C36—C31—C32—C330.8 (2)C74—C75—C76—C710.2 (3)
P1—C31—C32—C33176.37 (12)C72—C71—C76—C750.5 (3)
C31—C32—C33—C340.5 (3)C86—C81—C82—C830.0
C32—C33—C34—C351.2 (3)C81—C82—C83—C840.0
C33—C34—C35—C360.5 (3)C82—C83—C84—C850.0
C34—C35—C36—C310.9 (3)C83—C84—C85—C860.0
C32—C31—C36—C351.6 (3)C84—C85—C86—C810.0
P1—C31—C36—C35175.84 (15)C82—C81—C86—C850.0
C61—P2—C41—C46119.37 (14)C96—C91—C92—C930.0
C51—P2—C41—C462.93 (16)C91—C92—C93—C940.0
C61—P2—C41—C4258.23 (15)C92—C93—C94—C950.0
C51—P2—C41—C42179.46 (13)C93—C94—C95—C960.0
C46—C41—C42—C430.4 (3)C94—C95—C96—C910.0
P2—C41—C42—C43177.28 (15)C92—C91—C96—C950.0
Hydrogen-bond geometry (Å, º) top
Cg1–Cg4 are the centroids of the (C21–C26), (C81–C86), (C91–C96) ring and (C11–C16) rings, respectively.
D—H···AD—HH···AD···AD—H···A
P2—H2···Cl1i1.271 (18)2.701 (18)3.7531 (6)138.9 (11)
P2—H2···Cl3i1.271 (18)2.758 (18)3.6380 (6)124.9 (11)
C52—H52···Cl1i0.952.803.6874 (19)155
C63—H63···Cl3ii0.952.763.6294 (19)152
C75—H75···Cl2ii0.952.853.694 (2)149
C85a—H85a···Cl1iii0.952.833.690 (3)150
C62—H62···Cg1i0.952.723.6042 (19)154
C72—H72···Cg2iv0.952.773.611 (3)148
C72—H72···Cg3iv0.952.783.607 (4)146
C92—H92···Cg4iv0.952.843.636 (6)143
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Mr Allan Mazongo for useful discussions.

References

First citationAverdunk, A., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 439–441.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. A. I., Hargrove, W. R., Metz, C. R., White, P. S. & Sendlinger, S. C. (2015). Transition Met. Chem. 40, 613–621.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, J. M., Fox, M. A., Goeta, A. E., Hughes, A. K. & Marder, T. B. (2020). Chem. Commun. pp. 2217–2218.  Google Scholar
First citationDyke, J. M., Emsley, J. W., Greenacre, V. K., Levason, W., Monzittu, F. M., Reid, G. & De Luca, G. (2020). Inorg. Chem. 59, 4517–4526.  CSD CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, Vol. 1. Weinheim: Wiley-VCH.  Google Scholar
First citationGerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHosten, E. C. & Betz, R. (2016). Z. Kristallogr. New Cryst. Struct. 231, 355–359.  CSD CrossRef CAS Google Scholar
First citationHosten, E. C., Schalekamp, H. & Betz, R. (2015a). Z. Kristallogr. New Cryst. Struct. 230, 295–297.  CSD CrossRef CAS Google Scholar
First citationHosten, E. C., Schalekamp, H. & Betz, R. (2015b). Z. Kristallogr. New Cryst. Struct. 230, 303–305.  CSD CrossRef CAS Google Scholar
First citationJunk, P. C. & Atwood, J. L. (1999). J. Coord. Chem. 46, 505–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajeste, R. J., Chriss, D. & Trefonas, L. M. (1977). Inorg. Chem. 16, 188–191.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoosun, S. B., Jhaumeer-Laulloo, S., Hosten, E. C., Betz, R. & Bhowon, M. G. (2015). Inorg. Chim. Acta, 430, 8–16.  CSD CrossRef CAS Google Scholar
First citationRobinson, P. D., Hinckley, C. C., Matusz, M. & Kibala, P. A. (1988). Acta Cryst. C44, 619–621.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchlamp, S., Schulten, J., Betz, R., Bauch, T., Mudring, A. V. & Weber, B. (2012). Z. Anorg. Allg. Chem. 638, 1093–1102.  CSD CrossRef CAS Google Scholar
First citationSchoultz, X., Gerber, T. I. A. & Betz, R. (2016). Inorg. Chem. Commun. 69, 45–46.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYumata, N., Gerber, T. & Betz, R. (2011). Acta Cryst. E67, m1337.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146